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Chapter 1

Introduction

1.1 Fractional statistics and anyon superconductivity

Quantum statistics

Almost any textbook on quantum mechanics introduces the notion of quantum statis-
tics by looking at the way the wave function changes sign under permutation of iden-
tical particles. The usual argument is as follows. Let ¢(ry,ro,...,ry) denote the
wave function of a system of N particles with coordinates ry,rs, ..., ry. Quantum
mechanics requires that the observable properties of a system do not change under
permutation of identical particles. Because the probability density [¢|* is an ob-
servable, it should not be altered by a simple permutation of two particles. If for
instance ¢'(ry,re,...,ry) = ¥(ra,rq,...,ry) is the wave function after permutation
of particles 1 and 2, we must have

W7 =191, (1.1.1)

which means that v’ differs from ¢ only by a simple phase:

V' =mp, n = exp(if). (1.1.2)

Because v is single-valued, after a second permutation of the first two particles we
get n? = 1. Hence there are just two possibilities: n = 1 (f = 0) corresponding to
bosons and n = —1 (6 = 7) corresponding to fermions. The choice of  determines the
statistics, i.e., the rules for occupying quantum states. Fermions obey Pauli principle:
a single state can only be occupied by a single fermion. Therefore, even at very low
temperatures, fermions occupy states up to a relatively large energy (Fermi energy).
There is no limitation on the number of bosons in a single quantum state. When
the temperature is very low, bosons macroscopically occupy a single state, leading to
Bose condensation.

It seems that this simple argument leaves no room for particles other than bosons
and fermions. Indeed, these are the only particles which have been discovered in
nature. Yet, as we shall see, this limitation is inherently related to the three spatial



dimensions we live in. In one spatial dimension, for instance, the whole notion of
statistics looses its meaning for particles with a hard-core interaction. The hard-core
particles cannot pass through each other in one dimension so that their ordering does
not change. Therefore, it is not important how the wave function behaves when two
particles are exchanged. By far the most interesting is the situation in two spatial
dimensions. We will see that a continuum of statistical possibilities arises there:
particles interpolating between bosons and fermions as the two extremes.

Path-dependent exchange phase and fractional statistics

We usually think about quantum statistics in terms of the permutation of the argu-
ments in a wave function. However, what is essential for the physics is not the math-
ematical interchange of two arguments, but the adiabatic exchange, i.e., the physical
process in which two particles are transported adiabatically until they change places.
The phase which then arises might depend on the Hamiltonian of the system and the
traversed path [1]. The only condition which is imposed is that paths which can be
continuously deformed into each other should yield the same phase [2].

As an example, let us consider the case of two particles in three spatial dimensions
and restrict our attention to their relative coordinate r = r{ —r,. As the two particles
are exchanged adiabatically, their relative coordinate moves along a path connecting
the points r and —r. The phase n that arises is independent from the chosen path.
This is because, in three dimensions, all of the paths with the same endpoints can
be continuously deformed into each other. To determine n we exchange the particles
a second time, after which the relative coordinate returns to its initial position r.
The relative coordinate has now traversed a closed path. But, in three dimensions,
this path can be continuously deformed into the point r. Therefore, the phase arising
from the two exchanges should equal the phase when there is no exchange, i.e., n?> = 1
regardless of the chosen path.

But what about two dimensions? Consider the path of the relative coordinate r
as the two particles are adiabatically exchanged (cf. Fig. 1.1). We assume that the
particles have a hard-core interaction so that they cannot pass through each other.
After a little bit of thinking it becomes clear that not all the possible exchange paths
can be deformed continuously into each other. An exchange path can be continuously
deformed into another one if and only if they both have the same (half) winding
number, which is the number of times the relative coordinate encircles the origin in
the positive (counter-clockwise) direction. (Paths in the negative (clockwise) direction
have a negative winding number.) Therefore, in two dimensions the exchange phase
may depend on the path, or more precisely, on its winding number.

In order to determine the exchange phase, we consider the set of the closed paths
of the relative coordinate in two dimensions. To each closed path with an integer
winding number n we assign a phase y,. We require that x, satisfies the group
property XnXm = Xnim, Since any two closed paths with winding numbers n and
m can be combined into a single closed path with the winding number n +m. A
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Fig. 1.1. Possible paths of the relative coordinate during the adiabatic ex-
change of two particles in two dimensions. The winding number of each path
is the number of times it encircles the origin in the counter-clockwise direction.
Paths with different winding numbers cannot be deformed into each other.

scalar representation of the group {x,} is given by x, = (n?)", where n = exp(if)
is the phase arising from a simple exchange of the two particles (with zero winding
number) in the positive direction. In contrast to three dimensions, closed paths with
n # 0 cannot be deformed into a single point, so that there is no restriction on the
value of 1 (or equivalently 6). In particular, we have # = 0(mod 27) for bosons and
0 = m(mod 27) for fermions. Any other value of 6 corresponds to anyons or particles
obeying fractional statistics [3, 4].

In addition to a path-dependent, complex exchange phase, there is another differ-
ence between anyons and the “conventional” particles. In a many-anyon system, the
phase acquired by exchanging two anyons will also depend on the number of other
anyons enclosed by the exchange loop. Each enclosed anyon contributes an extra,
non-trivial phase (n?)* where k is the number of times it is encircled by the exchange
loop.

Anyons as particle-flux tube composites

In view of the complexity of a path-dependent exchange phase, it is no wonder that
even the problem of noninteracting anyons cannot be easily solved. In contrast to
bosons and fermions, it is not possible to write the wave function as a symmetrized
or antisymmetrized linear combination of single-particle wave functions. Instead,
one has to use multivalued wave functions, in order to deal with the complicated
boundary conditions arising from the path-dependent behaviour. One example is to



write [5]

* (Zl B Z')a *
U({ah (=) = [T 2o ), (113
i<j |2 — 24
where we have introduced complex coordinates z; = x; + iy;. The function ® is

single-valued and might be either symmetric (boson representation) or antisymmetric
(fermion representation) in its arguments. The corresponding value of 6 is ma and
m(a+ 1) for the boson and fermion representations, respectively. The function ¥ in
Eq. (1.1.3) has a complicated structure, extending over various branch-cuts of the
first factor on the r.h.s. of Eq. (1.1.3).

There is an alternative picture of anyons where instead of treating the statistics as
a boundary condition, we treat it as an interaction between bosons or fermions with
single-valued wave functions and ordinary permutation relations. The advantage of
this approach is that we do not have to keep track of all possible exchange paths, for
the particles now obey the usual boson or fermion statistics. In this picture [4], each
anyon is thought of as a composite particle consisting of a boson or fermion of charge
e, pierced with a fictitious flux tube carrying a flux ® (Fig. 1.2). The statistical phase
is now viewed as the Aharonov-Bohm phase arising from the adiabatic exchange of
composite particles, and is given by n = exp(if) where § = we®/h for bosons and
0 =+ med/h for fermions. Since the ratio e®/h can take any value, the composite
particles are anyons.

Fig. 1.2. The making of an anyon: a charge in two dimensions is pierced by a
flux tube. The resultings particles have fractional statistics. (From Ref. [6].)

The fictitious flux tubes give rise to a strong long-range vector-potential inter-
action between the particles. Formally, the vector-potential interaction enters the
Hamiltonian by substituting Eq. (1.1.3) into the free-particle Hamiltonian Hy =



(—h*/2m) ¥, V2, and applying a singular gauge transformation. Although the in-
teracting problem is quite complicated, the particles are now ordinary bosons and
fermions so that one can apply the standard approximations of the many-body
physics.

Do anyons exist?

We have seen that in two dimensions, the notion of quantum statistics can be nontriv-
ially generalized to include anyons. But do anyons exist? Well, not as fundamental
particles, since we live in a three-dimensional world. Yet, there are many examples
of condensed-matter systems realized in the laboratory, which are effectively two-
dimensional. Just as any physical system, these condensed-matter systems are also
made of ordinary bosons and fermions. Nevertheless, the excitations of these systems
might be of a quite different nature. A similar situation arises in an electron gas:
whereas the fundamental particles are fermions, the system supports phonon exci-
tations which obey Bose statistics. There are two phenomena in which anyons are
believed to play a role. The first phenomenon is the fractional quantum Hall effect
discussed in Sec. 2. It is now well established that the quasiparticle excitations in
the fractional quantum Hall effect are anyons. The role of the anyons in the second
phenomenon, the high-temperature superconductivity, is more controversial. Exper-
iment have failed to confirm the existence of anyons in the two-dimensional planes of
high-temperature superconductors.

Anyon superconductivity

Laughlin [7] has suggested that the charged excitations in the high-temperature su-
perconductors obey fractional statistics. To see how fractional statistics implies su-
perconductivity, consider a gas of anyons each consisting of a fermion of charge e
carrying a flux tube containing the flux ® = h/ep, where p is an integer. The phase
arising from the exchange of two anyons is exp(if) where § = 7+me®/h = 7(1+1/p).
Laughlin’s insight was that composites of p anyons behave as if they were bosons:
the exchange phase of two such composites equals [exp(i0)]?* = explir(p? + p)] = 1,
where we have used that p? + p is always an even integer. Therefore, composites of p
anyons can macroscopically occupy a p-particle state, and form a charge-p superfluid.
A superfluid is characterized by a gap in the single-particle excitation spectrum, and
an undamped linearly dispersing longitudinal collective mode. Furthermore, since the
composites are charged, the system becomes superconductive, showing for instance
a Meissner effect. Laughlin has in particular considered the case p = 2, as a possible
explanation of the high-temperature superconductivity.

In chapter 2, we investigate the mean-field (Hartree) theory [8]-[11] of anyon
superconductors. In the mean-field theory, the fictitious flux tubes are smeared out,



yielding a fictitious perpendicular magnetic field

Bi(r) = Z%n(r)i, (1.1.4)

proportional to the particle density n(r) (in the z-y plane). In the ground state n(r)
is uniform so that the problem is reduced to that of noninteracting fermions in a
constant magnetic field. In a magnetic field, the kinetic energy of the motion of the
particles is quantized in the highly degenerate Landau levels, separated by the energy
fiw. where w. = eBf/m is the cyclotron frequency. Because of the relation (1.1.4),
a gas of anyons precisely fills p Landau levels and the system possesses a single-
particle excitation gap, a feature of superfluidity. We shall study the linear response
of an anyon gas to an external electromagnetic field, using the time-dependent mean-
field (Hartree) approximation and show that a gas of anyons exhibits the perfect
conductivity and the Meissner effect, both characteristic of a superconductor.

1.2 The fractional quantum Hall effect

The quantum Hall effect

The quantum Hall effect (QHE) [12, 13] was discovered in 1980 by Klaus von Klitzing,
for which he received the 1985 Noble prize in physics. This phenomenon occurs in
a two-dimensional electron gas (2DEG) subject to a strong, perpendicular magnetic
field [14, 15]. A simplified version of the experimental setup is shown in Fig. 1.3. A
rectangular shaped sample with length L and width W, is placed in a perpendicular
magnetic field Bz. A constant current [ is led through the sample, and the longitu-
dinal (V1) and Hall (V4) voltage differences are measured. In an ideal sample, the
current density j is uniform (given by /W), and directed along the long edge of the
sample. The electric field E is also uniform with components in both the x and y
directions. The electric field and the current density are related by

j=0oE, E = pj, (1.2.1)

where o and p(= o7!) are the conductivity and the resistivity tensors, respectively.
By measuring V1, and Vj, one can determine the components of the resistivity tensor
from the relations p,, = py, = (W/L)VL/I, puy = —pys = Vuu/I. The conductivity
tensor is found by inverting p.

In general, both the longitudinal resistivity p,., and the Hall resistivity p,, depend
on the material parameters. The semiclassical theory of conductivity, for instance,
yields [16]

1 B
e — — 5 Py — 1.2.2
P o Py on ( )
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Fig. 1.3. The experimental setup for measuring the quantum Hall effect. A
rectangular shaped sample with length L and width W is placed in a perpen-
dicular magnetic field. Connections are made on the sides of the sample. A
constant current I is led through the sample and the voltage differences V1,
and Vy are measured. (From Ref. [14].)

where o( is the Drude conductivity, —e is the charge of an electron, and n is the
electron density. The Drude conductivity is simply
_ ne*n

= 1.2.3
0o m ) ( )

where 73 is the mean free time, and m is the effective mass of the electrons which
differs from the electron mass m.. In the semiclassical theory, the quantum effects
only modify the effective mass m and the mean free time 7p. Both parameters are
material dependent.

The semiclassical description is quite accurate under normal conditions. However,
at very low temperatures, a completely different picture arises. Figure 1.4 shows the
measured values of p,, and p,, plotted as a function of the magnetic field. Instead of
pzy following a straight line, as predicted by the semiclassical theory, a series of steps
are found. On each step both the longitudinal conductivity and resistivity vanish,
and the Hall conductivity and resistivity take the constant values

62

Oy = Pay = Vo (1.2.4)
where v (called the filling factor) is always a rational number with an odd denomi-
nator. Note that Eq. (1.2.4) only involves the fundamental constants e and h; there
is no dependence on the material.

The current theoretical picture of the QHE can be summarized as follows [14, 15].

(i) The QHE occurs whenever a gap opens in the excitation spectrum of the
2DEG, implying incompressibility. The incompressibility is indicated by a jump in
the chemical potential = OF(N)/IN, corresponding to a cusp in the ground-state
energy E(N) as a function of the particle number N. This happens at special values
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Fig. 1.4. The longitudinal (p,,) and Hall (p,,) resistivities as a function of the
magnetic field field B, in a high-quality sample. The temperature is 150mK.
Steps are formed around rational values of the filling factor v = nh/eB. On
each step ps, vanishes and p,, becomes constant. (From Ref. [14].)



of the electron density given by n, = veB/h where v is a rational number. The
vanishing of p,, and the resulting dissipationless flow of current, is a manifestation
of the excitation gap of the 2DEG.

(ii) Around the “magic” densities n,, steps are formed, on which the Hall con-
ductivity o,, remains constant and equals en,/B = ve?/h. The Hall resistivity
pzy = B/en, equals the semiclassical value [Eq. (1.2.2)] at n = n,,.

(iii) The formation of the steps cannot be explained without taking into account
the disorder. An ideally “clean” system does not exhibit QHE.

The integer QHE

The first filling factors which where experimentally observed were the integers v =
1,2,... [12]. It was very soon understood that the incompressibility of the 2DEG
at the integer values of v, is essentially a property of noninteracting electrons: it
is a result of the quantization of the kinetic energy of motion of the electrons in a
magnetic field. The kinetic energy of motion in a magnetic field is quantized in the
highly degenerate Landau levels, separated by a distance hw., where w. = eB/m is
the cyclotron frequency. The degeneracy of each Landau level is D = eBA/h where
A is the area of the system.

According to the Pauli principle, each single-particle state can only be occupied
by a single electron. (We neglect the spin degrees of freedom of the electrons.) At
zero temperature, the states with the lowest energies are occupied. Now consider
a system of N noninteracting electrons. By definition, the chemical potential j(N)
is the energy needed to add an extra electron to the system. Therefore, for the
noninteracting system at zero temperature, p(N) is the energy of the lowest lying
unoccupied state, and equals the energy of the highest, partially filled Landau level.
As N is increased, the chemical potential remains constant, until the highest Landau
level becomes completely filled. When this happens, an excitation gap opens and the
chemical potential jumps by an amount of hw.. Therefore, the noninteracting 2DEG
becomes incompressible when a number of Landau levels are completely filled, i.e.
when the filling factor v = nh/eB = N/D becomes an integer.

The fractional QHE

The experimentally observed filling factors are not restricted to the integers. Soon
after the discovery of the integer QHE, other fractions such as %, %, ..., were observed
[13]. From a phenomenological point of view it is difficult to distinguish the fractional
QHE from its integer counterpart. Yet, the underlying physics is completely different.
In contrast to the integer QHE, the incompressibility in the fractional QHE is caused
by the electron-electron interactions. At fractional filling factors, the electrons in a
partially filled Landau level are condensed into a strongly correlated liquid.

The established theory of the fractional QHE is based on Laughlin’s variational



wave function [17]:

12
v =TT - o e (-3 2, (12
i 0

1<j

where (y = (h/eB)'/? is the magnetic length, and k is an integer. Laughlin’s wave
function accurately describes the fractional QHE in a uniform, unbounded 2DEG at
the filling factor v = ﬁ An interesting feature of the wave function (1.2.5) is that
its elementary excitations are quasiparticles and quasiholes with fractional charge and
statistics [14, 15]. Laughlin’s wave function is known to be the exact, incompressible
ground state for an interaction potential of vanishing range [18, 19]; for other, more
general interaction potentials its accuracy has been confirmed by numerical studies.

The generalization of Laughlin’s theory to filling factors other than v = ﬁ was
suggested by the hierarchy picture of Haldane [20] and Halperin [21]. In this picture,
the filling factors v = ﬁ form the first level of the hierarchy of the fractional QHE

states. The second level of the hierarchy is constructed by the condensation of the

quasiparticles (or quasiholes) of the v = ﬁ states, into new Laughlin states. For
2 1

instance, the state at v = £ is formed when the quasiparticles of the v = 3 state
condense into a new é Laughlin state. By continuing the hierarchical construction,
and invoking the particle-hole symmetry [22], one can recover all of the possible filling

factors.

Jain’s theory of the fractional QHE

Although the theoretical explanations of the integer and the fractional QHE’s are
quite different from each other, the similarity in the phenomenology motivates a
unifying approach to both phenomena. The first step in this direction was taken by
Jain [23]. He suggested that the fractional QHE can be viewed as the integer QHE
of electron-flux-tube composites. Jain’s ideas can be summarized as follows.

(i) The incompressibility in the integer QHE is enforced by the Fermi statistics of
the electrons (Pauli’s principle) and is not sensitive to the electron-electron interac-
tions.

(ii) The role of the electron-electron interactions in the incompressible fractional
QHE liquid is to bind a fraction of the external flux to the electrons, forming com-
posite particles each consisting of an electron of charge e, bound to a flux tube of
strength ® = 2k®, where k is an integer and ®, = h/e is the flux quantum. Conse-
quently, the composite particles move in an effective magnetic field which is smaller
than the true external magnetic field. The statistical phase arising from the exchange
of two such composite particles is (see Sec. 1) n = exp(im + ime®/h) = —1, so that
the composite particles will again obey Fermi statistics.

(iii) Being fermions, the composite particles are subject to the same incompress-
ibility mechaniasm as that of the ordinary electrons in the integer QHE. The fractional
QHE occurs when the gas of composite particles fills a number of Landau levels in
the new, effective magnetic field.

10



Jain gave a prescription for constructing the fractional QHE states. He proposed
the Ansatz [23]

U, =PIz — 2)* 0y, (1.2.6)

i<j
for the fractional QHE state v, at the filling factor

p

- _P 1.2.
YT Skpr U (1.2.7)

where k and p are integers, P is the lowest Landau level projection operator, and 1, is
the integer QHE wave function at the filling factor p. The second factor on the r.h.s.
of Eq. (1.2.6) attaches 2k flux quanta to each electron. The different levels of the
hierarchy of the fractional QHE states are obtained by substituting different values
for p. Equating p = 1, k = 1,2,..., in Eq. (1.2.7), one recovers the filling factors

%, %, ... belonging to the first level of the hierarchy. Equatingp =2,k =1,2,...,

. . 2 2 . 9

results in the second level of the hierarchy v = £ 5,..., and so on. Jain’s wave

functions agree very well with exact numerical studies carried out for small systems.

UV =

Adiabatic principle of Greiter and Wilczek

Despite the attractiveness of Jain’s idea to consider the fractional QHE as the integer
QHE of composite particles, his method of construction of the fractional QHE states
is rather heuristic. The adiabatic principle of Greiter and Wilczek [24] is in a way an
attempt to put Jain’s approach on a more physically and mathematically sound basis.
Greiter and Wilczek have proposed that the incompressible states of the fractional
QHE can be obtained by adiabatically attaching flux tubes to the electrons in the
incompressible integer QHE states.

To understand the adiabatic principle of Greiter and Wilczek [24], consider a
2DEG filling exactly p Landau levels. The system has an excitation gap and shows
the integer QHE at v = p. If it were possible to continuously reduce the filling
factor (or the density) of the 2DEG, while retaining the excitation gap, we could
have reached incompressible states at fractional filling factors.

It is well-known that when the Hamiltonian of the system depends on an external
parameter, the excitation gap does not collapse if the external parameter is changed
adiabatically. In order to introduce such a parameter into the Hamiltonian, Greiter
and Wilczek considered a gas of electrons bound to fictitious flux tubes each carrying
—\ flux quanta h/e (Fig. 1.5). In Sec. 1.1 we saw that the resulting objects obey
fractional statistics. The flux tubes induce a fictitious long-range vector-potential
interaction between the electrons whose strength A is used as the adiabatic parameter.
Let’s assume that at A = 0 the ground state is the integer QHE state at v = p
with the density ng = ph/eB. The vector-potential interaction is now switched on
by increasing A adiabatically. To see how the density of the system changes with
A, we apply the law’s of classical electrodynamics. As A\ is increased adiabatically,

11



negative flux is introduced into the system. According to Faraday’s law, the system
tries to keep the total magnetic flux constant. Equating the total flux per particle
—MAh/e + B/n to its initial value B/ng = h/ep, yields the filling factor

nh P

v=—= .

eB  Ap+1
Since the excitation gap is not destroyed by the adiabatic attachment of flux, a sys-
tem of anyons is incompressible and therefore shows fractional QHE at the filling
factors given by Eq. (1.2.8). But what about electrons? When A reaches an even
integer 2k with k = 1,2,..., the composite particles once again obey Fermi statis-
tics. The vector-potential interaction can now be gauged away by a singular gauge
transformation, and we are left with an incompressible state of electrons. The filling
factor is found by substituting A = 2k in Eq. (1.2.8), after which we recover Jain’s
hierarchy formula (1.2.7).

(1.2.8)

Fig. 1.5. Schematic illustration of the adiabatic mapping. The incompressible
states of the integer QHE are mapped onto the incompressible states of the
fractional QHE by attaching negative flux tubes to the electrons adiabatically.
After binding an even number of flux quanta to each electron, the flux tubes
can be removed instantaneously by a gauge transformation.

The adiabatic principle of Greiter and Wilczek is a strong theoretical tool for
studying the subtle relationships between the integer and the fractional QHE states.
In chapter 3 we shall use the adiabatic principle to investigate the resemblance in the
energy spectra of the noninteracting fermions on the one hand, and the interacting
bosons and fermions on the other hand.

Vector-mean-field theory of the fractional QHE

Although the microscopic theories of Laughlin [17] and Jain [23] are quite successful
in describing the fractional QHE in an unbounded, uniform 2DEG, there is no gener-
alization of these theories to confined or nonuniform systems. Furthermore, even in a

12



uniform system, the complicated nature of the microscopic wave functions of Laughlin
and Jain makes it difficult to extract the physics of the fractional QHE. What we need
is an effective theory which contains the essential physics of the problem, and can
be easily applied to confined or nonuniform systems. Early mean-field treatments
[25]-[28] of the electron-electron interaction, however, failed to explain the incom-
pressibility of the 2DEG at fractional filling factors. The Hartree-Fock ground-state
energy is just a smooth function of the filling factor (or electron density). There is no
cusp indicating the incompressibility of the 2DEG. Somehow a mean-field (Hartree-
Fock) treatment of the electron-electron interaction neglects the subtle correlations
responsible for the incompressibility of the 2DEG at fractional filling factors.

It is, however, possible to formulate an alternative mean-field theory based on the
adiabatic principle of Greiter and Wilczek. The adiabatic principle is a prescription
for constructing the fractional QHE states by starting from the integer QHE states.
However, it cannot be carried out unless suitable approximations are made. The
mean-field (Hartree) treatment of the fictitious vector-potential interaction yields
a vector-mean-field theory of the fractional QHE. The vector-mean-field theory is
similar to the mean-field theory of the anyon superconductivity discussed at the
end of the previous section. In this approximation the flux tubes attached to the
electrons are smeared out, yielding a fictitious magnetic field proportional to the
electron density. In chapter 4 we show that the vector-mean-field theory reproduces
the known bulk properties of the unbounded, uniform fractional QHE states, such as
the excitation gap, and the fractional charge and statistics of the quasiparticles and
quasiholes. (These bulk properties are also well described by the Chern-Simon field
theories of Refs. [29]-[33].) We will then consider the application of the vector-mean-
field theory to a simple confined geometry, a quantum dot with parabolic confinement.

1.3 Scaling theory of conduction and random matrix theory

Random matrix theory

Random matrix theory (RMT) was developed in the 50’s and 60’s by Wigner, Dyson,
and Mehta, in order to explain the statistical distribution of the excitation energies
(resonances) of the heavy nuclei (for a review see Ref. [34]). In a typical slow-neutron
scattering experiment, the energy of the incident neutron in not sharply defined.
As a result, the incident neutron interacts not just with one, but with a number
of neighboring energy levels, so that the average properties of the latter become
important. Obviously, any statement regarding the distribution of the energy levels
requires the solution of the Schrodinger equation for the nucleus under consideration.
However, with the exception of certain effective Hamiltonians describing the ground
state and its low-lying excitations, not much was known yet in the early sixties about
the exact Hamiltonian of a nucleus.

The crucial step in formulating a statistical theory of energy levels was taken by
Wigner [35]. He considered each nucleus as a member of a large ensemble of nuclei,
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each with its own specific, but unknown Hamiltonian. If the number of members
of the ensemble is large, then one expects the properties of each member to be well
described by the statistical averages over the whole ensemble. Therefore, one has
to answer the following question: given an ensemble of random Hamiltonians H,
what is the statistical distribution of the energy eigenvalues {F;}? For simplicity we
assume that the space of the physical states has a finite dimension N, and consider
an ensemble of random N x N hermitian matrices.

The main hypothesis of RMT is that the probability density P(H) of any Hamil-
tonian H is of the form

P(H) = I p(E2), (1.3.1)

where p(E) depends on the system under consideration and has to be determined from
the available (experimental) information, such as the density of the states. The key
idea is that at the level of the Hamiltonians, the energy eigenvalues are uncorrelated
[35]. Because P(H) is independent of the eigenvectors of H, they can be integrated
out, resulting in the new probability density

P({Ez}) = J({Ez}) .l:Ilp(Ei)’

JUEY) =1 1B - Ej|”. (1.3.2)

1<j

The function J({E;}) is the jacobian of the transformation from the space of hermi-
tian matrices to the space of eigenvalues. The basic assumption of RMT is that the
only correlations between the energy eigenvalues are due to the jacobian [35]. The
parameter (3 is not just any number: it is determined by the symmetries of the system
and can only take the values 1,2, and 4, as shown by Dyson [36]. § = 1 in systems
with time-reversal symmetry, § = 2 in systems where time-reversal symmetry is bro-
ken, and 3 = 4 in systems with spin-orbit scattering in the presence of time-reversal
symmetry.

Application of RMT to conductivity

The central question of RMT was how to determine the probability distribution of
eigenvalues from an ensemble of random Hamiltonians. A similar question arises when
studying the conductivity of a disordered conductors. Consider a wire of length L
and width W. The transversal motion of the electrons in the wire is quantized, and
depending on the Fermi energy, a number N of waveguide modes contribute to the
current. The scattering matrix S relates the ingoing and outgoing modes on both
sides of the sample. This is a unitary 2N x 2N matrix of the form

S:<zg>, (1.3.3)
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where r,t,t’, and r’ are N x N matrices. The conductance G of the sample is given
by the Landauer formula

G = —ZT (1.3.4)

where {T;} (called transmission eigenvalues) are the eigenvalues of the N x N matrix
tth.

The scattering matrix and its submatrices can only be calculated if we have de-
tailed knowledge of the impurities and their distribution. However, just as in the
case of energy levels, we can consider an ensemble of conductors similar in shape,
but each with its own scattering matrix. Now the question is [37], given an ensemble
of random scattering matrices, what can be said about the statistical distribution of
the transmission eigenvalues {7;}? Proceeding as in Egs. (1.3.1) and (1.3.2), Mut-
talib, Pichard, and Stone [38, 39] arrived at the probability density P({7;}) of N
transmission eigenvalues {7;} in the form

PAT}) = J{Ti}) Hp

JEATH =111 -1 (1.3.5)

1<J

where again p(7T') has to be determined independently. Note that in contrast to Eq.
(1.3.2), not the {7;} themselves, but their reciprocals appear in the jacobian. This
is because we are not dealing with the eigenvalues of S itself, but of the matrix
ttf, so that the jacobian is different. Muttalib et al. presented a maximum-entropy
argument, supported by numerical simulation, to argue that Eq. (1.3.5) was highly
accurate and possibly exact for wire geometries (L > W).

The probability density (1.3.5) can be used to calculate the distribution of the
conductance in the ensemble of wires. Of particular interest, however, are the sam-
ple to sample conductance fluctuations (0G?) where 6G = G — (G). Using a com-
pletely different approach, Al'tshuler [41], and Lee and Stone [42] showed that in
the diffusive regime where L < N/ (¢ is the elastic mean free path), the con-
ductance fluctuations are independent from the sample size or the strength of the
disorder. This phenomenon is called “universal conductance fluctuations” (UCF).
Their calculation, which uses diagrammatic perturbation theory, yields (0G?) =
(2/15)371(2¢*/h)*. To see whether RMT reproduces the UCF, Beenakker [40] has
applied a generalized version of a theorem due to Dyson and Mehta [43] to this prob-
lem. The Dyson-Mehta theorem directly relates the fluctuations of any quantity of
the form A({T;}) = ¥, a(T;) (linear statistic), to the jacobian. The theorem yields
(6G*) = (1/8)37(2€*/h)? for the UCF [40], which is slightly different from the result
of Al'tshuler, Lee, and Stone. The implication is that the central hypothesis of RMT
(all correlations are accounted for by the jacobian) is not exactly true, but is an ap-
proximation. To test the accuracy of RMT we need the exact form of the eigenvalue

15



correlation. The latter, however, cannot be obtained by diagrammatic perturbation
theory. We therefore choose an alternative approach based on a scaling equation for
the transmission eigenvalues.

Scaling equation for the transmission eigenvalues

The scaling equation for the transmission eigenvalues governs the evolution of the
probability density P({T;}; L) as the length L of the sample increases. It was derived
by Dorokhov [44], and independently by Mello, Pereyra, and Kumar [45] (we shall call
it the DMPK equation). The DMPK equation is a diffusion or Fokker-Planck equa-
tion for N fictitious classical particles with a logarithmic repulsion. Until recently,
the only exact solution known was that for N =1 [46, 47]. For N > 1 only asymp-
totic solutions were known [48]-[50]. These asymptotic solutions, however, are not
suitable for a determination of the exact form of the correlation between transmission
eigenvalues.

In chapter 5 we present an exact solution of the DMPK equation for g = 2 and
an arbitrary large N. The solution is based on a Sutherland type transformation
which maps the DMPK equation onto an imaginary-time Schrodinger equation for N
interacting fermions in one dimension [51]. The interaction vanishes for § = 2 and
the resulting free-fermion problem is solved exactly. The exact solution enables us to
calculate the exact form of the eigenvalue correlation, which is then compared to the
predictions of RMT.
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Chapter 2

Superconductivity in the mean-field anyon gas

2.1 Introduction

The introduction of particles with fractional statistics (anyons[l]) into condensed
matter physics has led to a number of interesting applications. Among these, of par-
ticular importance is the suggestion that high-temperature superconductivity might
originate from these (quasi-)particles.[2] Indeed, it appears now to be well established
that a two-dimensional ideal gas of non-interacting anyons has a superconducting
ground state.3~!1

Recently, Leggett has addressed the more limited, but highly interesting question
whether the anyon gas is superconducting when solved in the mean-field approxima-
tion.[12] In that approximation the anyon gas is replaced by a gas of fermions, subject
to a perpendicular magnetic field Bf(r) = (h/pe)n(r)z proportional to the particle
density n(r) (in the z—y plane). The strength of this fictitious (or “statistical”)
magnetic field adjusts itself in such a way to variations in the density, that p Landau
levels are kept fully occupied. (The value p = 2 is expected to be relevant for high-
temperature superconductivity.[2]) The single-particle eigenstates of the mean-field
Hamiltonian are extended along equipotentials of the electrostatic potential. Leggett
uses the insensitivity of these eigenstates to variations in the boundary conditions (in
a Corbino-disk geometry), to argue that the mean-field anyon gas is an insulator—
rather than a superconductor.

In the present paper we reexamine the mean-field theory of the anyon gas. We
show that the mean-field Hamiltonian contains, in addition to the fictitious magnetic
field B! mentioned above, also a fictitious electric field Ef(r) = (h/pe?)z x j(r)
proportional to the current density j(r). This electric field arises because in the
original Hamiltonian the anyons are composed of fermions bound to a flux tube, of
strength h/pe and of infinitesimal cross section. In the mean-field approximation,
the flux tubes are smeared out, and one obtains the fictitious magnetic field Bf
proportional to n. However, the flux tubes remain bound to the particles. When
a flux tube at r, moves with the velocity v,, it induces an electric field E(r) =
—v, X b(r—r,), where b is the magnetic field of the flux tube. As we will show below,
the fictitious electric field transforms the mean-field anyon gas from an insulator into
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a superconductor. We consider the case of an ideal (impurity-free) anyon gas in
detail, but will argue that the superconductivity persists in the presence of disorder
(by using results from the integer quantum Hall effect).

2.2 Anyon gas in the Hartree approximation
The anyon Hamiltonian in the fermion-gauge representation is given by

1

hzxr

A=) a(ry), a(r) = —

oy - pe 2mr?’

(2.2.2)

The Hartree-Fock equations are obtained by approximating the ground state W of
the many-body Hamiltonian (2.2.1) by a Slater determinant of single-particle wave
functions {t;}, and minimizing the energy Eyp =< Wyp|H|Wyr >. Disregarding the
exchange terms, we obtain in a straightforward manner the single-particle mean-field
(Hartree) Hamiltonian for anyons,

1
M= (p— eA) + cd', (2.2.3)
m

The fictitious electromagnetic potentials ®' and Af are related to the particle density
n and charge current density j by

Al(r,t) = /dr’ ar —r')n(r',t), (2.2.4)
edf(r,t) = / dr' a(r —1') - j(r', 1). (2.2.5)

The corresponding fictitious electric and magnetic fields take the form

h

Bi(r,t) = VxAfl= p—en(r,t)i, (2.2.6)

E(r,t) = —9,A"' -V’ = %z x j(r,t). (2.2.7)
pe

The wave functions {¢;} are determined by solving the Schrédinger equation HM; =
Enp; together with Eqs. (2.2.4) and (2.2.5) self-consistently.

The term e®' in Eq. (2.2.3) accounts for the fictitious electric field induced
by the moving flux tubes. Such a term is required by Galileian invariance, but was
omitted in a previous mean-field theory of the anyon gas.[11] Other approaches to the
problem,* ' being Galileian invariant, include this term implicitly. Since the extra
term e®' is proportional to the current density [see Eq. (2.2.5)], it may presumably
be disregarded in calculations of the density response.[11] However, it plays a crucial
role in the current response (i.e. in the conductivity), as we now show.
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2.3 Electromagnetic response of an anyon gas

When an external electromagnetic field (®*, A®) is switched on, the anyon density
and current distributions are modified. Therefore, the perturbation Hamiltonian AH
contains terms due to the variations §®f and JAf in the internal fictitious fields from
their ground state values ®&" and A#". To first order in the perturbation, one obtains

H" = Hy + AH, (2.3.1)
1
Ho =5~ (P eA%)? 4 edE (2.3.2)
e
AH = —— (p — eA®) - (A™ + JAS P 4 51 2.3.
H m(p eA®) ( +0 )—l—e( +9 ) (2.3.3)

A straightforward application of the Kubo formalism,[13] yields in the long wave-
length limit (k = 0) the current density response

Jj(w) = oo(w) - [E™(w) + IE ()], (2.3.4)

where E™ = iwA®™ — V&, The conductivity tensor o is associated with the
Hamiltonian Hy with unperturbed potentials ®&" and A®". To obtain the true con-
ductivity tensor o, one still needs to eliminate dEf from Eq. (2.3.4) by applying the
self-consistency relation (2.2.7), which we write in the form

h
£ .
Here, € is the antisymmetric tensor of rank two (€, = €, =0, €,y = —€,, = 1). The
solution to Egs. (2.3.4) and (2.3.5) is
Ijlw) = o(w) E¥w), (2.3.6)
ho 17 .
ow) = [po(w) + ZEG] , P =0yt (2.3.7)

Now we use that H describes a fermion gas with p fully filled Landau levels. This
implies that p, equals the integer quantum Hall effect resistivity tensor at filling factor

P, i.€.

. m
(Po)m = (pO)yy = Tl Zng’
h
(P0)ay = —(P0)ya = e (2.3.8)

where ng is the bulk density. Upon substitution of the expression for p, into Eq.
(2.3.7), one obtains

1 e%ng
Opg = ——
o iw m

Sup- (2.3.9)
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The anyon gas is thus a perfect conductor in the limit w — 0. We now take the curl
of Eq. (2.3.6) and substitute Eq. (2.3.9) to arrive at the London equation

62n0

V x §j = ———B*, (2.3.10)
m

So far we have considered the electromagnetic response for k = 0 in the limit
w — 0. The existence of the Meissner effect depends on whether Eq. (2.3.10) is valid
for w = 0, in the subsequent limit k — 0.[14] As we will now show, this is indeed the
case.

To demonstrate that Eq. (2.3.10) holds regardless of the order of the limits k — 0
and w — 0, we consider the general form of the linear response for density and current
density in the Fourier space,

0Tk, w) = K, (k,w)A,(k,w),
J = (en,])), A= (D, —A). (2.3.11)
The response function K, is defined in the space-time representation as
K, (v, t;0' t) = (ih)' < 9|[Tu(r,1), 0@, )]0 >0t —t)
1o
+ E(l — 0,10)0u0- (2.3.12)
The response function satisfies the continuity relations 0,K,, = 0,K,, = 0. As

shown in the Appendix, the elements of the tensor K, can all be expressed in terms
of four coefficients o, &, 70, (o, according to

Kok,w) = —k*xo(k,w), (2.3.13)

Kojk,w) = —wxolk,w)k; +i(k,w)ejnkn, (2.3.14)

Kypk,w) = —wxolk,w)k; +ino(k, w)€imkm, (2.3.15)
w? iw iw

Kijkw) = _ﬁxo(k’ w)kik; + ﬁﬁo(k, W)€imkmk; + ﬁé’o(k, w)ki€jnky,

1
+ EQO(IQ w)eimkmejnkn- (2316)

Here, roman indices denote the carthesian components x,y. The physical meaning of
these coefficients becomes more apparent if we rewrite the response equation (2.3.11)
in terms of the density dn and the vorticity 62 = z - (ik x dj). (The component of Jj
along k is not an independent variable, as it is constrained by the continuity equation
ik - §j = iwedn.) The resulting equations are *

edn(k,w) = —xo(k,w)k*®(k,w) + &k, w)Bk, w), (2.3.17)
Qk,w) = nolk,w)k*®(k,w) — Co(k, w)B(k,w). (2.3.18)

!The static limit (w = 0) of the coefficient (5 describes the current (or vorticity) induced in a
fermion gas by a spatially varying time-independent magnetic field. Such a current is not usually
considered in theories of the quantum Hall effect, where a uniform magnetic field is assumed, but
is known in plasma physics as the Alfvén drift [see J. D. Jackson, Classical Electrodynamics (Wiley,
New York, 1975), sec. 12.5].
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The potential ® and the magnetic field B contain an external part and a fictitious
part, given according to Egs. (5) and (6) by

h

O = PF + §df = P — — 50 2.3.19
h

B = B™ +0B"' = B* + —on. (2.3.20)
pe

In Eq. (2.3.19) we used the result a(k) = (h/pek?)ik x z for the Fourier transform
of the flux tube vector potential. We now solve Eqs. (2.3.17)—(2.3.20) for the case
®* =0, and find

0k, w) = —((k,w)B¥(k,w), (2.3.21)
¢=[(1 - (h/pe)o) (1 + (h/peym) + (h/pe)xoCo] G (23.22)

The Meissner effect is obtained if ((k, 0) > 0 in the limit k — 0. We now calculate this
limit and show that it is the same as lim,,_ .o ((0,w), thereby proving the analyticity
of the response function.

By direct evaluation of Eq. (2.3.12), for the case of an ideal (impurity-free) two-
dimensional electron gas at the filling factor p, one obtains the following relations:

XO(Ov w) = XO(Ov O) + O(w2)7 XO(kv O) = X0(07 0) + O(k2)7 (2323)

&(0,w) = ]9762 + O(w?), &(k,0) = 7’762 + O(k?), (2.3.24)
70(0,w) = —]%62 + O(w?),n0(k,0) = —7’762 + O(k?), (2.3.25)
Co(0,w) = O(w?), ok, 0) = O(K?). (2.3.26)

In Eq. (2.3.23), the constant x0(0,0) is given by

2.2
mp-e
0,0) = . 2.3.27
XO( ? ) nOhQ ( )
Substitution of these relations into Eq. (2.3.22) yields
lim ¢(k,0) = lim ¢(0,w) = A2 (2.3.28)
h 1/2 ( m )1/2

A= — =(— ) 2.3.2

p€2 [XO(()?O)] €2n0 ( 3 9)

We conclude that ((k,w) is analytic at (k,w) = (0, 0), so that the anyon gas shows the
perfect conductivity and the Meissner effect in accordance with the London equation
(2.3.10). This completes our demonstration of superconductivity of the anyon gas in
the mean-field approximation.

We conclude this chapter with a discussion of the symmetry of the conductivity
tensor, and of the influence of impurities. Since the anyon Hamiltonian (2.2.1) is

24



not invariant under time reversal, it is possible in principle to have a non-symmetric
conductivity tensor. In the foregoing analysis we have seen that although o is not
a symmetric tensor, the true conductivity o is symmetrical. We believe that the
symmetry of o, derived here at T = 0 in the mean-field approximation, holds also at
higher temperatures and particularly in the normal state. A heuristic way to see this
is to replace p, by the classical resistivity

m
(Po)ee = (Po)yy = %
h
oy = — = ——, 2.3.30
(Po)zy (Po)y pe? ( )

where 7 is a relaxation time. Substitution of this expression into Eq. (2.3.7) leads to
the Drude conductivity tensor, i.e. a symmetrical o. The question of the symmetry
of o in the normal state is relevant for the recent experimental search by Gijs et al.[15]
for a spontaneous Hall effect in zero magnetic field. In this experiment a symmetrical
conductivity tensor was found within the experimental resolution. In our description
of the anyon gas the Hall electric field originating from the fictitious magnetic field
is fully compensated by the fictitious electric field induced by the moving flux tubes.
An explanation in different terms has recently been put forward by Wiegmann.|8]

The demonstration of superconductivity given above can be generalized to in-
clude a uniform distribution of impurities. The key step in this generalization is to
show that Eqgs. (2.3.23)—(2.3.26) remain valid. This can be shown if the gap in the
density of states for the integer quantum Hall effect Hamiltonian Hg is not closed
by the impurities. The presence of the excitation gap then implies that the response
coefficients xo, &0, Mo, (o are analytical at (k,w) = (0,0), and hence Eqs. (2.3.23)
and (2.3.26) result. (Whether a mobility gap is sufficient for the analyticity is not
clear to us.) Egs. (31) and (32) are enforced by the quantum Hall effect, since
€0(0,0) = —10(0,0) = [00(0)]s, = pe?/h regardless of the presence of impurities.
Note that the impurities will modify the penetration depth A = (h/pe?)[xo(0,0)]"/2,
through their effect on the susceptibility Ky = —k*xo.
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A Response function in two dimensions

The general form of the linear response for the density n and current density j in the
Fourier space is

5T,k w) = Ky, ) A, (K, ), (A1)

where J = (en,j), A = (®,—A), and the response function K, is defined in the
space-time representation as

Ky (v, 60/, ) = (i)™ < U [Tu(r, 1), T, (x', )] ¥ > 0(t — 1)
+ %(1 — 6,0)0,- (A.2)

The matrix K, (k,w) can be decomposed using the vectors k and z x k:
Koplk,w)= ak,w), (A.3)
Koj(k,w) = b<1 (k, w)k; + 0P (k, w)ejnkn, (A.4)
Kip(k,w) = Dk, w)k; + @ (k, w)eimkm, (A.5)

Kij(k,w) = d(l (k, w)kik; + dP(k, w)eimkmk; + d® (k, w)ki€jnky +

dD (K, ) €imbkm€inkn, (A.6)
where roman indices denote the carthesian components, and we have used (z x k); =
—é€imkm where € is the antisymmetric tensor of rank two (€17 = €99 = 0, €15 = —€91 =

1). In the space-time representation K, satisfies the continuity relation 0,K,, =
0, K,,, = 0. The corresponding relation in the Fourier space is

CUKOI, — szw = wKMO — ijﬂj =0. (A?)
Imposing the condition (A.7) on K, in Egs. (A.3)-(A.6) yields the following relations:
k? k? k* k? k?
= = =W = —d = q, —d ), d =@, (A.8)
w w w

We recast Egs. (A.3)-(A.6) in a simpler form by defining four new coefficients x, &, ), ¢,
according to

1
= —k*x, b =i¢, @ =ip, dW = 3¢ (A.9)

The resulting equations are

Kok w)= —k*x(k w), (A.10)
Kojk,w) = —wx(k,w)k; +i&(k,w)ejnkn, (A.11)
Kok,w)= —wx(k,w)k; + in(k W) €imkim, (A.12)
2 iw
Kijkw) = —ﬁx(k w)kik; + an(k,w)eimkmkj + ﬁf(k,w)kiemkn +
1
kQC(k W)€imkm€inkn. (A.13)
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Let us now return to Eq. (A.1) and express dn, dj in terms of x, &, 7, ¢, by substituting
Egs. (A.10)-(A.13). Bearing in mind that i€;,k,Ai(k,w) = —B(k,w) where B(k,w)
is the magnetic field in the z-direction, and choosing the Coulomb gauge for the
vector potential [k;A;(k,w) = 0], we have

edn(k,w) = —x(k,w)k*®(k,w) + £(k,w)B(k,w), (A.14)
and
jik,w) = wkix(k,w)®k,w)+iemknn(k,w)®(k,w)+ C};];Zf(k, w)B(k,w) —
ie";fmqk, D) Bk, w). (A.15)

Multiplying Eq. (A.15) by —i€;kp vields
5Q(k7 CU) = n(ka('U)qu)(kaw) - C(ka w)B(ka('U): (A16)

where ) = —i€;, ki J; is the vorticity. Eqgs. (A.14) and (A.16) completely describe the
electromagnetic response of a 2D system to an external electromagnetic field. Note
that the only relevant quantities are dn and 6€2. The latter is proportional to the
component of dj along €;,,k,,. The component of §j along k is not an independent
variable, as it is constrained by the continuity equation ik - §j = iwdn.
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Chapter 3

Quasi-Landau level structure in the fractional
quantum Hall effect

1 Introduction

In contrast to the integer quantum Hall effect (QHE) which is a property of noninter-
acting electrons, the fractional QHE is a genuine many-body effect caused by strong
correlations between electrons. The common feature of the two phenomena is the ap-
pearance of an excitation gap responsible for incompressibility of the two-dimensional
electron system at certain electron densities. However, whereas in the integer QHE
the excitation gap is a result of the Landau-level quantization of the kinetic energy,
in the fractional QHE it originates from interactions between electrons in the lowest
Landau level.

Nevertheless, almost indistinguishable phenomenologies have motivated the search
for a common theoretical framework for understanding both effects [1, 2, 3]. It was
pointed out by Jain [1] that the fractional QHE might be thought of as the integer
QHE for composite particles consisting of an electron carrying an even number of flux
quanta. Starting from the integer QHE at filling factor p, he constructed trial wave
functions for the fractional QHE at filling factors v = p/(2kp+1). In the same spirit,
Greiter and Wilcezek [2, 3] proposed an adiabatic mapping for constructing the frac-
tional QHE states. The adiabatic mapping is based on the introduction of a fictitious
long-range vector-potential interaction between the electrons. It is suggested that the
incompressible states of the integer QHE evolve continuously into the incompressible
states of the fractional QHE by adiabatically switching on the vector-potential in-
teraction, i.e. by attaching flux quanta to the electrons adiabatically. The adiabatic
mapping is exact in principle but cannot be carried out in practice unless suitable
approximations are made. One possibility is the vector-mean-field theory which treats
the vector-potential interaction in mean-field approximation (see chapter 4).

These unifying theories raise the question how the single-particle energy gap of
the integer QHE is transformed into the many-body gap of the fractional QHE. In
the present paper we argue that a short-range interaction induces a quasi-Landau
level structure on the angular momentum dependence of the ground-state energy of
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fermions in the lowest Landau level. We believe that this induction is the origin
of the incompressibility in the fractional QHE. The argument is based on the adia-
batic principle of Greiter and Wilczek, and exact results obtained from small-system
calculations. The analysis provides a new understanding of how the excitation gap
changes its origin during the adiabatic evolution.

We start the discussion in Sec. 2 by numerically calculating the ground-state en-
ergy of a small system. It turns out that for a few electrons in the lowest Landau
level with a short-range interaction, the dependence of the ground-state energy on the
filling factor v (or, equivalently, on the angular momentum) in the interval 1 > v > %
is strikingly similar to that of noninteracting electrons in the interval v > 1. This
is the quasi-Landau level structure referred to above. We will also investigate nu-
merically the seemingly unrelated problem of hard-core bosons in the lowest Landau
level. Remarkably, once more a quasi-noninteracting ground-state energy spectrum
is found. The connection between the hard-core boson problem on the one hand, and
the noninteracting and interacting fermion problems on the other hand, is discussed
in terms of the adiabatic principle of Greiter and Wilczek [2, 3], which is reviewed
in Sec. 3. The adiabatic principle assumes that the initial single-particle excitation
gap does not collapse during the adiabatic evolution, and becomes a many-body gap
induced by the electron-electron interaction in the final state. We will show in Sec.
4 that for noninteracting electrons the single-particle gap has vanished by the time
a single negative flux quantum has been adiabatically attached to each electron. In
order to prevent the complete collapse of the excitation gap, one has to include the
scalar-potential interaction between the electrons. We then proceed to analyse the
adiabatic mapping near the critical point where each electron is bound to a single
negative flux quantum. Since at this point the vector-potential interaction can be
gauged away, leaving a gas of noninteracting bosons, the critical point is referred to
as the boson point.

The main technical result of this paper, presented in Sec. 4 and the Appendix,
is that near the boson point the vector-potential interaction between fermions is
equivalent to a hard-core repulsion between bosons in the lowest Landau level. More
precisely, in the high magnetic field limit, the ground-state energies of the two systems
are identical up to and including the first order in a small negative number ¢, where
each electron carries 1 4+ ¢ flux quanta. This equivalence near the boson point of
noninteracting electrons and hard-core bosons, together with the fact that the boson
point is adiabatically connected to the integer QHE, explains the hard-core-boson to
integer QHE correspondence found numerically in Sec. 2. Beyond the boson point,
i.e. for more than one attached flux quantum, the hard-core interaction vanishes.
Nevertheless, the small system results discussed in Sec. 2 suggest the possibility of a
smooth transition from hard-core bosons to fermions with a short-range interaction.
We have, however, no analytical proof. For completeness, we present in Sec. 5 a short
discussion of the relation between edge excitations in integer and fractional QHE. The
discussion will be concluded in Sec. 6.
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2 Results for small systems

We consider a noninteracting two-dimensional electron gas (2DEG) in the z-y plane,
subject to a magnetic field Bz with z the unit vector in the z-direction. The Hamil-
tonian is

Ho=Y % iRV, + cA ()2, (2.1)

7

where A(r) is the vector potential associated with Bz (=V x A). It is instructive to
investigate the behavior of the N-electron ground-state energy as a function of the
total angular momentum M. Figure 3.1 shows the ground-state energy Ej for N =5
and 6 in the interval N(N —1) > M > —sN(N —1). If we define an equivalent
filling factor by v = N(N — 1)/2|M]|, the above interval corresponds to v > 1. For
large N the plateaus in Fig. 3.1 evolve into the sequence of Landau levels associated
with quantization of the kinetic energy in the magnetic field.
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Fig. 3.1. Ground-state energy Ey — %N hw. of N noninteracting electrons, as
a function of total angular momentum M for N =5 and N = 6. The angular
momentum interval shown corresponds to the filling factors v > 1. Nonde-
generate and degenerate states are represented by filled and open symbols,
respectively.

Next, consider an interacting 2DEG with the Hamiltonian

H = Ho + Hints Hine = »_ u(r; — 1), (2.2)

i<j

where u(r) is the electron-electron interaction potential. We are interested in the high
magnetic field limit where the interaction part H;,, can be treated as a perturbation
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to the kinetic part Hy. Consider the angular momentum values %N (N-1)>M >
%N (N — 1), corresponding to 1 > v > % Because all electrons now lie in the
lowest Landau level, the unperturbed ground-state energies are degenerate, equal to
Ey, = %N hw. independent of M. Here w, = eB/m is the cyclotron frequency. We
calculate the ground-state energy of the full Hamiltonian H in first order degenerate
perturbation theory. This is equivalent to diagonalizing Hiy, (or H) in the lowest
Landau level. Figure 3.2 shows the results of the degenerate perturbation theory for 5
and 6 electrons with the repulsive hard-core interaction u(r) = —V2§(r). Comparison
with Fig. 3.1 reveals a striking similarity: apart from a shift equal to N(N —1) in M
and a different energy scale, the two spectra are almost identical. Note that it is now
the electron-electron interaction and not the Landau-level quantization which governs
the M-dependence of the ground-state energy. We find that a short-range interaction
induces a quasi-Landau level structure on the angular momentum dependence of the

ground-state energy of fermions in the lowest Landau level.
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Fig. 3.2. Ground-state energy E — %N hw. of N electrons in the lowest Landau
level with a —V?2§(r) interaction, as a function of total angular momentum M
for N =5 and N = 6. The angular momentum interval shown corresponds to
filling factors 1 > v > %

Let us now consider the seemingly unrelated problem of interacting bosons in a
magnetic field. The Hamiltonian is still given by Eq. (2.2), but now its eigenstates
have to be symmetric under particle exchange. We are interested in the angular
momentum interval N(N — 1) > M > 0. Since there is no restriction on the number
of bosons occupying a single state, the condition M > 0 is satisfied by all boson
states lying entirely in the lowest Landau level. Therefore, as in the previous case,
the unperturbed ground-state energies are degenerate with the energy Ey = %N hwe.
Figure 3.3 shows the results of the degenerate perturbation theory for 5 and 6 bosons
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with a hard-core repulsion u(r) = é(r). Remarkably enough, once more an almost
noninteracting ground-state energy structure emerges from the calculations (compare
Fig. 3.3 with Fig. 3.1). These numerical findings formed the motivation for the
analytical work prescribed in the next sections; there we shall show that the hard-core
boson gas forms the critical point in the transition from noninteracting to interacting
fermions.
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Fig. 3.3. Ground-state energy FE — %N hw. of N bosons in the lowest Landau
level with a d(r) interaction, as a function of total angular momentum M for
N =5 and N =6.

3 Adiabatic principle

Our discussion is based on the adiabatic principle of Greiter and Wilczek [2, 3]. The
adiabatic principle is formulated in terms of a new Hamiltonian

H(A) = Ho(A) + Hine,

2

1
Ho(A) =) — |—ihV;+eA(r;) —eX Y a(r; —1j)| (3.1)
~ 2m —
i J(F#)
which contains an extra vector-potential interaction. The vector potential a(r) is the
field of a flux tube of strength h/e in the z-direction, located at the origin:
hzxr h R
a(r) = g W, V x a(r) = g (5(1‘) Z. (32)
The Hamiltonian H(\) is thus obtained from H = H(0) by binding flux tubes of

strength —Ah/e to each electron.
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One can now define an adiabatic mapping of the set of eigenstates of the original
Hamiltonian H onto itself as follows. Starting from an eigenstate ¥ = W(0) of H,
one switches on the vector-potential interaction adiabatically by increasing A very
slowly from 0 to an even positive integer 2k. The eigenstates and eigenvalues evolve
according to

HA)T(A) = E(A)T(N). (3.3)

After ¥(0) has evolved adiabatically into ¥(2k), the vector-potential interaction in
H(2F) is eliminated by the unitary gauge transformation

H(2k) — G(2k)H(2k)GT (2k) = H(0),

U(2k) — G(2k)W(2k) = U, (3.4)
where we have defined
2k

The initial state W is therefore mapped onto ¥, a new, exact eigenstate of H. Note
that, although the transformation G(A) can be applied for every value of A, the result-
ing wave function G(A\)¥ () is single-valued only if A is an integer. Furthermore, the
requirement of antisymmetry restricts A to even values. In the spirit of Jain’s theory
of the fractional QHE [1], Greiter and Wilczek [2] propose that the incompressible
states in the fractional QHE can be obtained by an adiabatic mapping of the incom-
pressible states in the integer QHE. As an explicit demonstration of this adiabatic
principle, they have shown [3] that the v = 1 integer QHE state is mapped onto
the v = ﬁ fractional QHE state, after binding —2k flux quanta to each electron
adiabatically.

In this paper we will use the notion of adiabatic mapping to argue that the
incompressibility in the fractional QHE can be viewed as the consequence of a quasi-
Landau level structure induced by the short-range interaction between the electrons
in the lowest Landau level. The analysis is carried out for the initial states with
angular momentum in the interval §N(N —1) > M > —sN(N — 1) corresponding
to v > 1. For simplicity, we restrict ourselves to k = 1. From the adiabaticity of
the process and Eq. (3.4) it follows that the angular momenta and the corresponding
filling factors of the final states satisfy SN(N —1) > M > sN(N—1)and 1 > v > 1,
respectively.

4 Adiabatic mapping near the boson point
The adiabatic mapping is a prescription for constructing exact states of the frac-

tional QHE by starting from the states of the integer QHE. Adiabaticity requires
that the excitation gap does not collapse during the evolution. Somewhere along
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the mapping, the initial kinetic energy gap hw. becomes an interaction-induced gap
separating the final fractional QHE state from low-lying excitations. We will argue
that this metamorphosis occurs near the point where each electron carries a single
flux quantum.

Consider eigenstates ¥ of ‘H with angular momenta satisfying %N (N-1)>M >
—%N (N — 1). In this interval the behaviour of the ground-state energy is mainly
determined by the unperturbed Hamiltonian H,. The interaction causes a small
shift (compared to hw.) in the non-degenerate levels, and lifts the degeneracy of the
degenerate levels, creating narrow subbands of close energy levels. However, these
effects of the interaction are not essential for the incompressibility. Therefore, instead
of applying the adiabatic mapping to the eigenstates of the full Hamiltonian H, let us
start from unperturbed eigenstates W, of Hy. After increasing A adiabatically from
0 to 1 in the equation

HO()‘>\IJO()‘) = Eo()‘)qfo()‘): (4-1)
we apply the gauge transformation

Ho(1) = G(H,(1)G(1) = H,(0) = H,,
To(1) — G(1)To(1) = B, (4.2)

Note that the transformed wave function

=] = w,(1), (4.3)

1<J ”ZZ Z]‘

is symmetric under particle exchange. The original system of fermions with the
Hamiltonian H(1) is therefore transformed into a system of noninteracting bosons
with the Hamiltonian H,(0) = Ho. Thus the adiabatic mapping carries noninteract-
ing fermion states in the angular momentum interval ;N(N—1) > M > —sN(N—1),
into noninteracting boson states in the interval N(N—1) > M > 0. However, whereas
the ground-state energies of the initial fermion states depend on M as a result of occu-
pation of higher Landau levels, the ground-state energies of the noninteracting boson
states are all degenerate, equal to Ey = $Nhw, (cf. Sec. 2). Evidently, the kinetic
energy gap separating initial fermion ground states has disappeared completely when
each electron carries one flux quantum.

We believe that the collapse of the kinetic energy gap occurs precisely at the boson
point (A = 1). This is certainly true in the special cases where the mapping can be
carried out exactly. ! The implication is that the transition of the kinetic energy
gap to the interaction gap for the full Hamiltonian H takes place at the boson point.
One would therefore expect that by analyzing the adiabatic mapping near A = 1, the

!Cases where the adiabatic mapping can be carried out exactly are the two-body problem in
general, and the N-body problem with the initial state given by [[;_;(z: — z;) exp(—3_; |22]/403)

or HKJ(ZZ‘ — z;‘) exp(—_; |22]/403). [See Refs. [3] and [4].]
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relation between the initial integer QHE states at A = 0 and the final fractional QHE
states at A\ = 2 might be clarified.

In the rest of this section we present an investigation of the adiabatic mapping
near the boson point. Starting once again from eigenstates ¥, of Hy, we increase
A this time from 0 to 1 4 ¢ where € is a small number. Next we apply the gauge
transformation

Ho(1+¢) — G(L)Hy(1+)GT(1) = H,y(e),
Uo(1+e) = G(1)Wo(1 +¢) = Dy(e). (4.4)

The Hamiltonian Hy(e) now describes a system of bosons each carrying a flux tube
of strength —ch/e.

Our central technical result is that up to a similarity transformation, the lowest
Landau level projection of Hy(e) for negative ¢, is identical to the lowest Landau level
projection of another Hamiltonian:

Ho(e) = 3 zi iRV + cA ()] — ehwe Y 6(r — 1), (4.5)

; <m i<j

The Hamiltonian Hg(e) describes a system of bosons moving in a magnetic field Bz,
with a hard-core repulsion —ehw.d(r) (note that ¢ < 0). More precisely we have

PT(e)Ho(e)T ()P = PHz(e)P, (4.6)
where P is the lowest Landau level projection operator and

T(e) = I 2 — . (4.7)

1<J

The derivation is presented in the Appendix. As discussed in Sec. 2, the ground-state
energy spectrum of Hg(e) in first order degenerate perturbation theory is identi-
cal to the spectrum of the projected Hamiltonian PHg(¢)P. The same holds for
T~*(e)Ho(e)T(£). Since a similarity transformation does not change the eigenvalues,
we conclude that

Eo(s, M) = Eg(c, M) + O(c?), (4.8)

where Ey(e, M) and Eg(e, M) denote the ground-state energies of Hy(¢) and Hg(e),
respectively, for the angular momentum M.

The above discussion leads us to the following conclusion. As A is increased
from 0 to 1, the ground states of the noninteracting Hamiltonian H, are smoothly
transformed into the ground states of a system of bosons lying entirely in the lowest
Landau level with a repulsive §(r) interaction. Conversely, in the lowest Landau level,
a hard-core repulsion between bosons is equivalent to a vector-potential interaction
between fermions if the number of flux quanta bound to an electron is slightly less than
one. In view of the above, one would expect a close correspondence between the initial
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noninteracting fermion states and the interacting boson states in the lowest Landau
level, since they are connected by an adiabatic mapping. This correspondence should
be reflected in the dependence of the ground-state energy on the angular momentum.
This is indeed what we observe in Figs. 3.1 and 3.3.

We now return to the similarity which motivated this analysis, i.e. the resem-
blance of the spectrum of noninteracting fermions (Fig. 3.1) to that of fermions with
a short-range repulsive interaction (Fig. 3.2). Beyond the boson point (A > 1, > 0),
the hard-core repulsion generated by the vector-potential interaction vanishes, as
shown in the Appendix. To prevent the collapse of the excitation gap we have to in-
clude the ordinary interaction Hji,, which we did not need for A < 1. The similarity
between Figs. 3.2 and 3.3 suggests the possibility of a smooth transition from bosons
with a d(r) interaction to fermions with a —V?§(r) interaction, in such a way that the
energy gap does not close. We might consider an interaction potential which varies
smoothly from §(r) at A = 1 (boson point) to —V2d(r) at A = 2 (fermion point). An
example of such a potential is u(r, ) = r=2¢l§(r). In the space of lowest Landau level
wave functions, u(r, €) interpolates between §(r) and —V?§(r) as ¢ is increased from
0 to 1. Apart from the exactly soluble two-body problem, so far the persistence of
the energy gap has only been proven for the % state [3].

5 Edge excitations

The numerical and analytical results presented above emphasize the close link be-
tween ground-state energy spectra of interacting bosons and fermions in the lowest
Landau level on the one hand, and noninteracting fermions on the other hand. A
question which arises naturally is whether these ideas can be generalized to excited
states as well. For completeness, this question is addressed in Fig. 3.4. Similar results
were obtained previously in Refs. [5] and [6].

Figure 3.4a shows the excitation spectrum for 6 bosons with a d(r) interaction as
a function of the angular momentum M. For 6 electrons with a —V2§(r) interaction,
the excitation spectrum is shown in Fig. 3.4b. In both cases one can distinguish
a set of low-lying energy levels separated from a band of higher excitations. The
low-lying energy levels correspond to the edge states. For every value of M we have
also indicated for the noninteracting system, the degeneracy of the ground state
adiabatically connected to the states in Fig. 3.4. When the degeneracy is small, we
observe that this number is identical to the number of edge states in the interacting
system. For higher degeneracies, some of the edge excitations are absorbed into the
band of higher excitations, and the one-to-one correspondence breaks down.

6 Conclusions

The numerical results obtained from small-system calculations suggest that a short-
range interaction induces a quasi-Landau level structure in the ground-state energy
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Fig. 3.4. The energy spectrum E — 3 Nw, of 6 bosons with a d(r) interaction
(Fig. 3.4a), and 6 fermions with a —V2§(r) interaction (Fig. 3.4b) in the
lowest Landau level, as a function of total angular momentum M. The nearly
twofold and threefold degenerate levels are marked by < and —< respectively.
The numbers in the parentheses indicate the degeneracy of the noninteracting
ground state, adiabatically connected to the interacting states.
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of electrons in the lowest Landau level. We have employed the adiabatic principle of
Greiter and Wilczek to explain this correspondence between the integer and fractional
QHE.

We have argued that the initial single-particle gap collapses at the point where a
single negative flux quantum is attached to each electron. If the number of attached
flux quanta is slightly less than one, the vector-potential interaction between electrons
becomes equivalent to a hard-core repulsion between bosons in the lowest Landau
level. Therefore as the vector-potential interaction is switched on adiabatically, the
initial noninteracting ground states are smoothly transformed into the ground states
of a hard-core boson gas. This correspondence is verified by exact results for a small
number of bosons. It is important to note that the vector-potential interaction is
identical to a hard-core repulsion only after a lowest Landau level projection, i.e.
both interactions have the same pseudo-potential expansion in the lowest Landau
level. A gas of bosons with a true hard-core interaction does not show any cusps in
the energy spectrum as a result of mixing of higher Landau levels [7], and therefore
cannot reproduce the almost noninteracting energy spectrum of Fig. 3.3.

The hard-core boson gas is halfway between the initial noninteracting and the
final interacting electron systems. To prevent the collapse of the excitation gap when
crossing the boson point, we have to include the ordinary electron-electron interaction.
Although we have no general proof, our numerical results suggest that the interacting
boson ground states can be smoothly transformed into the final interacting fermion
ground states by varying the interaction potential during the adiabatic evolution.

It should be remarked that recent work by Dev and Jain [6] suggests that the
correspondence between the integer and fractional QHE states is not restricted to
the ground-state energy spectrum. These authors have found that the low-lying
excitations in the fractional QHE form well-defined energy bands which correspond
to the low-lying excitations of the noninteracting system. The excitations of the
fractional QHE are constructed by attaching 2k flux quanta (k = 1,2,...) to each
electron in the initial noninteracting integer QHE state, i.e. by multiplying the initial
wave function by [[;-;(z — z;)**. The equivalence between this approach and that of
standard hierarchy theory [8, 9] has recently been shown by Yang and Su [10].
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A Vector-potential interaction near the boson point

In this appendix we prove Eq. (4.6), which states that the vector-potential interaction
is equivalent to a hard-core repulsion near the boson point, in the space of lowest
Landau level wave functions. We will also show that beyond the boson point the
hard-core repulsion vanishes, leading to the collapse of the excitation gap.
Consider the Hamiltonian
2
Ho(e) =D % —ihV; + eA(r;) —ee Y a(r; —r;)| (A1)
i §(G)

describing a system of bosons with a vector-potential interaction. We are interested
in eigenfunctions and eigenvalues of Hy(e) near € = 0. Following Refs. [11, 12], we
construct the model Hamiltonian

27?712

Hu(e) = Hole 25 (A.2)

1<j
If an eigenfunction of Hy(¢) vanishes upon bringing two particles together, then it has
to be an eigenfunction of Hy(e) as well. Therefore by requiring the eigenfunctions to
vanish when particles coincide, Hy(e) and Hy(e) become equivalent. Using complex
coordinates, Hy(e) is written in the form

1
Hu(e) = hwe Y {ai(e)ai(s) + 5] : (A.3)
1 0 1 1
0= 7y (gt g T )

1 0 1 1
fle) = Wy — + — 2 — A4
a; () 7 ( fani + T z—ely > — ) , (A.4)

where ¢y = (h/eB)'/2.
We first consider the case ¢ < 0. We apply the nonunitary transformation

Hu(e) = T (e)Hu(e)T(e) = Hyy(e),
D) — T He)®(e) = ¥'(e), (A.5)
in which
= H‘Zl —ijis. (A6)
i<j
If ®'(¢) is not singular, then ®(¢) = T'(¢)®’(¢) vanishes as two particles approach

each other, so that the requirement mentioned above is satisfied. Upon substitution
of Egs. (A.3),(A.4), and (A.6) into Eq. (A.5) one finds

al — af
a; — a;

*
Z

Hy(e) = hew, Z(aiaz —) — 57‘1%60\/_2

% 1<J

, (A7)

*
J
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where a! = a!(0) and a; = a;(0) are the Landau level raising and lowering operators,
respectively.

Our next step is to obtain the lowest Landau level projection PHj,(e)P of Hy(e).
The space of many-body states is then restricted to wave functions of the form

PO = fs(z1,..., 2N exp( Z|zz| /462) (A.8)

where fg is a symmetric polynomial. We find for functions of this form

N
1
H{VI(€)PQD/ = exp <— Z |Zz|2/4€(2)> lathc - 5hwc ZSU fs, (Ag)
i=1 i<j
L (D0
Sij=1-20——— o ) (A.10)

The wave function (A.9) does not lie entirely within the lowest Landau level, since
the operators S;; introduce higher Landau-level components. To project S;;fs onto
the lowest Landau level we proceed as follows. The polynomial fs, being symmetric,
can always be expanded as

o0

fs = Z (2 — Zj)2m (zi + 2)" Gmns (A.11)

m,n=0

where g,,, are symmetric polynomials in N — 2 complex variables z, k # ¢,7. The
operator \S;; only works on the factor (z; — zj)2m. The lowest Landau level projection
operator in the relative coordinate §{ = 2; — z; can be written as

[o¢] /% k
Pij /df eXp |§| /4 )Z 12 (iig) : (A-12)

0

Using the definitions of S;; and P;; we find
Pz’jSij (Zi - Zj)Qm = (5m,0 (ZZ- — zj)2m , (A‘13)

where 0,, ,, is the Kronecker delta. Therefore, P;;S;; projects every symmetric lowest
Landau level wave function onto its component with zero relative angular momentum
with respect to particles i and j. The lowest Landau level projection of Hj,(e) can
finally be written as

PHy(e)P = —thc — chwe Y PijSij. (A.14)

1<j

So much for the vector-potential interaction. We now turn to a system of bosons
with a hard-core repulsion. The Hamiltonian is

1
HB(n):ZQ [—1AV; 4+ eA(r;)] +n25 r; —rj), (A.15)

% m 1<J
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where 17 > 0 determines the strength of the interaction. We need the lowest Landau
level projection PHgp(n)P of Hg(n). Therefore, as above, we let Hg(n) operate on
wave functions of the form (A.8). Projection of the kinetic energy term yields the
constant term %N hw.. To project the interaction term we consider the product
Pi;o(r; — r;)PP’. The polynomial part of PP’ is once again expanded in powers of
z; — zj and z; + z; as in Eq. (A.11). Using the definition of P;; we find

1
 4ml?

Pijé(ri — I'j)(ZZ‘ — Zj)2m 5m,0(zi — Zj)2m. (A]_G)

The projected boson Hamiltonian can finally be written as

1
WEWP:?%%+U S P8 (A.17)

2
Anls =

To prove Eq. (4.6) we equate 7 = —47h*c/m. The two operators (A.14) and (A.17)
then become identical.

So far we have investigated the model Hamiltonian Hy; for negative . We now
consider positive values of e. Returning to Eq. (A.3) we apply a new transformation
similar to Eq. (A.5) with

i<j

The transformed Hamiltonian is

1
Hy(e) = hw Z(alai + 5) + ehwelov2y

) 1<J

R (A.19)

Zi Zj ’

Obviously, every lowest Landau level wave function of the form (A.8) is an eigen-

function of this Hamiltonian with the energy %N hw.. As a result, the hard-core
interaction found for € < 0 vanishes completely and the energy gap collapses.
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Chapter 4

Vector-mean-field theory of the fractional quantum

Hall effect

1 Introduction

The quantum Hall effect (QHE) is the manifestation of the incompressibility of a
two-dimensional electron gas (2DEG) in a strong perpendicular magnetic field. The
integer QHE occurs at the integer values of the filling factor v = nh/eB = 2w(2n
where ¢y, = (h/eB)Y? is the magnetic length and n is the electron density. The
integer QHE is essentially a phenomenon of noninteracting electrons: it is a result of
the quantization of the kinetic energy of cyclotron orbits. The fractional QHE, on
the other hand, requires electron-electron interactions.

The fractional QHE in an unbounded, uniform 2DEG is described accurately by
Laughlin’s variational wave functions [1]. The theory explains the incompressibility of
the ground state at the filling factors v = Tlﬂ with k integer. Laughlin’s wave func-
tion is known to be the exact, nondegenerate ground state for repulsive interactions
of vanishing range [2, 3]. In the hierarchy scheme [4, 5], other fractional filling factors
are obtained by constructing Laughlin states from the quasiparticle and quasihole
excitations of the fundamental states.

There is no generalization of Laughlin’s variational theory to confined or non-
uniform systems. The fact that it is now possible experimentally to study the frac-
tional QHE in a nanostructured 2DEG calls for a mean-field theory which can ex-
plain the novel effects occuring in such “mesoscopic” systems. However, early mean-
field (Hartree-Fock) calculations failed to explain the incompressibility of the 2DEG
at fractional filling factors [6]-[9]. The Hartree-Fock ground-state energy is just a
smooth function of the electron density, without any cusps to indicate incompress-
ibility. Somehow the subtle correlations responsible for the incompressibility of the
2DEG at noninteger v are lost in a conventional mean-field treatment.

In this chapter we propose an alternative mean-field theory based on the adia-
batic principle of Greiter and Wilczek [10, 11]. The adiabatic principle is formulated
in terms of a fictitious long-range vector potential interaction between the electrons.
Motivated by Jain’s theory of the fractional QHE [12], Greiter and Wilczek pro-
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pose that the incompressible states of the integer QHE evolve continuously into the
incompressible states of the fractional QHE by adiabatically switching on the vector-
potential interaction, i.e. by attaching flux tubes to each electron adiabatically.

The adiabatic mapping is exact in principle, but in practice cannot be carried out
without approximations. By treating the vector-potential interaction in mean-field
we obtain a “vector-mean-field theory” [13] of the fractional QHE, a name borrowed
[14] from anyon superconductivity [15, 16], where the fractional statistics is mediated
by a similar vector-potential interaction. In this mean-field approximation the flux
tubes attached to the electrons are smeared out, yielding a fictitious magnetic field
proportional to the electron density. In addition, a fictitious electric field is generated
by the motion of the flux tubes bound to the electrons [17].

Vector-mean-field theory can be readily applied to confined or non-uniform sys-
tems. However, as a test we will first show that the theory reproduces the known
bulk properties of the correlated fractional QHE states, such as fractional charge and
statistics of the quasiparticle excitations, and we will calculate the excitation energies.
These bulk properties are also well described by the Chern-Simon field theories of
Refs. [18]-[22], although, as far as we are aware, this is the first time that a mean-field
theory is used to actually calculate the excitation gap.

We will then focus on a simple confined geometry, a quantum dot with parabolic
confinement. For a few electrons in the dot we compare the mean-field theory with an
exact diagonalization of the Hamiltonian. We shall see that the mean-field theory re-
produces quite well the “magic” filling factors at which the exact ground-state energy
shows a cusp. We then turn to the problem of resonant tunneling through a quantum
dot in the fractional QHE regime. As discovered by Wen [23] and Kinaret et al. [24],
the probability for resonant tunneling through the dot is suppressed algebraically
as the number of the electrons in the dot is increased (orthogonality catastrophe).
Our mean-field theory yields a similar orthogonality catastrophe. This demonstrates
that, unlike conventional Hartree-Fock theory, the vector-mean-field theory does not
produce a Fermi liquid.

This chapter is organized as follows. In Sec. 2 we review the adiabatic principle of
Greiter and Wilczek. Our mean-field approximation is discussed in Sec. 3. In Sec. 4
we apply the vector-mean-field theory to the unbounded, uniform 2DEG. The mean-
field equations are solved analytically and closed expressions are found for the ground
state energy. We then apply the theory to the quasiparticle excitations. Although
the mean-field equations do not allow an analytic solution in this case, the charge
and statistics of the quasiparticles can be determined by an asymptotic analysis. We
then proceed to numerically calculate the quasiparticle energies and the excitation
gap for several filling factors. In Sec. 5 we consider a quantum dot with a parabolic
confinement. The results of the mean-field theory are compared with the exact results
for a small number N of electrons. We calculate the tunneling probability through
the dot and show that it vanishes in the limit N — oco. We conclude in Sec. 6. Most
technical details are relegated to the appendices. The derivation of the mean-field
equations is given in App. A. Appendix B contains the solution of the Schrodinger
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equation for an electron in a magnetic field with a flux tube at the origin. The
solution is used to determine the charge of the quasiparticles in Sec. 4. The mean-
field equations in a rotationally symmetric geometry (a quantum dot) are presented
in App. C. We give a brief discussion of the numerical method in App. D. Finally,
App. E contains the details of the calculation of the probability for tunneling through
a quantum dot discussed in Sec. 5.

2 Adiabatic principle

The adiabatic principle of Greiter and Wilczek [10, 11] was reviewed in Sec. 3. For
the sake of completeness, we present here a brief discussion. ! We consider a two-
dimensional electron gas in the x-y plane, subject to a magnetic field Bz with z the
unit vector in the z-direction. The Hamiltonian is

1 :
H =35~ [FihVi+ eA(r)]* + 3 u(r — ;) + 37 V(r), (2.1)
i i<j i
where A(r) is the vector potential associated with Bz (= V x A), u(r) is the electron-
electron interaction potential, and V' (r) is the electrostatic potential from impurities
or an external confinement. The adiabatic principle of Greiter and Wilczek [10, 11]
is formulated in terms of a new Hamiltonian
2
1
Hy= Y — |-ihV;+eA(r;) —eX ) a(r; —r;)| +
~ 2m —
i 3(F#9)
dulri —x;) + > V), (2.2)
i<j i
which contains an extra vector-potential interaction. The vector potential a(r) is the
field of a flux tube of strength h/e in the z-direction, located at the origin:

a(r) = ﬁ ZXT
e 2mr?’
V xa(r) = gé(r)i. (2.3)

The Hamiltonian H, is thus obtained from H = H, by binding flux tubes of strength
—Ah/e to each electron (cf. Fig. 1.5).

One can now define an adiabatic mapping of the set of eigenstates of the original
Hamiltonian 'H = H, onto itself as follows. Starting from an eigenstate ¥ = U, of
'H, one switches on the vector-potential interaction adiabatically by increasing A very
slowly from 0 to an even positive integer 2k. The eigenstates and eigenvalues evolve
according to

HAU, = E\U,. (2.4)

!The notation used here is slightly different from that of chapter 3. The dependence of various
operators and functions on the strength of the attached flux A, is denoted here by subscripts.
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After Uy has evolved adiabatically into Wo, the vector potential interaction in Hoy
is eliminated by applying the unitary gauge transformation

Hyy — ngHng§k~: Ho,
Wor — Gop Wor, = ¥, (2.5)

where we have defined

)Qk

Gor =[] (s — )

ST - (2.6)

i<j |2 — Zj|
Here z; = xz; — iy; is the complex-plane representation of r;. The initial state W is
therefore mapped onto U = Gor Vo, a new, exact eigenstate of H. The adiabatic
principle of Greiter and Wilczek says that the incompressible states of the fractional
QHE can be obtained by an adiabatic mapping of the incompressible states of the
integer QHE.

The adiabatic mapping is a prescription for constructing exact states of the frac-
tional QHE by starting from the states of integer QHE. However, with the exception
of several special cases, the adiabatic mapping cannot be carried out in practice unless
suitable approximations are made. In the next section we introduce the vector-mean-
field theory of the fractional QHE [13], which is based on a mean-field approximation
of the adiabatic mapping.

3 Vector-mean-field theory

The mean-field approximation to the adiabatic mapping is suggested by the vector-
mean-field theory of anyon superconductivity [14]-[16]. In this approximation the
flux tubes are smeared out, yielding a fictitious magnetic field Bf proportional to the
electron density. In addition, a fictitious electric field Ef is generated by the motion
of the flux tubes bound to the electrons [17]. Formally, the mean-field equations are
obtained by approximating the eigenstates ¥, of the many-body Hamiltonian (2.2)
by a Slater determinant:

LA \/% za: sgn(0) Pro1)(r1) - - Oa o) (Tn)- (3.1)

Here N is the number of electrons, o denotes a permutation with sign sgn(o), and
®ris @ =1,..., N are single-particle wave functions. The mean-field (Hartree) equa-
tions are obtained by minimizing the energy functional FA'™" = (UMF|H, [0MF)  with
neglect of exchange terms. The details of the derivation are presented in App. A.
The single-particle mean-field Hamiltonian is

HYT = ﬁ [—ihv +eA(r) — e/\Af(r)}2 +eA®!(r) + U(r) + V(r), (3.2)
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where the fictitious potentials A’ and ®f are given by
fr) = /dr’ a(r — r')n(r'), (3.3)
f(r) = / dr' a(r — ') - j(r'), (3.4)

and the ordinary Hartree potential is given by

= /dr’u(r —r')n(r'). (3.5)

The electron density n(r) and current density j(r) are

N

Z $ri(T)Pri(r (3.6)
r) = %Im > il iV + cA(r) — eAAT(E)] ni(r). (3.7)

The wave functions ¢, ; satisfy the eigenvalue equation

HAT dri = €xi b (3.8)

The mapping is now carried out by starting from an initial set of self-consistent
single-particle eigenstates ¢g; of Hp'', and increasing A from 0 to 2k adiabatically.
The single-particle eigenstates ¢, ; and eigenvalues €, ; evolve according to Eq. (3.8).
A further simplification results if the potential u(r) is also switched on adiabatically
by replacing it with (A\/2k)u(r). Then, H}'Y describes a system of noninteracting
electrons, so that the initial single-particle states ¢ ; can be determined exactly. After
reaching A = 2k, we apply the gauge transformation (2.5) to the Slater determinant
(3.1), and find the final state

\/_H i 2) 2k ngn ) G2k,0(1) (T1) -+ Poro(n) (). (3.9)

1<J 2 =

In general, the wave function (3.9) does not lie entirely in the lowest Landau level.
In order to dispose of the higher Landau level components in the high magnetic field
limit (B — 00), one might consider a projection of UM onto the lowest Landau level.
This, however, makes the theory less tractable: a lowest Landau level projection is
not straightforward at all because of the gauge transformation (2.5). In what follows,
we will use unprojected wave functions to compute the electron density n(r) and the
pair distribution function

2

P(ry,ry) = N(N — 1)/dr3-~-drN ‘\TJMF(rl,rg,rg, )|, (3.10)
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but we evaluate the kinetic energy within the lowest Landau level. The energy of
the final state then becomes EM¥ = I NThiw, + [ dr n(r)V(r) + Ee where the electron-
electron interaction energy FE is

1
E. = 3 /drldrg P(ri,ro)u(r; — ra), (3.11)

and w. = eB/m is the cyclotron frequency. In order to express P(ry,rs) in terms of
single-particle wave functions, we substitute Eq. (3.9) into Eq. (3.10), and use the
unitarity of the gauge transformation (2.5). The resulting pair distribution function
is

P(ry,15) = n(ry)n(ry) — |D(rq, r2)|2, (3.12)
D(ry,15) = ;¢2k,i(rl)¢;k,i(r2)‘ (3.13)

4 Application to unbounded systems

In this section we apply the vector-mean-field theory to the fractional QHE in an
unbounded homogeneous system, and compare the results obtained with those in
the literature. We shall show that the mean-field Eqgs. (3.2)-(3.8) can be solved
analytically in this case. The solution is presented in Sec. 4.1. To determine whether
the mean-field ground-state shows the fractional QHE, we will study its excitations
in Sec. 4.2. We shall see that the adiabatic mapping in its simplest formulation only
generates filling factors v < 1. In Sec. 4.3 we generalize the adiabatic principle to

2
ground states with v > %

4.1 Ground state

Starting from a noninteracting integer QHE state consisting of p filled Landau levels,
the adiabatic mapping is carried out by switching on both scalar- and vector-potential
interactions in the Hamiltonian (3.2). The solution is particularly simple if u(r) is
the Coulomb potential e?/r, and V(r) is the potential of a neutralizing background
of positive charges with density p = n. In this case, the electron density remains
uniform, and the current density vanishes during the adiabatic evolution. This leads
to a uniform fictitious magnetic field Bf = V x Af = (h/e)nz and a vanishing
fictitious potential ®f(r) = 0.

The total single-particle potential U(r)+V (r) is now just a constant, and does not
affect the eigenfunctions ¢, ;(r) of HYF. Therefore, H)F describes particles moving
in a uniform, effective magnetic field

pf—p_ 2, (4.1)
€
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Since the mapping is adiabatic, no transitions occur between different Landau levels
during the evolution: we retain p fully filled Landau levels, but now in the effective
magnetic field BT, Equating BT = hn/ep, we find

p eB

_ &~ 4.2
Ap+1 h'’ (4.2)
1
Bt — B. 4.
Ap+1 (43)

After letting A — 2k, one recovers Jain’s formula [12] for the hierarchy of fractional
QHE filling factors

_hn_ P
eB  2kp+1

Substituting p = 1, k = 1,2, 3, ..., one obtains the fundamental filling factors v =
5, %, 3,.... Other filling factors can be obtained by starting from more than one filled
Landau levels. For instance for p = 2,k = 1,2,3,..., we get v = %, %, %, .... Note
that the filling factors obtained from Eq. (4.4) are restricted to v < 5. In Sec. 4.3 we
generalize the adiabatic mapping to filling factors v > %

In order to calculate the interaction energy in the final state we need the pair
distribution function defined in terms of the eigenfunctions of HY in Eq. (3.12).
In the symmetric gauge A = %Bi x r, the eigenfunctions of HMY for the quantum
numbers [,m =0,1,2,... are

111/ 2
me le l(|§ ) eXP< < >7 (4.5)

where Lz = (h/eB°T)1/2 is the effective magnetic length, & = z/(fegv/2), and L™ is
the generalized Laguerre polynomial. Substituting Eq. (4.5) into Eq. (3.13), we find
after some algebra

(4.4)

¢A,l,m -

D(ry,rs) Z Z Dot ;m (T1) Pop 1,1m (T2)

=0 m=0

1 pl ‘21—22’2 1
= Ly | ——— —— 2 2 _ 922 4.6
s i (P e | gl 4 P 20 00

where L, = L} is the Laguerre polynomial. After substitution of Eqs. (4.2) and (4.6)
into Eq. (3. 12) the pair distribution function becomes

2
(2mlZ:)? P(r =p? — S [r1f* Il

off 1,T2) =p > L 2 exp — | > (4.7)
205 202

=0

with rjy = r; —ry. The total Coulomb energy of the system (including the interaction
with the positive charges) is given by

e?pn

B = B — / drydry P / dridry — ’r - ’ (4.8)
1 — 12

Ty —1"2\
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The constant third term represents the electrostatic energy of the positive charges.
Substitution of Egs. (3.11) and (3.12) into Eq. (4.8) yields

2
D(
= ——/drldrg | rl,r2)| . (49)

vy — 1o

After substitution of Eq. (4.6) and carrying out the integral, we end up with the
mean-field Coulomb energy per electron

%:_<6_2>M§0(,p )(p >(—1>?+f(2z'+2j>!' (410)

N e ) 23/%p i+ 1)\ g+ 1) 43+ 5)!

In Fig. 4.1 we have plotted E./N from Eq. (4.10) for the first levels of the hierarchy
given by Eq. (4.4). For comparison, we have also plotted the results of exact finite
system calculations, represented by the interpolation formula of Ref. [25]:

E./N = —(7/8)?v + as v"*(1 = )32 + ayv(1 — v)? + a5 v*/%(1 — )%, (4.11)

where a3 = —0.782133, a4 = 0.683, and a5 = —0.806. On the average, the mean-field
values are too large by about 10%.

An interesting feature of Fig. 4.1 is that the mean-field correlation energy per
particle has a negative second derivative with respect to v in the regions between the

fundamental filling factors 1, 35 5, etc. This implies that the chemical potential

a EMF
ON

= (4.12)

decreases with increasing filling factor, and the compressibility

K= ( gZ) (4.13)

becomes negative. The latter, however, does not imply an instability of the system
[26]: the presence of the rigid background of positive charge density prevents the
collapse of the electron gas.

4.2 Quasiparticles and quasiholes

The fractional QHE is characterized by an energy gap E, = €4 + e_, where e_ and
€, are the quasiparticle and quasihole creation energies, respectively. The energy
gap is required for the incompressibility of the ground state. The quasiparticles and
quasiholes in the fractional QHE are unusual in having fractional charge and statistics
[27, 28]. In this section we show that the vector-mean-field theory reproduces the
fractional charge and statistics of the quasiparticles and quasiholes, and yields a
non-zero energy gap .

51



E./N (€°/1,)

Fig. 4.1. Mean-field Coulomb energy per electron E./N in units of €?//; as a
function of the filling factor . Open circles represent the filling factors given by
the hierarchy formula (4.4). The filling factors given by the hierarchy formula
(4.37) are shown as filled circles. The solid line represents the interpolation
formula of Ref. [25], which is based on exact finite system calculations.
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Originally, the adiabatic principle has been formulated as a statement relating
the incompressible integer and fractional QHE ground states [10, 11]. Here we apply
the same principle to the excitations. We assume that the adiabatic mapping carries
the lowest particle and hole excitations of the integer QHE into the quasiparticle and
quasihole excitations of the fractional QHE. The lowest charged excitations of the
integer QHE at filling factor p have an electron in the (p + 1)-th Landau level or a
hole in the p-th Landau level. Although the self-consistent mean-field equations do
not allow an analytic solution for the excited state, it is possible to find an asymptotic
solution at large distances from a quasiparticle or quasihole. As we shall see below,
this solution is sufficient to calculate the charge of the excitations. Using a semi-
classical argument, we next determine the statistics of the excitations. Calculation
of the excitation energies requires the full (numerical) solution to the self-consistent
mean-field equations. We shall present a short discussion of the method of solution
and compare the results obtained with those in the literature.

Charge

Consider an integer QHE excited state consisting of p filled Landau levels plus
an extra electron in the (p + 1)-th Landau level near the origin. To carry out the
mapping, we switch on the vector-potential interaction by increasing A from 0 to 2k
adiabatically. In contrast to the uniform case, the effective magnetic field B (r) =
B —(A\h/e)n(r) is now inhomogeneous, varying rapidly near the origin where we have
an excess density due to the extra electron. The excess density, however, decays
exponentially fast so that, far away from the origin, the electron density and the
effective magnetic field become uniform. Hence, for » — oo Egs. (4.2) and (4.3) are
valid again:

B
Moo = lim n(r) = )\p]:— . %, (4.14)
1
B = lim B (r) = B. 4.1
5 = lim B (r) SV (4.15)

Using Egs. (3.3) and (4.14), the total vector potential can be written identically as

A(r) — MAT(r) = A% (r) — / dr' a(r — ') [n(r') — o], (4.16)
where we have defined
1
A (r) = 5Bgffz X T. (4.17)

The second term on the right hand side of Eq. (4.16) is an additional fictitious vector
potential induced by the excitation. Since the excess density n(r) — ny is localized
near the origin, we have as r — oo,

/dr’ a(r —r') [n(r") — no] — — a(r), (4.18)

e
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where
et = —e / dr [n(r) — nu|, (4.19)

is by definition the charge of the quasiparticle (e > 0). Hence, in addition to a
uniform effective magnetic field BT, the electrons far away from the origin see a flux
tube with the strength ® = —\he* /e?, localized near r = 0.

We can now write down the eigenfunctions ¢y, ,, of the mean-field Hamiltonian
(3.2) in the limit of large  (see App. B):

INL/2|¢]8 gm— 2
Patm = [QW(F(7)R+|§L—§]1/2€€H L?Hé*l(|f|2) exp (—%) , (4.20)

where § = —e®/h = \e*/e, by = (h/eBSH)1/2 and € = z/(LegV/2).

Compared to the single-particle wave functions (4.5) of the uniform ground state,
the wave functions (4.20) are shifted towards the boundary: the average area enclosed
by each single-particle state is increased by an amount of

(Dt T2 DN 1m) — (D0 T2 DA 1m) = 27050, (4.21)

where we have used the results of App. B. Therefore, part of the charge —e of
the initially added electron is screened by the uniform electron gas filling p Landau
levels. The charge of the screening hole is given by 2m(*;n..d0e = pde, where Egs.
(4.14) and (4.21) have been used. The net charge of the quasiparticle therefore equals
—e* = —e + pde. Equating 6 = Ae* /e and taking the limit A — 2k, we finally obtain
the quasiparticle charge —e* with

1
e’ = e. (4.22)
2kp+1

A similar analysis yields the quasihole charge +e*. Since the total charge in the
system is preserved, the difference e — e* is in fact transferred to the boundary. For
k=1, p=1,2 we recover the well known results e* = e, e* = ée for the % and %

3
states, respectively [27, 28].
Statistics

In a quantum mechanical many-body system, the statistical angle is defined as
the extra phase # that the wave function acquires, as one particle traverses a path
enclosing another particle in the clockwise direction. In two dimensions there is no
limitation on the value of §. In particular we have § = 0(mod4r) for bosons and
0 = 2m(mod4r) for fermions. Any other value of § corresponds to particles obeying
fractional statistics (anyons).

It is a fundamental result of Laughlin’s theory that the charged excitations of the

fractional QHE states are anyons [29]. For the fundamental filling factors v = Tlﬂ,
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the corresponding statistical angle is § = (2k + 1)~ '27(mod4r). In this section we
show how the vector-mean-field theory reproduces this result.

In the previous section we showed that the mean-field theory reproduces the
fractional charge e* of the excitations. In the final state of the adiabatic mapping, each
electron carries —2k flux quanta so that the total flux carried by each quasiparticle
is

2ke” 1o (4.23)
(& (&

o=

Hence the extra phase 8* gained by moving a quasiparticle around another quasipar-
ticle should equal

2k
(2kp +1)%’

where Eq. (4.22) has been used. The extra 27 accounts for the fermi statistics of
the electrons: in the initial state of the adiabatic mapping the excitations are true
particles or holes which obviously obey fermi statistics. For the fundamental filling
factors v = 35 (p = 1) Eq. (4.24) gives 6* = 21 + 4wk(2k + 1)~ This result is
obviously wrong!

What has been the wrong step in the derivation of 6*7 The error lies in ignoring
the gauge transformation (2.5). Being a pure phase, the gauge transformation does
not alter the charge of the excitations, but it does affect their statistics. What we
calculated above is not the statistical angle of the excitations of a system of electrons,
but that of electron-flux-tube composites. Before calculating the statistical phase, we
should therefore remove the flux tubes by applying the gauge transformation (2.5).

We will determine the statistical phase of the quasiparticles by the following
semiclassical argument. Consider a fractional QHE state with two quasiparticles of
charge —e*. The first quasiparticle is located near the origin. The second quasiparticle
is situated far away from the origin, encircling the first quasiparticle. For the second
quasiparticle, the semiclassical Bohr-Sommerfeld quantization condition for periodic
orbits requires that [30]

0" =21 — %CD — o7 + 21 (4.24)

et 7? A - dl+ ho* = nh, (4.25)

where the integral is taken along the path that the second quasiparticle traverses
around the origin in the clockwise direction, and n is an integer. The lL.h.s. of Eq.
(4.25) is the classical action. The first term is the Aharonov-Bohm contribution due to
the external magnetic field. Note that the fictitious magnetic field is removed by the
gauge transformation (2.5). The second term is the statistical contribution from the
quasiparticle at the origin. The integral — § A - dl is is the total flux enclosed by the
second quasiparticle. (The negative sign is due to the negative (clockwise) direction
of the integral.) Hence, if {2 denotes the area enclosed by the second quasiparticle,
then Eq. (4.25) gives

e*B
h

0" = 2mn —

Q. (4.26)
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The enclosed area ) can be determined using vector-mean-field theory. Let’s
assume that the initial (noninteracting) state of the adiabatic mapping consists of
p filled Landau levels and two extra electrons in the (p + 1)-th Landau level. The
single-particle wave functions of the two excitations are ¢y, (r) and ¢g , m, (r) which
are given by Eq. (4.5). We take m; to be small and my > my, so that the first
electron is located near the origin and is encircled by the second electron at a large
distance. As the vector-potential interaction is switched on adiabatically, the charges
of both electrons are partly screened by the electron gas filling p Landau levels, as
described above. The electrons surrounding the first quasiparticle are shifted towards
the boundary creating a screening hole near the origin. Also the second quasiparticle
is shifted because it encloses the extra flux of the first quasiparticle. The semiclassical
quantization condition for the second quasiparticle is written as

—g%Aﬁ-ﬂ;:ﬁm (4.27)

where A°T(r) is the total effective vector-potential and n’ is an integer. The charge
entering Eq. (4.27) is e and not e*, because the mean-field Hamiltonian (3.2) describes
electrons of charge —e interacting with self-consistent fields. The electrons obey fermi
statistics so that the statistical contribution hf* appearing in Eq. (4.25) is just an
integer multiple of h and can be incorporated in the r.h.s. of Eq. (4.27).

After the adiabatic mapping is carried out, the total flux enclosed by the second
quasiparticle is given by

—%Aﬁqﬂ:®+Bgﬁ (4.28)

where ® is the excess flux of the first quasiparticle given by Eq. (4.23), and BT is
the effective magnetic field in the uniform state given by Eq. (4.15). The enclosed
area () can now be determined from Eq. (4.28) and the quantization condition (4.25),
and substituted back into Eq. (4.26). The result for the statistical phase angle is

2k
T .
2kp+1

0* =2n(n—n'")—2 (4.29)

Since in the initial state (k = 0) the excitations are fermions with ¢* = 27 (mod4r),
we choose (n — n') such that

2k
2kp+ 1

0* = 2w (mod 4r) — 27 (4.30)

For the fundamental filling factors v = Tlﬂ corresponding to p = 1, Eq. (4.30)
reproduces the result 6* = (2k + 1)7!'27(mod4n). The analysis for quasiholes is
identical to that for quasiparticles, yielding —#* for the statistical phase angle.
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Method of solution of the mean-field equations

In order to calculate the quasiparticle and quasihole energies, the mean-field equa-
tions have to be solved numerically. We give here a brief discussion of the method of
solution. The method also applies to the confined geometry considered in the next
section.

The calculations are carried out in a rotationally symmetric geometry, 7.e. on a
disc. We assume that the external potential is rotationally symmetric [V (r) = V(r)]
and choose the symmetric gauge for the external vector potential (A = %Bi X T).
Because of the rotational symmetry, the single-particle mean-field Hamiltonian com-
mutes with the angular momentum operator. One can therefore assign a definite
angular momentum quantum number to each electron. This number does not change
as the interactions are switched on since the angular momentum operator only allows
integer eigenvalues, and any change in angular momentum implies a discontinuous
change in the wavefunction of the corresponding electron. This contradicts the adi-
abaticity of the mapping. Hence, the angular momentum of each electron is an
adiabatic invariant determined by the choice of the initial state. The Schrédinger
equation (3.8) can then be reduced to an ordinary differential equation, which can be
solved by standard techniques. The mean-field equations on a disc are given in App.
C. The details of the numerical method are given in App. D.

In the conventional theory of the fractional QHE, it is assumed that the Lan-
dau level separation hw,. is much larger than the typical Coulomb interaction energy
e?/ly. The Coulomb interaction can therefore be considered as a perturbation to the
large kinetic energy of the electrons. Application of first order degenerate pertuba-
tion theory is then equivalent to diagonalization of the interaction Hamiltonian in
the lowest Landau level. In solving the mean-field equations no restrictions are made
to the lowest Landau level. Consistency with the standard theory requires a pro-
jection onto the lowest Landau level of the mean-field fractional QHE states. This,
however, makes the theory much less tractable. Hence, we ignore the lowest Landau
level projection, but instead take the ratio e?/fyfiw. to be very small (= 0.1) in the
calculation.

When solving the mean-field equations for the unbounded (but non-uniform)
quasiparticle and quasihole states, it should be kept in mind that the calculation
can only be carried out for a finite number of electrons. Although this number is
much larger than the number of electrons in a typical exact finite system calculation
(=~ 200 vs. ~ 10), one still has to deal with finite size effects. In order to minimize
these effects, we use the asymptotic solution obtained previously. The numerical so-
lution is then matched to the asymptotic at a point far away from the quasiparticle
or quasihole.

Excitation energy
There are various ways of defining the quasiparticle and quasihole energies. Here

we use the definition of Ref. [31]. The excitation energy is defined as the energy
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difference between the excited state and the ground state, after ignoring the changes
at the edge of the system. The only changes which are included are those in the
electron density n(r) and pair distribution function P(r,r’) in the vicinity of the
quasiparticle or quasihole.
Using Egs. (3.11) and (4.8), we have for the total Coulomb energy of the excited
state:
2

1
ECi = — /drldrg 67 {5ni(r1)5ni(r2) — |Di(r1,r2)|2} s (431)
2 |I'1 — I'2|
where dn*(r) = n*(r) — p, and
r17 r2 Z ¢2k ) rl Qk ) r2) (432)

Here ¢2i,m- are eigenfunctions of H3" in the excited state. Using Eqs. (4.9) and (4.31)
the excitation energy is defined as

¢t = EF / ey S ELT2) (4.33)
Ity — 1o
5(1‘1, I'Q) = 571 (r1)5n (I'Q) — \Di(rl, r2)|2 + |D(r1, I'Q)|2. (434)

The energy defined by Eq. (4.33) is known as the gross excitation energy [31]. This is
the change in the energy of the system as a result of changing the number of electrons,
and keeping the magnetic field and the volume of the system constant.

We have calculated the excitation energies and the electron density profiles of the
quasiparticles and quasiholes for the filling factors v = 3, = Lk=1,2,p=1)andv =2
(k =1, p = 2), belonging to the first, respectively, second level of the hierarchy. The
electron density profiles of the quasihole and quasiparticle states are shown in Fig.
4.2. The quasihole state at v = é and v = % is obtained by adiabatically attaching
two, respectively four flux quanta to each electron, starting from a completely filled
lowest Landau level where a hole has been created by leaving out the electron with
quantum numbers [ = 0, m = 0. For the quasiparticle at v = % and v = % we take
the initial state to consist of a completely filled lowest Landau level plus an extra
electron in the second Landau level with quantum numbers [ = 1, m = 0. For the
quasihole at v = % we start from two completely filled Landau levels plus a hole in the
second Landau level with quantum numbers [ = 1, m = 0. For the quasiparticle the
mapping is started from two filled Landau levels and an extra electron in the third
Landau level with quantum numbers [ = 2, m = 0. For comparison we have included
in Fig. 4.2a the result of an exact calculation by Morf and Halperin [32] carried out
for 72 electrons. The agreement is quite good.

The mean-field excitation energies and energy gaps are given in Table 4.1. They

differ from the exact finite-system calculations of Refs. [31] and [33] by 10-20% 2

2The results presented in Table 4.1 are slightly different from those reported in a previous pa-
per [13]. The difference is due to a different, more accurate numerical method used in our later
calculations.

o8



<
o

e
o

e
=~

2

_2mly'n
o o
N w

©
=

(a)

O\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

o

<
o

2

4

r/lo

6

8

=l b b bl b by

2
_2mly n
o ° o
w ~ o

e
0

©
=

o

O\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

2

4

r/1,

6

8

—_
o

©
o

©
o

S

2
27l n
o N
w -~

e
I

©
-

@]

(e)

O\\\\‘\\\\‘\\\\‘\\

2

4

r/1,

6

8

—_
o

2

2mlyn

2

2mlyn

2

2mlyn

o
)

©
[S]

©
o~

o
a

©
20

©
—

(b)

o\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

o

o
)

4

1”/10

6

8

=l b b bl b by

©
[S]

©
o~

|

© o
fav] w
o b b b b b

©
—

o

(d)

O rrTT T

2

4

r/1,

6

8

—
o

©
o

©
3]

©
S

©
&)

©
20

©
—

o

()

|

O\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

2

4

r/1,

6

8

—
(@)

Fig. 4.2. Electron density in units of (27¢3)~! for the v = % quasihole (Fig.
4.2a), v = % quasiparticle (Fig. 4.2b), v = 1 quasihole (Fig. 4.2c), v = 1
quasiparticle (Fig. 4.2d), v = % quasihole (Fig. 4.2e), and v = % quasiparticle
(Fig. 4.2f). The number of electrons in the calculation is N = 100 for v = 1

3
and v = L, and N = 200 for v = % The numerical solution has been matched

57
to the asymptotic solution of Sec. 4.22 at r = 20{y for v = %, r = 264y for
v = %, and r = 18y for v = % The dashed line in Fig. 4.2a represents the

exact result for 72 electrons taken from Ref. [32].

99



Table 4.1. Comparison of the mean-field (MF) results with exact (EX) finite-
system calculations. The interaction energy per particle (E./N), and the
quasi-particle (e_), quasi-hole (e4 ), and excitation-gap (F,) energies are com-
pared for v = %, %, and % The energy unit is e?/fy. The exact results for
v =1 and £ are taken from Ref. [33]. Those for v = { are from Ref. [31].

E./N € €, E,
v MF EX MF EX MF EX MF EX
% —0.362 —-0.410 | —0.121 —0.130 | 0.210 0.232 | 0.089 0.102
% —0.280 —0.328 | —0.053 —0.076 | 0.091 0.107 | 0.038 0.031
% —0.385 —0.434 | —0.086 —0.084 | 0.142 0.145 | 0.056 0.061

4.3 Conjugate fractional QHE states

The filling factors given by the hierarchy formula (4.4) are restricted to the intervals
s <V < o, with k = 1,2,...,00. In particular, we have v < 3. It might
seem at first that this limitation of the mean-field theory can be lifted by invoking
the particle-hole symmetry [34], thus creating a new family of filling factors with
v =1 — v, where v is given by Eq. (4.4). Howeve not all the filling factors at which
the fractional QHE occurs can be recovered in this way. For instance the filling factors
in the range 3 < v < } can neither be obtained from the hierarchy formula (4.4) nor
from particle-hole symmetry.

This limitation, in fact, arises because we only consider incompressible initial
states consisting of several completely filled Landau levels. Can the adiabatic princi-
ple be extended to other, more general, initial states? For the moment we will simply
assume that if those additional initial states exist, they evolve into final fractional
QHE states satisfying the mean-field equations at A = 2k. Hence we look for solutions
of the final mean-field equations, without trying to make any statement concerning
their adiabatic evolution. Instead we impose the physical condition of uniformity to
select the appropriate solutions.

Our starting point is the self-consistency relation (4.1). In Sec. 4.1, we used
this relation, together with the condition that p Landau levels remain filled during
the adiabatic mapping, to derive the hierarchy formula (4.4). Note that the effective
magnetic field BT [given by Eq. (4.3)] decreases, but remains positive as A is increased
gradually from 0 to 2k. There is however no reason why B should be positive if we
only consider solutions at A = 2k. The only necessary condition is that BT and n are
independent of r, since we are looking for uniform solutions. Let us take B to be
negative and assume that p Landau levels are filled in the final state. As a result we
have BT = —hn/ep. Substitution of this relation into Eq. (4.1) with A = 2k yields

p eB
n= —
2kp—1 h’

(4.35)
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1
B — — B 4.36
2kp — 1 (4.36)

and a new family of filling factors given by

hn P
V= — = . 4.37
YTeB T 2kp—1 (4.37)
The single-particle eigenfunctions of Hi' for negative B°T are given by
- ()2 et g)2 €17
m = ———— (&)L —— |, 4.38
¢2/€,l7 (27Tm!)1/2€eﬁ“ (f ) 1 (|§| ) €xp 9 ( )

where log = (—h/eB*)/2 and ¢ = z/(legv/2). Apart from a different length scale
Lo, these wavefunctions are just complex conjugates of those given by Eq. (4.5).
Therefore the pair distribution function and the Coulomb energy per electron for
these new states are again given by Eqgs. (4.7) and (4.10). The Coulomb energy per
electron for some of these new filling factors is shown in Fig. 4.1.

The charge of the quasiparticles and quasiholes follows from an asymptotic anal-
ysis similar to the one presented in Sec. 4.2. We briefly discuss the essential steps
of the derivation for a quasiparticle. Assuming once again that the quasiparticle is
located near the origin, the asymptotic values of the electron density and the effective
magnetic field at A = 2k are given by:

B

noe = lim n(r) = 5 kpp_ : % (4.39)
1

B = lim B(r) = — B 4.4

For the electrons far away from the origin, the mean-field equations are satisfied by
the asymptotic solution

_ i 1/2 5 = 5* m—l . 52
ot = [Q(W%(m‘—‘é%—(l)]z/%eﬂ m=e "(1€]%) exp <—%> , (4.41)

where 0 = 2ke* /e. Here —e* is the quasiparticle charge which is by definition the
total excess charge accumulated near the origin. Note that in contrast to Sec. 4.2, the
electrons far away from the origin are shifted inwards, creating a screening particle of
charge —pde. This is because of the negative sign of the effective magnetic field. In
Sec. 4.2 we considered the quasiparticle charge to be the charge of an electron, plus
that of the screening hole. This was obvious, since the initial excited state contained
an extra electron. Here, however, we do not know the nature of the initial excited
state. Let us assume that initially the excess charge near the origin is a multiple
(positive or negative) of e. Then, we have —e* = ne — pde, where n is an integer.
Equating § = 2ke* /e yields e* = —n(2kp — 1)~ te. For the smallest positive value of
e* we take n = —1, which results in

N (4.42)
(& _2]€p—1€ .
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Other negative values of n represent solutions with more than one quasiparticle. The
statistics of the quasiparticles follows from a semiclassical argument analogous to the
one presented in Sec. 4.2. The result is

2k
2kp — 1

0* = 27(mod 47) — 27 (4.43)

5 Application to confined geometries

In this section we discuss the application of the vector-mean-field theory to a confined
geometry. We consider a quantum dot with a 2D parabolic confining potential. This
choice of the confining potential is particulary suitable for calculations, as will be
discussed below. In Sec. 5.1 we summarize some exact results concerning interacting
and noninteracting electrons with a parabolic confinement. The application of vector-
mean-field theory is discussed in Sec. 5.2. Finally, in Sec. 5.3 we consider the problem
of tunneling through a quantum dot in the fractional QHE regime.

5.1 Exact results

The problem of noninteracting electrons in an external magnetic field Bz, and a 2D
parabolic potential
1
V(r) = imwg(f +97), (5.1)

can be solved exactly [35]. The eigenstates of energy and angular momentum are

Pmlz) = (2752!1)/12/26 <e\2/§)m_l L <%) P <_%> ’ (5:2)

2

where (2 = h/mw, w? = w?+4w?, w. = eB/m, and | and m are nonnegative integers.
The energy eigenvalue is

em = I+ %)hw + %(m — 1) (hw — hw,). (5.3)

The corresponding angular momentum is m — [. In the lowest Landau level (I = 0),
the sum of the single-particle energies of N electrons with total angular momentum
M is

1 1
Ep(N, M) = ath + iMh(w — We). (5.4)

Because wy enters in the eigenstates (5.2) only as a scale factor (through /), the
problem of calculating the electron-electron interaction energy can be solved inde-
pendently of the value of wy. More precisely, if Ee.(N, M) is the Coulomb interaction
energy for wg = 0, then the total energy for wy # 0 is given by

Byt (N, M) = (w/wc>1/2Eee(N7 M) +ESP(N7 M). (5.5)
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The ground state for given wy is obtained by choosing the value of M which minimizes
Eiot(N, M).

For small N the interaction energy can be calculated exactly, by diagonalizing the
Hamiltonian (2.1) in the space spanned by the lowest Landau level wave functions.
The technique is described by Trugman and Kivelson [2]. Our exact results for the
interaction energy Ee.(N, M) as a function of M for 5 and 6 electrons are plotted
in Fig. 4.3 (open symbols). To determine the ground state value of M one has to
minimize Ee(N, M) + oM, with o = 1hA(w — w,)(we/w)"/?. This amounts to tilting
the plot of E,, versus M with a slope a determined by the strength of the confining
potential, and finding the global minimum. The angular momentum values on the
convex envelope of the plot (dashed curve in Fig. 4.3) are global minima for some
range of wy. These are the stable incompressible states of the system, at which the
interaction energy shows a cusp (squares in Fig. 4.3). Not all cusps are global minima,
for example N =5, M =22 and N = 6, M = 33. These cusps are local minima, or
“meta-stable” incompressible states [2].
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Fig. 4.3. Electron-electron interaction energy of 5 and 6 electrons as a function
of the angular momentum M. The energy is in units of e2/¢y. Triangles follow
from the adiabatic mapping in mean-field approximation. Squares and circles
are exact results, squares representing incompressible ground states. Solid
lines are a guide to the eye, dashed lines form the Maxwell construction for
finding ground states (described in the text). The range M < 21 (N = 5) and
M <29 (N = 6) can not be reached by adiabatic mapping.

5.2 Results from vector-mean-field theory

We now turn to the vector-mean-field theory. As initial state of the adiabatic mapping
we can choose any noninteracting incompressible state, which occupies p Landau
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levels. If N; (I = 0,1,2,...) is the number of electrons in each Landau level, the
initial angular momentum eigenvalue is My = 55, N;(N; — 1 — 21). Here we have
used that the angular momentum eigenvalues in the [-th Landau level are m — [,
with m = 0,1,2,.... This angular momentum is conserved during the adiabatic
evolution, during which the electron density is reduced by exchanging mechanical
angular momentum for electromagnetic angular momentum (at constant number of
electrons in the system). The final gauge transformation (2.6) increments the angular
momentum by

N 0 0
= 1 Y — —
AM = xop ;:1 <zZ oy 2 8z;k> Xop = kN(N — 1), (5.6)

i
so that the final angular momentum becomes

M= %%Nl(qu—zz)wN(N_n. (5.7)

=0

To ensure that the initial state is a ground state, each Landau level should be filled up
to the same Fermi level. This is achieved by ordering the single-electron energies €; ,,
given by Eq. (5.3) in ascending order and occupying the N lowest levels. The complete
set of incompressible ground states turns out to consist of the set of occupation
numbers which satisfy

N0>N1>...>Np_1>0,
p—1

Nl:OfOI"lZp, ZNl:N (58)
=0

The occupation numbers of subsequent occupied Landau levels thus have to form a
strictly descending series.

In Fig. 4.3 the triangular symbols are mean-field interaction energies for N = 5
and N = 6. The angular momentum values reached by the adiabatic mapping are
dictated by Eqgs. (5.7) and (5.8). For example, for N = 5 the smallest M results from
p=2 k=1, Ny =3, Ny =2, yielding M = 22. For N = 6, the smallest value of
M is obtained by choosing p = 3, k =1, Ny = 3, N; = 2, Ny = 1, with the result
M = 30. The existence of a smallest value of M corresponds to the restriction v < %
in the unbounded system (see Sec. 4.3). It is evident from Fig. 4.3 that all the M’s
reached by adiabatic mapping correspond to a cusp in the exact interaction energy,
i.e. to a (possibly meta-stable) incompressible state. The adiabatic mapping thus
reveals the rule for the “magic” angular momentum values of incompressibility.

For further comparison between the mean-field theory and the exact diagonal-
ization, we show in Fig. 4.4 the density profile in the % state (N = 5, M = 30).
The agreement is quite reasonable, in particular the curious density peak near the
edge (noted in previous exact calculations [36]) is reproduced by the mean-field wave
function, albeit with a somewhat smaller amplitude.
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Fig. 4.4. Density profile in units of (27¢2)~! in a quantum dot with a parabolic
confining potential. Comparison of the exact result (solid curve) with the
mean-field theory (dashed). The plot is for N =5, M = 30, corresponding to
the % state in an unbounded system. The normalization length ¢ is defined in
the text [below Eq. (5.2)].
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5.3 Resonant tunneling

We consider a quantum dot which is weakly coupled to two electron reservoirs by
tunnel barriers (cf. Fig. 4.5). A voltage difference V' is applied between the two
reservoirs, resulting in a current I passing through the quantum dot. The conductance
G of the quantum dot is G = I/V in the limit V' — 0. At low temperatures, the
condition for resonant tunneling through the quantum dot is [37]

E(N) — E(N — 1) = Ey, (5.9)

where E(N) is the ground-state energy of the quantum dot for N electrons, and
FEF is the Fermi energy in the reservoirs. Equation (5.9) equates the electrochemical
potential in the dot and in the reservoirs. In a measurement of the conductance as
a function of the density in the dot or in the reservoirs, one observes a conductance
peak whenever the condition (5.9) is satisfied. At finite temperatures the peaks are
observed as oscillations in the dependence of the electrochemical potential on electron
density. Because the periodicity of the oscillations is regulated by the Coulomb repul-
sion, these oscillations are known as Coulomb-blockade oscillations [37]. A discussion
of the periodicity of the conductance oscillations in the fractional QHE regime, based
on the adiabatic mapping, was given in Ref. [38]. Here we discuss the application to
the amplitude of the conductance oscillations.

E_ |

E +eV
F

Fig. 4.5. Quantum dot geometry. A gate (shaded) isolates a disc-shaped
region in a 2DEG from two reservoirs. Conduction through the dot occurs by
tunneling (dashed lines), in the case of a small voltage difference between the
reservoirs at Fermi energy EF.

It was shown by Meir and Wingreen [39], that if the resonances are thermally
broadened, the height of a conductance peak is proportional to
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(U |eh | U n—1)[2, where Uy is the N-electron ground state (with angular momen-
tum My) and the operator CTA u Ccreates an electron in the lowest Landau level with
angular momentum AM = My — My_; [24]. In the integer QHE regime the over-
lap given by Eq. (5.10) equals unity. In contrast, in the fractional QHE, Wen and
Kinaret et al. [23, 24] found that it vanishes as N™* when N — oo for a quan-
tum dot at the fractional filling factor v = 1/(2k 4+ 1). The thermally broadenend
conductance peaks in the fractional states are therefore suppressed algebraically in
the large- N limit. This suppression is referred to as an “orthogonality catastrophe”,
because its origin is the orthogonality of the ground state |Wy) for N electrons to
the state CTA v|¥n_1) obtained when an electron tunnels into the quantum dot con-
taining N — 1 electrons. The condition for thermal broadening is that the thermal
energy kg1 should be large compared to the intrinsic resonance width AI', with I’
the tunneling matrix element of the barrier between dot and reservoir. While kgT
should be larger than AL, it should be still smaller than the energy of the lowest
excited state of the quantum dot. In the zero-temperature limit (kg7 < AL') the
height of the conductance peaks takes on the universal value of €*/h. In that limit
the orthogonality catastrophe is expected [24] to occur in the width of the resonance,
which vanishes in the limit N — oo.

To see whether the mean-field theory can reproduce the orthogonality catastrophe,
we have to compute the matrix element

T(N) = (U ek UV, (5.10)

where WA is the N-electron mean-field ground state (3.9). We first rewrite the
N-electron state ch [ UMF ) as the integral

o PAEL) = [ dR G (R)U! (R)IAT ), (5.11)

where ¢ap(R) is the wave function of an electron in the lowest Landau level with
angular momentum AM and ¥T(R) creates an electron at the position R. In App.
E we show that

PHR)UNT,) = Gor v PaR), (5.12)

where Goy v is the N-electron gauge transformation (2.6) and ®y g is a N-electron
Slater determinant consisting of the localized wave function é(r —R), and N —1 wave
functions of the form

(Z - Z)j: Bas(T). (5.13)

WR\T) = o o1
aan(r) = 7

The wavefunctions ¢oy ;(r) are the eigenfunctions of the mean-field Hamiltonian (3.2)
and Z = X —1iY is the complex plane representation of R. Note that R is just a
parameter and not a particle coordinate. We substitute Egs. (5.11) and (5.12) into
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Eq. (5.10), and equate WMF = Gor v Uiy from Eq. (3.9). Using ggwg%w =1 we
find

T(N) = [ dR oau(R)(WHE D). (5.14)

Since (W' |Pnr) is just the overlap of two Slater determinants it can be shown
that (see App. E)

<\1;§§5N|®N,R> = Det M, j(R), (5.15)

where M, ;(R) is a N x N matrix with the elements

)72]{

Mi(R) = (Gl = [ 52 65, ()0, 0). (7 V),
Mix(R) = 65,,(R). (5.16)

Because we are dealing with a finite system, the wave functions ¢oy, ; will differ from
Gak1m in Eq. (4.5). However, when N is large, ¢or,,» will be a good approximation.
We can then calculate the determinant analytically. As shown in App. E, for the %
fractional QHE state the overlap is given by

MF _ 1 ()2 « <_@> 2
<\D2k,N‘q)N,R> - [27T(N— 1)!]%&1{ gN—l exXp 2 fN(’C‘ )7

() = /Oxdt (1 - 5)2%, (5.17)

where ¢ = Z/(Leg/2). After substituting into Eq. (5.14) and carrying out the inte-
gration we find |7 (N)[? ~ 0.380N~2 for N > 1. We conclude that the mean-field
theory reproduces the algebraic decay of the tunneling matrix element for large N,
but with a different value of the exponent: |7(N)|* o N2 instead of o« N~! in
Refs. [23, 24]. (We have not been able to find a general formula for arbitrary k.) In
the present context, the orthogonality catastrophe originates from the correlations
created by the gauge transformation (2.6), required to remove the fictitious vector
potential from the Hamiltonian (2.2).

6 Summary

The adiabatic mapping of Greiter and Wilczek [10, 11] is an exact prescription for
constructing fractional QHE states from integer QHE states. Starting from an in-
compressible state of the integer QHE, an even number of flux quanta is adiabatically
attached to each electron. After a singular gauge transformation, we end up with
an incompressible state of the fractional QHE. In general, the adiabatic mapping
cannot be carried out exactly and a suitable approximation should be applied. We
have investigated the mean-field approximation to the adiabatic mapping, suggested
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by the vector-mean-field theory of anyon superconductivity [14]-[16]. In this approx-
imation, the flux tubes are smeared out, resulting in fictitious magnetic and electric
fields proportional to the electron density and current density, respectively.

In the case of an unbounded, uniform fractional QHE state, the mean-field equa-
tions can be solved exactly, yielding Jain’s formula [12] for the hierarchy of fractional
QHE filling factors v = p/(2kp + 1). We calculated the mean-field Coulomb energy
per electron and found it to be in reasonable agreement with the exact results. By
generalizing the adiabatic mapping to low-lying excited states we were able to re-
cover the fractional charge and statistics of the quasiparticles and quasiholes. The
derivation was based on the asymptotic solution of the mean-field equations far away
from the excitation. The quasiparticle, quasihole, and excitation gap energies were
numerically calculated for v = %, %, and % The difference with exact results was
found to be about 10 — 20%.

The hierarchy of filling factors v = p/(2kp + 1), generated by the adiabatic map-
ping of the incompressible integer QHE states, is restricted to the values v < % The
mean-field equations, by themselves, allow another hierarchy of filling factors given by
v = p/(2kp—1). We calculated the Coulomb energy per electron for these “conjugate”
states, and determined the charge and statistics of their excitations by an asymptotic
analysis similar to the one for the original hierarchy. The initial states which can be
mapped onto the conjugate fractional QHE states remain to be identified.

The mean-field theory can be readily applied to confined geometries (quantum
dots). We considered a 2D parabolic confinement which is particularly suitable for
calculations. For a small number of electrons, we exactly diagonalized the Hamilto-
nian. The “magic” vlaues of angular momentum, at which the exact ground-state
energy shows a cusp, are represented quite well by the adiabatic mapping.

The probability of resonant tunneling through a quantum dot in the fractional
QHE regime vanishes algebraically as the number of electrons N in the dot is in-
creased. This orthogonality catastrophe, discovered by Wen and Kinaret et al.
[23, 24], originates from the non-Fermi-liquid nature of the fractional QHE ground
state. For a quantum dot at the filling factor v = Tlﬂ, the tunneling probability
vanishes as N~ when N — oo. The vector-mean-field theory reproduces the orthog-
onality catastrophe albeit with a wrong exponent. Conventional mean-field theory
(Hartree or Hartree-Fock) describes a Fermi-liquid, because the ground state is a
Slater determinant. Vector-mean-field theory, in contrast, does not produce a Fermi-
liquid because the ground state is no longer a Slater determinant after the singular
gauge transformation. The correlations induced by this gauge transformation are the
origin of the orthogonality catastrophe in out formulation.

The major shortcoming of the vector-mean-field theory is its inability to give the
correct behaviour of the wave function at short separations. In the conventional

theory of the fractional QHE the exact pair distribution function in the v = 21—

2k+1
state vanishes as |rj5|**2 as rj3 — 0. The mean-field pair distribution function (4.7)
for v = Tlﬂ’ however, vanishes as |ri5|? for all values of k. This does not introduce a

big error in the ground-state and excitation energies, because of the long-range nature
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of the Coulomb interaction. We attribute the failure of the vector-mean-field theory
to give the correct expression for the suppression of tunneling to this breakdown at
short separations. The same problem is also reflected in the mean-field result for the
kinetic energy of the fractional QHE ground state which does not yield the correct
value of %hwc per electron.

The obtained results might be improved by a projection of the mean-field ground-
state onto the lowest Landau level (as in Jain’s approach [12]). This would resolve
the problem of kinetic energy, but would also make the theory less tractable. One
might also think of improving the results by including the (here neglected) exchange
terms in the mean-field Hamiltonian, or by going beyond mean-field by taking into
account the particle-hole excitations (random phase approximation). Here we have
shown that the vector-mean-field theory in its simplest form is able to describe the
essential features of the fractional QHE.
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A Derivation of the mean-field equations

In this appendix we present a variational derivation of the mean-field Hamiltonian
(3.2), and the self-consistency relations (3.3)-(3.5). We shall use the language of
second quantization, which is more convenient for keeping track of many different
terms appearing in the derivation.

The many-body Hamiltonian (2.2) in second quantized form is

Hy = Hign + Hing + Hesx, (A1)
Hin = % /dl S(1) {Hl — e /dz anut 2)0(2)] w(1), (A.2)
M = 5 18201 (1) (2o (2)(1), (A.3)
Moo= [d1V A (D0(1), (A4)

where i stands for r;, II; = —1AV,;4+eA(r;), a;; = a(r;—r;), and u;; = u(r;—r;). In Eq.
(A.1) Hyn is the kinetic energy including the vector-potential interaction, Hjy is the
ordinary electron-electron interaction Hamiltonian, and H,, represents the interaction
with an external potential. The operators ' and v satisfy the anticommutation
relations

{v(1),v(2)} = {¢'(1),¢'(2)} = 0,
{v(1).9'(2)} = 6(1 - 2). (A.5)

Using Eq. (A.5), we write Hy, = H1 + Ha + Hs with

M= o [aLd (), (A.6)
My = =2 [a1d2y! (W' @ I - Sanlo@om. (A
e*\?

Hs / d1d243 1 ()01 (2)07 (3)ans - as(3)(2)e(1). (A.8)

" 2m

In the Hartree-Fock approximation, the eigenstates of H, are approximated by
Slater determinants (3.1) of single-particle wave functions ¢;(r), i = 1,..., N. ( To
keep the notation simple, the dependence of {¢;(r)} on A is not written explicitly.)
The corresponding second quantized representation is

[OMFY = ¢ el o), (A.9)

where cZT creates a particle in the state ¢; by operating on the vaccum state |0). The

Hartree-Fock energy is simply

EMF = (UM, | M), (A.10)
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which can be written in terms of {¢;} by means of the relation:

(1)l m)pm) - () = @ ()Y(A)) - (@ n)pn)) +
(—1)7permutationsof {1...n'}, (A.11)

where

(W' (r) Z ¢i(r : (A.12)

Here, (---) denotes the Hartree-Fock average (UM¥|...|UMF) " Upon substituting
Egs. (A.1)-(A.4) and (A.6)-(A.8) into Eq. (A.10), and using Eqs. (A.11) and (A.12),
one finds the following expression for EHF:

EY =B 4+ ES+ ES 4 ES+ ES+ ES + ES+ ES+ ES+ B8 4 EL A4 By, (A.13)
Bi= 53 [a16i (1) 0) (A.14)
B = Z [ 142 6:(1)6; (2 - T 65(2)6x(1), (A.15)
Eb = /d1d2¢ )6 (2)ans - Ty 6;(2)¢; (1), (A.16)
By == Z [ 41426 (1)6;(2lan s (2)6:(1) (A17)
i 212 650065 @ 216, 1), (A1)

By = Z [d1d23 (05201 Ban - and 36,0, (A1)
__er % / d1d2d3 ¢ (1) (2)67(3)ans - a1s6;(3)éx(2)6s(1), (A.20)
g =X T S 14203 6065 2161 B0 2130,8)02)00(1). (A1)
X T S 23 ()5 @6 @201 (A2

Z [ 14261 (1)65(2)ura0,(2)5(1). (A.23)
Bl =3 Z [ 4142 6;(1)5(2)una0i(2)0,(1), (A-24)
Fu = Z/dlv 1)éi(1). (A.25)
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The Hartree-Fock equations are obtained by minimization of E' with respect to
the wave functions ¢;(r). These equations, however, are rather complicated. There-
fore, we have to neglect some of the terms in Eq. (A.13) in order to make the approx-
imation tractable. A natural alternative is the Hartree approximation which satisfies
the basic conservation laws, and leads to gauge invariant equations [16]. The Hartree
(mean-field) energy functional is given by

EMY = By + B 4 oy, (A.26)
where

Eyin = E1+ E5 + E5

= % zj:/dl o7 (1) |1 —eX /d2 ajo ZJ:¢;(2)¢](2)] ¢:(1).  (A.27)

The Hartree (mean-field) equations can now be found by minimizing EM¥ with respect
to ¢;(r). The wave functions ¢;(r) are subject to the normalization condition:

[ar 6 )aitr) = 1. (A.28)
Hence, one has to solve the equations
JEME
= €i¢i r, A.29
sai(m) o 429
where ¢; (i = 1,..., N) are Lagrange multipliers. Taking the variational derivatives
of 2, and Ey yields
OB f
= = U (r)¢;(r), A.30
Sy = U ) (4.30)
0FE,
o = V(r)op;(r), A.31
Sy = Ve (A31)

where U(r) is the usual Hartree potential given by Eq. (3.5). The variational deriva-
tive of Fy;, is more complicated:

5505??) = % [~V + eA(r) - e)\Af(r)r di(r) + eAdf (1), (A.32)

Al(r) = /dr’a(r —r') Z gbj(r’)gzﬁj(r'), (A.33)

®f(r) = % / dr'a(r — ') - 3" 63(r) [—ihV' + eA(r) — eAA ()| ¢;(r').  (A.34)

Substituting Egs. (3.6) and (3.7) into Eqs. (A.33) and (A.34) leads to the final ex-
pressions (3.3) and (3.4) for the fictitious fields. Collecting the results, one finds the
eigenvalue equation HY"¢; = ¢;¢;, where H)¥ is given by Eq. (3.2).
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B Single-particle eigenfunctions in a constant magnetic field
with a flux tube at the origin

In this appendix we derive the eigenfunctions of the Hamiltonian

1 : eff 2
H=o |—ihV + eA*(r) — eda(r)| ", (B.1)
where V x A = Bz is associated with a constant magnetic field Bf in the z-
direction. The vector potential —da(r), with a(r) given by Eq. (2.3), is the field of a
flux tube at the origin of the strength —dh/e. Using cilinder coordinates (r,6), H is
written as

H=———r—
2mr6rrar

(B.2)

Here we have used the symmetric gauge A" = (eB*Tr/ 2)6, and rewritten Eq. (2.3)
as a(r) = (h/er)d, where 6 is the unit vector in the azimuthal direction. The eigen-
functions ¢(r) of H are next decomposed as

o(r) = %27 exp(—igh)e(r), (B.3)

where ¢ is an integer. After substitution of Eq. (B.3) the eigenvalue equation H¢ = €¢
becomes

s+ (= 0) v = vt (B.4)

sds ds Ao

where log = (eB/R)712 s = 1r/(legv/2), and weg = BT /m. We next substitute

2
09 = e (=5 ) 162 (B5)
into Eq. (B.4). The resulting differential equation for f(z) is
1
of g+ 8+ 1=a)f + | ==+ S+ o-lg+3l - )| f =0 (B6)
hwef—f 2
The physically acceptable solutions of Eq. (B.6) are
f(x) = LIl (2), (B.7)
1
€ = hwes {n+2+ (|Q+5|—q—5)} (B.8)

where n is a nonnegative integer and L& (x) is the generalized Laguerre polynomial.
The next step is to substitute Egs. (B.7) and (B.5) back into Eq. (B.3). After nor-
malization we have

¢(r) =

(n|)1/25\q+6\

27D(g+d+n+1)

]1/2€ﬁ.«L|q+5|( s%) exp (—igf) exp (—%) (B.9)
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We introduce the quantum numbers [, m through the relations I = n + (|g| — ¢)/2
and m=1+q=n+ (|¢| +¢q)/2 (Il and m are both nonnegative integers). Since the
asymptotic solution in Sec. 4.2 is only valid for electrons far away from the origin,
we have to consider the solutions with m > [. Hence, we have ¢ = m — [ > 1 and
n = [. Since |§] < 2k, we have |¢ + 6| = m — [ + §. Substituting this relation into
Eq. (B.9) and using & = sexp(—if), we recover Eq. (4.20). The area enclosed by the
wave function ¢(r) is

2702
(@lm12l6) = o

m /OOO dp ™o+ [L?%Ha(x)}z exp(—z). (B.10)

Using the orthogonality property of the Laguerre polynomials
/Ooo dr x®exp(—z) L5 (x) Lo/ (x) = Op o, (B.11)
and the recurrent relation
(n+ L5 (x) = Cn+a+1—a)L;(x) — (n+ o)Ly, (2), (B.12)
the enclosed area becomes

(|7r?|¢) = 276 (m 4+ 1+ 5+ 1). (B.13)

C Mean-field equations in a rotationally symmetric geometry

In a rotationally symmetric geometry, all physical quantities including the electron
density and current density, will only depend on the distance r from the origin. The
three self-consistency relations (3.3)-(3.5) therefore become

Al(r) = /0 T e n(r) 02” dé' a(r — 1), (C.1)
O (r) = /0 T i) - 02” do' a(r — 1), (C.2)

U(r) = /Ooo r'dr' n(r') /o% df" u(r —r'), (C.3)

where we have used cilinder coordinates r, 6. The first two equations can be simplified
by using the relation

~

2
df a(r —1') = h O(r—1")0, (C.4)

0 er

where ©(z) = 1 for £ > 0 and ©(z) = 0 for # < 0. 6 is the unit vector in the
azimuthal direction. Substitution of Eq. (C.4) into Egs. (C.1) and (C.2) leads to

Af(r) = AL(r)o, Ab(r) = g/or r'dr' n(r'), (C.5)
d(r) = d'(r) = g/or r'dr’ jo(r'), (C.6)

)



where AL and j, are the azimuthal components of Af and j, respectively. For the
Coulomb potential u(r) = e*/r, we have

2 2 4e*r 'K (r'/r) r>1/,
de/ (& , _ ’U}(”f’, T/), w(/r’ 7,,/) — ( / ) (C?)
0 v — 1| 42K (r /1) r <1,

where K (z) is the complete elliptic integral of the first kind. Hence, Eq. (C.3) becomes
Ur) =U(r) = / r'dr’ n(r"w(r,r"). (C.8)
0

We now write the mean-field Hamiltonian (3.2) in cilinder coordinates (r, ) and
decompose its eigenfunctions ¢, ;(r) as

1
iI\r) = —F——€eX —110 \Tr). C.9
Pxi(r) NG p(—igif)¥xi(r) (C.9)
Here ¢; = 0,1,2,... is the angular momentum of i-th electron, and v, ;(r) satisfies

the ordinary differential equation

HY a = exithag, (C.10)
nPld d 1 hail?

W= ————r—+-— |edy — XA — — Pf , 11

Hyi =52 +s le o= ey — | +eA UV (C.11)

The electron density n(r) and azimuthal current density jy(r) are expressed in terms
of 1,;(r) by substituting Eq. (C.9) into Egs. (3.6) and (3.7):

n(r) = 5 3 [l (C12)
jolr) = 53 leAg(r) — eAAN(r) - ’%q] ()2 (C.13)

Equation (C.10) together with the self-consistency relations (C.5), (C.6), (C.8), and
the definitions (C.12) and (C.13) form the basis of our mean-field calculations.

D Numerical method

The mean-field equations have to be solved for every value of A, as it is increased
adiabatically from 0 to 2k. Hence, for every value of A, we have to deal with a
set of coupled nonlinear differential equations, which can only be solved by iterative
methods. Here, we give a brief account of the method used.

Starting from an appropriate initial guess for the density n(r) and azimuthal
current density jy(r), we determine the potentials Ay, ®, and U from Eqgs. (C.5),(C.6),
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and (C.8), respectively, and solve the eigenvalue equation (C.10) to obtain the single-
particle eigenfunctions ;(r). Substitution of ¥;(r) into Egs. (C.12) and (C.13) yields
a new density and current density distribution which is again used to determine the
new potentials. This procedure is repeated until the solution converges.

Although simple at first sight, there is no guarantee that the iteration will always
converge. A standard technique to controle the convergence is to mix the new density
and current density after each iteration with their old values before the iteration:

n(new) N an(new) + (1 _ a)n(old)7

.(new -(new -(old

Js ™ = @™ + (1= ). (D.1)
The constant « (€ [0, 1]) is the mixing parameter, which for simplicity is assumed to
be the same for n and jy. In general, the range of « for which the iteration converges
should be determined by numerical experimentation.

As an illustration suppose that we had to solve the mean-field equations iteratively
for a uniform system. If the obtained (constant) density after the i-th iteration step
is denoted by n”, we find the following relation by using Eq. (4.1) and assuming that
p Landau levels are filled:

nli+D = € <B — &n(i)> . (D.2)

If An® =n® —n denotes the deviation from the final solution n given by Eq. (4.2),
then it is easily found that

AnlH) = (—pX)An. (D.3)

Hence if pA > 1, the error will increase at each iteration, and convergence will never
occur. Since p > 1, the iteration diverges if A > 1. Let’s now modify Eq. (D.2) by
including a mixing parameter:

n(t) — % <B — &n(")> + (1 —a)n®. (D.4)
(&

After some elementary algebra we find
Anl™*) = (1 — a — ap))An®@, (D.5)

In order to have convergence we have to choose « such that |1 — a — apA| < 1. This
condition is always satisfied if o < 2(pA +1)71.

In practice, it is not possible to solve the mean-field equations for every A in the
interval [0,2k]. Starting from A = 0, we increase A by small, but finite steps. The
obtained solution at each step serves as the initial guess for the iterative solution of the
mean-field equations at the next step. Adiabaticity requires that the single-particle
eigenfunctions change continuously as A is increased. This is carried out numerically
by requiring the overlap of the wave functions obtained at any two subsequent steps
to be near 1.
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E Calculation of the tunneling matrix element

In this appendix we calculate the tunneling matrix element
T(N) = (UNF|eha [ UNE), (E.1)

where @%F is the N-electron fractional QHE ground state in the mean-field approxi-
mation. The operator CTA u creates an electron in the lowest Landau level with angular
momentum AM = My — My_1, where My is the total angular momentum of the
N-electron fractional QHE ground state. My is related to the filling factor v by [2]

N(N —1)
My = ——-—2 E.2
N 2 ’ ( )
so that
AM = My — My_y = v (N —1). (E.3)

As the first step of the derivation we write the N-electron state @N7AM> =
cho[ONE ) as the integral

[Dran) = [ dROsu(R) (R)IAE), (E4)

where ¥T(R) creates an electron at the position R and ¢y (R) is the wave function
of an electron in the lowest Landau level with the angular momentum AM:

1 z \*M Z|?
pam(R) = (2rAM1)24, <50\/§> exp <_4—€3> : (E.5)

Here Z = X —iY is the complex-plane representation of R. Because of the gauge
transformation (2.6), it is more convenient to return to first quantization and work
directly with wave functions. The state [Py gr) = ¢T(R)|WNF,) has the wave function

(:DN7R(I‘1,..., Z N 15 R) \i/%}jl(rl,...,ri,l,riﬂ,...,rN).(E.G)

The antisymmetry of ® ~R 1s ensured by the antisymmetry of @%El and the factor
(—1)V~*. Using Egs. (3.9) and (2.6), we next write

(z; — zj)%
i=1 j=1+1 ’ZZ_Z]‘
where
> 1_§j )N (r; — R) x
NR — ~— —

szl
N Z —z
H ( ]|)—2k: \I/%El(rl,...,ri_l,rHl,...,rN). (ES)

J=1(#1) |Z B
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The wave function WYY, is the Slater determinant (3.1) of the single-particle wave

functions ¢;(r),i =1,..., N — 1. (We have dropped the subscript 2k of ¢;(r) for the

sake of simplicity.) Hence, each term of the form
N —2k
4 — z;
%\I}%El(rly s i1, By, e e 7rN)7
j=1(z£1) |Z — 2]

is itself a Slater determinant of the new single-particle wave functions

(Z — 2z)~2

¢ZR( ) ’Z— ‘_Qk

i(r). (E.9)

Note that R is just a parameter and not a particle coordinate. ;From this observation,
and using Eq. (E.8) we conclude that ®y g is a N-particle Slater determinant of the
form

CI)N7R ngn Qba (1), R(rl) ¢J(N),R(rN—1)5(rN - R) (ElO)
\/_
Let’s now return to the tunneling matrix element (E.1) which we rewrite as
T(N) = (B3 |By) = [dR (BN | Dy m) dan(R), (E11)

by using Eq. (E.8). It now becomes clear why we applied the transformation (E.7)
in the first place. Because of unitarity, the N-particle gauge transformations in YA
and ®y g cancel against each other, and we find

T(N) = [dR (WX xz) oan(R). (E12)

where both W) and @y g are Slater determinants.

The overlap of two Slater determinants can be evaluated easily. Consider two N-
particle wave functions F'(ry,...,ry) and G(ry,. .., ry) which are Slater determinants
of the single-particle wave functions f;(r) and g;(r), respectively (i = 1,..., N). Then
their overlap is given by

(F|G) = det (filg;)- (E.13)
Using this relation, together with Egs. (3.1) and (E.10), we find
(UN"|®nr) = Det M, ;(R), (E.14)

where M, ;(R) is a N x N matrix with the elements

)2k

Mis(R) = (0il6;m) = [dr Z‘Z| 5 91(1)0,(r), (G # ),
M;n(R) = ¢/ (R). (E.15)
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In principle, one now has to determine ¢;(r) numerically for a finite number of elec-
trons N, and calculate the matrix elements (E.15) and the determinant (E.14). In-
stead, however, we approximate ¢;(r) by the solution in an infinite uniform system
given by Eq. (4.5). This will allow us to find analytical expressions for the determi-
nant (E.14), as we shall see below.

For simplicity we only calculate the tunneling probability for the fundamental
filling factors v = 52—, corresponding to p = 1 in the hierarchy formula (4.4). The

2%+1°
single-particle wave functions are obtained from Eq. (4.5) by equating [; = 0:

1 z " |2[?
) = EELAT E.16
¢2k70’ (r) (27Tm!)1/2£eff <€eﬂ\/§> o ( 462& ) ( )

where m = 0,..., N — 1. After substituting Eq. (E.16) into Eq. (E.15), the elements
of the matrix M become

Mpn = /Ooordr Ui (1)U (1) fokm—m(m R), n# N —1, (E.17)

1 r " r?
Um(r) = (M) 2 g (&ffﬂ) =P <_@> 7 (E.18)

2 df) (2 — Z)7% .
ka‘,q(T;R) = ) % m exp(—lqe), (E19)

1 zx \" | Z|?
= —— . E.2
My (2mm!)/2 Lo <€eff\/§> exp( 4@&) (5:20)

In deriving Eq. (E.17) we have put z = rexp(—if) where r, 0 are cilinder coordinates.
The function fo 4(7; R) can be evaluated by rewriting the integral in Eq. (E.19)
as a contour integral in the complex z-plane, by means of the substitutions

do 1 dz

& exp(—igh) = —— 2= a1 E.21

D exp(cigh) = Lot (B.21)

(2 — Z)~ % 25— Z\" o 12— YF

(7)) =era () e

with Y = 2*z/Z* = r?/Z*. The result is
(=29 o dz (z — Y)’“
R) = 5 =) E.2

Jara(ri R) re Joomi z2—7 (E-23)

The integral is taken along a circle C' of radius r in the positive (counter-clockwise)
direction. The contour integral in Eq. (E.23) can be evaluated directly by applying
Cauchy’s theorem. However, the calculation is complicated and it is better to first
simplify the determinant (E.14) further.

It is known from the theory of determinants that the determinant of a matrix
does not change if to a row or column one adds a linear combination of other rows
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or columns of that matrix. ;From Egs. (E.17), (E.18), and (E.23) it follows that the
elements of the first NV — 1 columns of the matrix M,, ,, are given by

00 2 dz 2 —Y\*
mmn — Omn -z k/ d 2m+l - ! 2 pnmm—k—l < > E.24
Mo, n(=2) o P 202, Comi z2—7 (E:24)
where
1
Con = n#N—1. (E.25)

(minl2mtn)l/2gmint2’

To each column n of M,, ,, with 0 <n < N —k —2, we now add a linear combination
of the next k& columns by the substitution

: “ A Con \ [k »

i=1 Cm,nﬂ'

Egs. (E.24) and (E.26) yield

Z*\" 00 r? dz
I N Cmn/ d 2m+1 o 7 on—m—k—1 -Y k' E.27

M ( Z) o TP\ T ) Je ot (2 =¥)" (B27)
The contour integral in Eq. (E.27) is much easier to calculate than the one in Eq.
(E.19). Application of Cauchy’s theorem leads to

dz

2izn—m—k—1(z_y)k: < k )(—Y)”‘mm§n§m+k,
C 471

n—m
= 0 otherwise. (E.28)

Hence, the elements M;, , with m > n are zero. The determinant (E.14) therefore
reduces to

Nks My_pin—k—1 0 My_poin—a
(UN"|Pyr) = [[ My, x det . (E.29)
" My_ink—1 o My naa
Using Egs. (E.25), (E.27), and (E.28), we find
N—k—2 g F(N=k=1)
mr:[() My = (7) (E.30)

The elements of the first & columns of the (k + 1) x (k + 1) determinant in Eq.
(E.29), given by My, m=N—-k—-1,.... N—-1,n=N—-k—1,...,N —2, are
calculated by using Eq. (E.24). We expand the factor (2 — Y)* as a binomial sum in
the contour integral in Eq. (E.24):

dz 2—Y\* E /% o ody 2L
R q—k—1 [ — . —Y ¢ —_— E 1
Comi” (z—Z) i:O(Z)( ) c2mi (2 — Z)F (E31)
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where ¢ = n — m. Each contour integral in Eq. (E.31) is now evaluated by applying
Cauchy’s theorem:

wal()

where ©(x) = 1 when z > 0 and ©(x) = 0 when = < 0. Similarly, ©,, = 1 when
n >0 and ©, = 0 when n < 0. Taking the derivatives in Eq. (E.32), one finds
d_Z. . _ (_k)(_k_l) ) (_k_Z+Q+1) (_Z>—kz—i+q @ifq +
c2rmi (2 — Z)F (—q!
G—i-Dg—i—2---g—i—k+])
k—1)!

The first term on the r.h.s. of Eq. (E.33) vanishes when ¢—i > 0 because of the factor
©;_q. The second term also vanishes for ¢ —¢ > 0 which can be seen as follows. Since
g=n—mwithm=N—-k—1,... N—-1,n=N—-k—1,...,N—2, we have ¢ < k,
so that ¢ — ¢ < k. Hence one of the factors (¢—i—1)---(¢—1i—k+1) will inevitably
vanish if ¢ — i > 0. Using this result together with the relation ©(—z) = 1 — O(x),
we find after some algebra

Oi_q +
z=0

O(r — R), (E.32)

z2=7Z

Z7Fao(r — R). (E.33)

dz quifl . —f-k’—l e
C%m:(—nk(l ) zmer-n e, (E3)

Substituting Eq. (E.34) back into Egs. (E.31), and (E.24), and equating Y = r?/Z*,
q =n — m leads to
VA k . k k
Mm,n = Cm,n (7) Z ggifrwrm ( i ) X
2

1—n+m+k—1 =i [T omt2it1 r
( b1 )(—R) /Odrr exp “on ) (E.35)

After calculating the integral on the r.h.s. of Eq. (E.35) and substituting Eq. (E.25)
into Eq. (E.35) we find

VA k 7 n—-m g k
7 Z (geff\/i> Zzz;) i t .

i—ntmik—1Y (m+i) ( |22\ 2]
( E_1 )(m!n!)1/2 o Qm+i “on ) (E.36)

where

Qm(z) = % /Ox dtt"™ exp(—t) =1 — exp(—x) (E.37)

=0 J!
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Let’s now consider the specific case of k =1 (v = 3). Using Egs. (E.29), (E.36),

and (E.20), we find

1
3

o) = o SRS e, (e

where ¢ = Z/(£egV/2) and

)= Qneale) - 2oy Y g
_ /Ox dt <1 - £>2 ﬁ. (E.39)

Substituting this result together with Eq. (E.5) into Eq. (E.12) yields

( eﬁ/£0)3N 2
(N —1)I(3N —

T(N) = 1/2/ dz 2*N 72 f () exp(—az), (E.40)

where a = 1(1+ (%;/0%). Equating lez/ly = v~'/?, we find a = 2 for v = 1. The
integral in Eq (E.40) is calculated by using the following results:

o0 _ (2N —2)! T2 (2N —2+9)!
/0 dz exp(—22)2*V 2Qn_s(x) = ToaN1 > EETIEEEI

=0
o0 N3 (2N =3 (2N —340)!
/0 dx exp(—Qx)x QNfl(JZ') = W - 2 W,
o0 _ (2N —4)! L (2N —4+9)!
/0 do exp(=22)a*" PQn(v) = = = X Ty (E.41)

=0

.

The summations in Eq. (E.41) cannot be carried out analytically and have to be
evaluated numerically. ;jFrom Egs. (E.40) and (E.41), we find |7(N)* ~ 0.380/N?
for large N.
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Chapter 5

Exact solution for the distribution of transmission
eigenvalues in a disordered wire and comparison
with random-matrix theory

1 Introduction

A fundamental problem of mesoscopic physics is to find the statistical distribution of
the scattering matrix in an ensemble of disordered conductors. Once this is known,
one can compute all moments of the conductance, and of any other transport property,
at temperatures which are sufficiently low that the conductor is fully phase-coherent.
Random-matrix theory (RMT) addresses this problem on the basis of the assumption
that all correlations between the transmission eigenvalues are due to the jacobian from
matrix to eigenvalue space.[1, 2, 3] The transmission eigenvalues 77, T5, ... Ty are the
eigenvalues of the matrix product tt!, where ¢ is the N x N transmission matrix of
the conductor. The jacobian is

T3 =TT1A = A, (1.1)

i<j

where \; = (1 — T;)/T; is the ratio of reflection to transmission probabilities (A > 0,
since 0 < T < 1), and 8 € {1,2,4} is the symmetry index of the ensemble of
scattering matrices. [In the absence of time-reversal symmetry, one has § = 2; In the
presence of time-reversal symmetry, one has 3 = 1(4) in the presence (absence) of
spin-rotation symmetry.|

If all correlations are due to the jacobian, then the probability density P({\.})
of the X’s should have the form P o J[I,; f(\;), or equivalently,

P} = Cexp[=B(3 ulh A) + > VW), (1.2)

with V' = —37!'In f and C' a normalization constant. Eq. (1.2) has the form of a
Gibbs distribution at temperature 3-! for a fictitious system of classical particles
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moving in one dimension in an external potential V', with a logarithmically repulsive
interaction u. All microscopic parameters (sample length L, width W, mean free path
[, Fermi wave length Ap) are contained in the single function V'(\). The logarithmic
repulsion is independent of microscopic parameters, because of its geometric origin.

The RMT probability distribution (1.2), due to Muttalib, Pichard, and Stone,
was justified by a maximum-entropy principle for quasi-one-dimensional (quasi-1D)
conductors.[2, 3] Quasi-1D means L > W. In this limit one can assume that the
distribution of scattering matrices is only a function of the transmission eigenvalues
(isotropy assumption). The distribution (1.2) then maximizes the information en-
tropy subject to the constraint of a given density of eigenvalues. The function V()
is determined by this constraint and is not specified by RMT.

It was initially believed that Eq. (1.2) would provide an exact description in
the quasi-1D limit, if only V() were suitably chosen.[3, 4] However, it was shown
recently by one of us[5] that RMT is not exact, even in the quasi-1D limit. If one
computes from Eq. (1.2) in the metallic regime the variance Var G of the conductance
G =Gy X, T, (with Gy = 2¢%/h), one finds[5]

Var G/Gy = %Bl, (1.4)

independent of the form of V(A). The diagrammatic perturbation theory[6, 7] of
universal conductance fluctuations (UCF) gives instead

Var G/Gy = 35—1 (1.5)
15
for a quasi-1D conductor. The difference between the coefficients % and % is tiny,
but it has the fundamental implication that the interaction between the A-variables
is not precisely logarithmic, or in other words, that there exist correlations between
the transmission eigenvalues over and above those induced by the jacobian.

What then is the status of the random-matrix theory of quantum transport? It
is obviously highly accurate, so that the true eigenvalue interaction should be close
to logarithmic. Is there perhaps a cutoff for large separation of the A\’s? Or is the
true interaction a many-body interaction, which can not be reduced to the sum of
pairwise interactions? That is the problem addressed in this paper. A brief account
of our results was reported in a recent Letter.[8]

The transport problem considered here has a counterpart in equilibrium. The
Wigner-Dyson RMT of the statistics of the eigenvalues {E,} of a random hamil-
tonian yields a probability distribution of the form (1.2), with a logarithmic repul-
sion between the energy levels.[9] It was shown by Efetov[10] and by Al'tshuler and
Shklovskii[11] that the logarithmic level repulsion in a small disordered particle (di-
ameter L, diffusion constant D) holds for energy separations small compared to the
Thouless energy E. = hD/L?. For larger separations the interaction potential decays
algebraically.[12] As we will see, the way in which the RMT of quantum transport
breaks down is quite different: The interaction u(\;, ;) = —In|\; — \;| is exact for
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i, A; < 1, i.e. for strongly transmitting scattering channels (recall that A < 1 im-
plies T = (1 + A)~! close to unity). For weakly transmitting channels the repulsion
is still logarithmic, but reduced by a factor of two from what one would expect from
the jacobian. This modified interaction explains the % — % discrepancy in the UCF
in the metallic regime,[5] and it also explains a missing factor of two in the width of
the log-normal distribution of the conductance in the insulating regime.|[13]

Our analysis is based on the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation

opP 2 N0 o
8—L_7ﬁN+2—ﬁ;8—)\i)\i(l+)\i>Ja)\iJ P, (1.6)

with ballistic initial condition limy_.o P = []; §(\;—07), which describes the evolution
of the eigenvalue distribution function in an ensemble of disordered wires of increasing
length. Eq. (1.6) was derived by Dorokhov,[14] (for f = 2) and by Mello, Pereyra,
and Kumar,[15] (for § = 1, with generalizations to § = 2,4 in Refs. [16, 17]) by
computing the incremental change of the transmission eigenvalues upon attachment
of a thin slice to the wire. It is assumed that the conductor is weakly disordered,
[ > Ap, so that the scattering in the thin slice can be treated by perturbation
theory. A key simplification is the isotropy assumption that the flux incident in one
scattering channel is, on average, equally distributed among all outgoing channels.
This assumption restricts the applicability of the DMPK equation to the quasi-1D
regime L > W since it ignores the finite time scale for transverse diffusion.

Eq. (1.6) has the form of a diffusion equation in a complicated N-dimensional
space (identified as a certain Riemannian manifold in Ref. [18]). For a coordinate-
free “supersymmetry formulation” of this diffusion process, see Refs. [19, 20]. The
similarity to diffusion in real space has been given further substance by the demon-
stration [21] that Eq. (1.6) holds on length scales > [ regardless of the microscopic
scattering properties of the conductor.

The diffusion equation (1.6) has been studied extensively for more than ten years.
Exact solutions have been obtained by Mel'nikov[22] and Mello[23] for the case N =1
of a single degree of freedom (when J = 1). For N > 1 the strong coupling of the
scattering channels by the jacobian (1.1) prevented an exact solution by standard
methods. The problem simplifies drastically deep in the localized regime (L > NI),
when the scattering channels become effectively decoupled. Pichard[13] has computed
from Eq. (1.6) the log-normal distribution of the conductance in this regime, and has
found an excellent agreement with numerical simulations of a quasi-1D Anderson
insulator. In the metallic regime (L < NI), Mello and Stone[16, 24] were able
to compute the first two moments of the conductance, in precise agreement with
the diagrammatic perturbation theory of weak localization and UCF [Eq. (1.5)] in
the quasi-1D limit. (Their method of moments has also been applied to the shot
noise,[25] where there is no diagrammatic theory to compare with.) More general
calculations of the weak localization effect[26] and of universal fluctuations[27] [for
arbitrary transport properties of the form A = 3, a(7},)] were recently developed,
based on linearization of Eq. (1.6) in the fluctuations of the A’s around their mean
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positions (valid in the large- N metallic regime, when the ﬂuctuations are small). The
1

work of Chalker and Macédo[27] was motivated by the same § — = discrepancy[5]
as the present paper and Ref. [8], with which it has some overlap.

None of these calculations suffices to determine the form of the eigenvalue inter-
action, which requires knowledge of the complete distribution function. Here we wish
to present (in considerable more detail than in our Letter[8]) the exact solution of
Eq. (1.6) for g = 2.

The outline of this paper is as follows. In Sec. II we solve Eq. (1.6) exactly, for
all N and L, for the case = 2. The method of solution is a mapping onto a model
of non-interacting fermions, inspired by Sutherland’s mapping of a different diffusion
equation.[28] The case § = 2 is special, because for other values of  the mapping
introduces interactions between the fermions. The free-fermion problem, which is
obtained for 3 = 2, has the character of a one-dimensional scattering problem in
imaginary time. The absence of a ground state is a significant complication, compared
with Sutherland’s problem.[29, 30, 31] The exact solution which we obtain has the
form of a determinant of an N x N matrix. The determinant can be evaluated in closed
form in the metallic regime L < NI and in the insulating regime L > NI{. These two
opposite regimes are discussed separately in Secs. III and IV. We conclude in Sec. V
with a comparison of the solution of Eq. (1.6) with the probability distribution (1.2)
of random-matrix theory.

2  Exact solution

The solution of the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation (1.6) proceeds
in a series of steps, which we describe in separate subsections.

2.1 Transformation of variables

The DMPK equation (1.6) can be written in the form of an N-dimensional Fokker-
Planck equation,

9 p({An).s) = > aiD(Ai) (gf (A }>> (2.1)

D)) = % A1+ ), (2.2)
QX)) = Zln|/\ (2.3)

where we have abbreviated s = L/l, v = BN+2—/. Eq. (2.1) is the diffusion equation
in “time” s of a one-dimensional gas of N classical particles with a logarithmically
repulsive interaction potential 2. The diffusion takes place at temperature 57! in a
fictitious non-uniform viscous fluid with diffusion coefficient D(\).
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The position dependence of the diffusion coefficient is problematic. We seek to
eliminate it by a transformation of variables. Let {z,} be a new set of N inde-
pendent variables, related to the A’s by A, = f(x,). The new probability distribu-
tion P({z,},s) = P({\u}, $) IL; |f/ ()] still satisfies a Fokker-Planck equation, but
with a new potential Q({z,}) and a new diffusion coefficient D(z). The potential
transforms as Q — Q — 3713 In|f’(z;)|, while the diffusion coefficient transforms
as D — D/f'(z)?. In order to obtain an z-independent diffusion coefficient, we
thus need to choose f(x) such that f(x)[1 + f(z)]/f'(z)? = constant. The choice
f(z) = sinh? z does it.

We therefore transform to a new set of variables {x,}, defined by

A\, = sinh®z,,, T, = 1/ cosh®z,,. (2.4)

Since T,, € [0,1], z,, > 0. The probability distribution of the x-variables satisfies a
Fokker-Planck equation with constant diffusion coefficient,

Pand o= 3o (g 07 a‘ﬂ<{xn}>) , (2:5)
Q({z,}) = = In|sinh?z; — sinh® 2| Zln | sinh 2. (2.6)

1<J

It turns out that the z-variables have a special physical significance: The ratio L/z,
equals the channel-dependent localization length of the conductor.[3]

2.2 From Fokker-Planck to Schrodinger equation

Sutherland[28] has shown that a Fokker-Planck equation with constant diffusion coef-
ficient and with a logarithmic interaction potential can be mapped onto a Schrédinger
equation with an inverse-square interaction which vanishes for § = 2. The Fokker-
Planck equation (2.5) does have a constant diffusion coefficient, but the interaction
is not logarithmic. It is not obvious that Sutherland’s mapping onto a free-fermion
problem should work for the non-translationally invariant interaction (2.6), but sur-
prisingly enough it does.

To map the Fokker-Planck equation (2.5) onto a Schrodinger equation we substi-
tute

P({an}s) = exp 500 b W(tza). ). .1)

This is a variation on Sutherland’s transformation,[28] which we used in Ref. [31] in
a different context. Substitution of Eq. (2.7) into Eq. (2.5) yields for ¥ the equation

o 1 & 52w @ N on\: 920
BRI D Dl w R Z{ (m) 2

(2.8)
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The expression between square brackets is evaluated as follows (we abbreviate §; =
cosh 2x;):

Yo 1 & 4 1
Py 422((@ sn”&—s)*@gz—l

tg(#)
4 1 N
:4232) &) ﬁ;§§—1_4<2>’ (2.9)
N0\t €21 8
3 (5) - TEE T PR S
4 8 (N N
“42%25 EJ W§:8 Z¥N+B<2>+8QJ‘
(2.10)

In the final equality we have used that for any three distinct indices i, j, k

&1 g1 g1
=1 2.11
G-06-8 G-o&-9 G-we-w - W
so that the triple sum over k # i # j collapses to a double sum over ¢ # j. Collecting

results, we find that U satisfies a Schrodinger equation in imaginary time,

ow
- = —U)v 2.12
W -, 212
1 02 1 B(B —2) «~ sinh?2x; + sinh*2z;
=y (8@2 T Smn 29@) * 2y ; (cosh 2x; — cosh 2x;)?’
(2.13)
N g 3
U = — —-NN—-1)——=N(N—-1)(N —-2)—. 2.14
> ( ),y ( ) )67 (2.14)

The interaction potential in the hamiltonian (2.13) is attractive for § = 1 and
repulsive for § = 4. For § = 2 the interaction vanishes identically, reducing H to a
sum of single-particle hamiltonians H,,

1 0? 1
AN dz*  4Nsinh®2z’
(Note that v = 2N for § = 2.) It might be possible to solve also the interacting Schro-
dinger equation (2.12) for # =1 or 4, by some modification of techniques developed
for the Sutherland hamiltonian,[28, 29, 30] but in this paper we focus on the simplest
case 3 = 2 of broken time-reversal symmetry.

To complete the mapping onto a single-particle problem, we need to consider
the boundary condition at the edge x = 0. (Recall that > 0.) Conservation of
probability implies for P the boundary condition (one for each i =1,2,...N)

: oP
xlilr_{lo (3@ ﬂpax) = 0. (2.16)

Ho = — (2.15)
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According to Eq. (2.7), the corresponding boundary condition on W is

1im0<3‘1’ —5 ):0, (2.17)

Ti—> aZL‘Z €T;

which in view of Eq. (2.6) simplifies to

lim (3‘1’ — ):0, (2.18)

zi—0 \ Jdxr;  sinh 2x;

independent of (3. Fortunately, the boundary condition does not couple different
degrees of freedom, so that we have indeed obtained a single-particle problem for

B=2.

2.3 From probability distribution to fermion Green’s function

We seek a solution P({z,},s|{y,}) of the Fokker-Planck equation (2.5) with sym-
metrized delta-function initial condition

P({n},0[{yn}) = 17 22 H — Umi)- (2.19)

The sum in Eq. (2.19) is over all N! permutations of 1,2,... N. Eventually, we will
take the limit {y,} — 0 of a ballistic initial condition, but it is convenient to first
consider the more general initial condition (2.19). In this subsection we use the map-
ping onto a Schrodinger equation of the previous subsection to relate the probability
distribution P({x,}, s |{yn}) to the N-fermion Green’s function G({z,}, s |{y.}).
We first note that, since exp(—3€) is an s-independent solution of the Fokker-
Planck equation (2.5), exp(—%ﬁﬁ) is an s-independent solution of the Schrédinger
equation (2.12) [in view of the mapping (2.7)]. For a particular ordering of the
x,’s, the function ¥y o exp(—%ﬂﬂ) is therefore an eigenfunction of the N-fermion
hamiltonian H with eigenvalue U. Anti-symmetrization yields the fermion eigenstate

Wo({n}) = Coxp [~5 00w h)| T 2t (2.20)

1<j ’33'] - xl‘

with C' a normalization constant.
We obtain the N-fermion Green’s function G from the probability distribution P
by the similarity transformation

G({zn}, s [{yn}) = U ({za D P{za}, s [{yn ) Yo ({yn}). (2.21)

To verify this, we first observe that GG is by construction anti-symmetric under a
permutation of two x or two y variables. For a given order of the x,’s, the function
G satisfies the Schrodinger equation

oG

—2 = (H-U)G. (2.22)
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in view of Eqgs. (2.7), (2.12), and (2.20). Finally, Eq. (2.19) implies the initial condi-
tion

G{zn}, 0[{yn}) = = Z%Hé — Yr), (2.23)

with o, the sign of the permutation. Hence G is indeed the N-fermion Green’s
function.

The relation (2.21) holds for any . In the remainder of this paper we consider
the non-interacting case 5 = 2. The eigenstate (2.20) then takes the form

Wo({z,}) = C ] (sinh®z; — sinh®z;) [ [ (sinh 2;)"/2. (2.24)
i<j i
The N-fermion Green’s function GG becomes a Slater determinant of the single-particle

Green’s function Gy,

eUs
N Det Go(xn, S | Ym), (2.25)

G({xn}, s {yn}) =

where Det a,,, denotes the determinant of the N x N matrix with elements a,,.
The function Go(z,s|y) is a solution of the single-particle Schrédinger equation
—0Gy/0s = HoGyp in the variable z, with initial condition G(z,0|y) = é(x — y).
In the following subsection we will compute the single-particle Green’s function Gj.
The probability distribution P, for 3 = 2, then follows from Eqs. (2.21), (2.24), and
(2.25):

Hi<]’(Sinh2 xj — sinh? z;) [, (sinh 27,)1/2 eUs

Det Go(x,, -
Hi<]’(5inh2 Y; — SiIlh2 yz) H (smh Qy )1/2 N| € 0(3: S ’ Y )

P({xn}v s ’ {yn}> =

(2.26)

2.4 Computation of Green’s function

To compute the Green’s function Gy of the single-particle hamiltonian (2.15) we need
to solve the eigenvalue equation
1 d? 1 Y(x)
— v 7a0) = =
AN dx 4N sinh* 2z

= e(x), (2.27)

with the boundary condition dictated by Eq. (2.18),

. (dy v _
91012% <% ~ sinh 2x> =0 (2.28)

We have found that the substitution

Y (x) = (sinh 22)"? f(cosh 2z) (2.29)
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transforms Eq. (2.27) into Legendre’s differential equation in the variable z = cosh 2z,

d d 1
P [(1 — 22)%]”(2)] = (Ne + Z)f(z) (2.30)
The boundary condition (2.28) restricts the solutions of Eq. (2.30) to the Legendre
functions of the first kind P,(z). The index v is given by v = —1 + ik with k
a real number. (These Legendre functions are also known as “toroidal functions”,
because they appear as solutions to the Laplace equation in toroidal coordinates.)
The numbers v, k, and ¢ are related by —v(v+1) = Ne+ } and ¢ = 1k*/N. We can
restrict ourselves to k > 0, since the functions P_1, 1, and P_1_1;, are identical.

We conclude that the spectrum of Hg is contmuous with posmve eigenvalues
€= }le /N. The eigenfunctions ) (x) are real functions given by

1 )
Ui(z) = |1k tanh(iﬂk) sinh(2z)]"/2 P%(ikfl)(cosh 2x). (2.31)
They form a complete and orthonormal set,
/Oodk Ye(x)p(2') = 276(x — '), (2.32)
0
/ Tde (@) w () = 2m8(k — k), (2.33)
0

in accordance with the inversion formula in Ref. [32]. The single-particle Green’s
function G has the corresponding spectral representation

Golws1y) = (2m)"" [Tk exp(~3s/N) dalw)in(y)

1 o0 1 1
= a(SiDhQISiHth)l/Q/ dk exp(—ZkQS/N)ktanh(awk‘)
0
><P%(ikfl)(cosh23:)P%(ik71)(cosh2y). (2.34)

2.5 Ballistic initial condition

Equations (2.26) and (2.34) together determine the probability distribution
P({z,},s|{yn}) with initial condition (2.19),

[Li<; (sinh® z; — sinh® ;) T]; (sinh 2x;)
Hi<j(sinh2 Yj — sinh? i)
x Det [/ dk eXp(—Zk2S/N)k tanh(iwk‘)Pl(ik_l)(cosh 2xn)P;(ik_1)(cosh 2Um)
0 2 2

= C(s) [J(sinh® z; — sinh®z;) ] (sinh 2z;) /Oodk;l /Oode . ./Oode
0 0 0

i<j i

P =C(s)

Det P%(ikn_l)(cosh 2Um)
Hi<j(sinh2 y; —sinh® ;)
(2.35)

<11

exp( ——k2s/N)I<; tanh( ki )P% ik;—1)(cosh 2902)]
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We have absorbed all # and y independent factors into the function C(s), which is
fixed by the requirement that P is normalized to unity,

/Oodxl /Oodxg . -/Oode P=1. (2.36)
0 0 0

In the second equality in Eq. (2.35) we have applied the identity Det (b,anm) =
(I, b;)Det a,, to isolate the factors containing the y-variables.

Now it remains to take the limit {y,} — 0 of a ballistic initial condition. The
limit is tricky because it involves a cancellation of zeroes of the determinant in the
numerator with zeroes of the alternating function in the denominator. It is convenient
to first write the alternating function as a Vandermonde determinant,

[I(sinh®y; — sinh®y;) = Det (sinh®y,,,)" " (2.37)
i<j
Next, we expand the Legendre function in powers of sinh?y,

Py (cosh2y) = Z k)(sinh? y)P~ 1. (2.38)

The factors ¢,(k) are polynomials in k%, with ¢;(k) =1 and
cp(k) = (=1P'27 7 (p = D72 (B + 1) (B2 +3%) - (B + (2p = 3)%)  (2:39)

for p > 2. In the limit y — 0, we can truncate the expansion (2.38) after the first N
terms, that is to say,

i Do P e (cosh ) Det [0 () (sinh” )~ (2.40)
fyn}=0 [1;<;(sinh? y; — sinh? y;) " {un)—0 Det (sinh? ,, )71 ' '

The numerator on the r.h.s. of Eq. (2.40) factors as the product of two determinants,
one of which is just the Vandermonde determinant in the denominator, so that the
whole quotient reduces to the single determinant Det ¢,,(k,). This determinant can
be simplified by means of the identity

Det ¢, (k) = co Det (K2)™ 1, (2.41)

with ¢g a numerical coefficient. Eq. (2.41) holds because the determinant of a matrix
is unchanged if any one column of the matrix is added to any other column, so that
we can reduce the polynomial c¢,,(k) in k? of degree m — 1 to just its highest order
term k%™~ times a numerical coefficient.

Collecting results, we find

. Det Py, _1)(cosh2y,,)
{yn}HO [1;;(sinh® y; — sinh®y;)

= ¢ Det (k2)™ 1. (2.42)
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Substituting into Eq. (2.35), and absorbing the coefficient ¢y in the function C(s), we
obtain the probability distribution P({z,},s) for a ballistic initial condition,

P({z,},s) = C(s)[](sinh®z; — sinh®z;) [ (sinh 2z;)

1<j 7

o0 1 1
x Det [/o dk eXp(—ZkQS/N) tanh(ﬁﬂk)km’l P%(ikfl)(cosh 2x,)| -
(2.43)

This is the exact solution of the DMPK equation for the case g = 2.

3 Metallic regime

3.1 Probability distribution

The solution (2.43) holds for any s and N. It can be simplified in the regime 1 < s <
N of a conductor which is long compared to the mean free path [ but short compared
to the localization length NI. This is the metallic regime. The dominant contribution
to the integral over k in Eq. (2.43) then comes from the range k > (N/s)'/2 > 1. In

this range tanh(%ﬂk) — 1 and the Legendre function simplifies to a Bessel function,
1

2x
sinh 2z

1
P1ip_1y(cosh 2z) = Jo(kz) < ) fork>1, x> 1/k. (3.1)

The second condition z > 1/k on Eq. (3.1) implies the restriction = > (s/N)'2,
which is irrelevant since s/N < 1. The k-integration can now be carried out analyt-
ically,

/Ooodk‘ exp(—k*s/AN)E*" "t Jo(kw,) = %(m—l)! (4N/8)™ exp(—=22N/8) L1 (72 N/s),

(3.2)
with L,,_; a Laguerre polynomial. We then apply the determinantal identity

Det Ly—1(z2N/s) = cDet (22)" " = ¢ [[ (27 — ), (3.3)
i<j
with ¢ an z-independent number [which can be absorbed in C(s)]. Eq. (3.3) is derived
in the same way as Eq. (2.41), by combining columns of the matrix of polynomials
in z2. Collecting results, we find that the general solution (2.43) simplifies in the
metallic regime to

P({zn},s)=C(s)[] {(sinh2 x;—sinh? xl)(x?—xf)} 11 {exp(—x?N/s)(:z:i sinh 2xi)1/2} .

| (3.4)

1<J 7
!The useful asymptotic relation (3.1) between a Legendre function and a Bessel function does
not appear in the handbooks on special functions which we consulted. We obtained it by combining
the two asymptotic expansions (8.10.7) and (9.2.1) in the Handbook of Mathematical Functions, ed.
by M. Abramowitz and I. A. Stegun, (Dover, New York, 1972).
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In the remainder of this section we use the probability distribution (3.4) to com-
pute various statistical quantities of interest. For that purpose it is convenient to
write P as a Gibbs distribution,

P({z,},s) = C’(s)exp[—ﬁ(Zu(xi,xj)+ZV(xi,s))}, (3.5)

i<j
1 1
u(zy, xj) = —3 In | sinh® z; — sinh® ;| — 3 In|z? — 7|, (3.6)
1 1
V(z,s) = §N3_1x2 ~1 In(z sinh 2z), (3.7)

with 4 = 2 understood.

3.2 Figenvalue density

The mean density (p(x))s of the x-variables is defined as the ensemble average with
distribution P({x,}, s) of the microscopic density p(z):

plx) = Z:l oz — zn), (3.8)
(p(x))s = /Ooodxl /Ooode - -/Ooode P({z,}, s)p(x). (3.9)

The mean density is determined to leading order in N by the integral equation
—/ dr' (p(a'))su(z,2’) = V(x, s) + const. (3.10)
0

The additive constant (which may depend on s but is independent of z) is fixed by
the normalization condition -

; dx (p(x))s = N. (3.11)

Eq. (3.10) can be understood intuitively as the condition for mechanical equilibrium
of a fictitious one-dimensional gas with two-body interaction u in a confining potential
V. Dyson[33] has shown that corrections to Eq. (3.10) are an order N~ In N smaller
than the terms retained, and are 3-dependent. 2 These corrections are responsible for
the weak-localization effect in the conductance.[26] Here we consider only the leading
order contribution to the density, which is of order N and which is independent of j3.

Substituting the functions u(z, ') and V(z, s) from Eq. (3.5) into Eq. (3.10), and
taking the derivative with respect to x to eliminate the additive constant, we obtain
the equation

s [ sinh 2x 2x
2 d (o)), — 24+ O(1/N). 3.12
2N/o o) <sinh2x — ginh? z/ + 2 — :Jc’2> z+O(1/N) ( )

2Dyson’s derivation of Eq. (3.10) is for a logarithmic interaction potential, but it is readily
generalized to other repulsive interactions u(z,2’).
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We note that
sinh(s + x)

/5 1 sinh 2x . 2z |
x = In
0 sinh®2 — sinh® 2/ 22 — 22 sinh(s — x)

= 2v+0(z/s), fors>1, s> x.
(3.13)

S+ x
S—x

+In

It follows that the uniform density

(p(x))s = g@(s — ) (3.14)

is the solution of Eq. (3.12) in the regime s > 1, s > x. (The function 0(&) equals 1
for £ > 0 and 0 for £ < 0.) The result (3.14) was first obtained by Mello and Pichard,
by direct integration of the DMPK equation.[4] To order N, the z-variables have a
uniform density of NI/L, with a cutoff at L/l such that the normalization (3.11)
is satisfied. In the cutoff region x ~ L/l the density deviates from uniformity, but
this region is irrelevant since the transmission eigenvalues are exponentially small for
x> 1.

3.3 Correlation function
The two-point correlation function K (x,z’,s) is defined by
K(z,2',s) = (p(x))s (p(z'))s — (p(x)p(2))s. (3.15)

We compute the two-point correlation function by the general method of Ref. [5],
which is based on an exact relationship between K and the functional derivative of
the mean eigenvalue density (p) with respect to the eigenvalue potential V:

K(z,2',s) = %% (3.16)

Eq. (3.16) holds for any probability distribution of the form (3.5), regardless of
whether the interaction is logarithmic or not. In the large-N limit the functional
derivative can be evaluated from the integral equation (3.10). The functional deriva-
tive d(p)/0V equals the solving kernel of

—/ da’ (2 )u(x, ') = ¢(x) + const, (3.17)
0
where the additive constant has to be chosen such that ¢ has zero mean,
/ dzp(z) = 0, (3.18)
0

since the variations in (p) have to occur at constant N. Because of Eq. (3.16), the
integral solution

U(a) = [ do’ BK (o, ol (3.19)
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of Eq. (3.17) directly determines the two-point correlation function. It turns out that
K(z,2") = K(x,2',s) is independent of s in the metallic regime.

The integral equation (3.17) can be solved analytically by the following method.
We extend the functions ¢ and ¢ symmetrically to negative x, by defining ¥(—x) =
Y(z), ¢(—x) = ¢(z). We then note that the decomposition

1 1
u(z,x’) = ~3 Ulx — ') — §U(x +2') 4+ In2, (3.20)

U(x) = In|2zsinhz|, (3.21)

transforms the integral equation (3.17) into a convolution,

/Oodx’qﬁ(x’) U(x — 2") = 2¢(x) + const, (3.22)

which is readily solved by Fourier transformation. The Fourier transformed kernel is
o 1

Uk) = / dz & U (z) = —%[1 + cotanh (k)] (3.23)

The k-space solution to Eq. (3.22) is ¢(k) = 2¢(k) /U(k), which automatically satisfies
the normalization (3.18). In z-space the solution becomes

P(z) = Z/O:de'lC(x —2")p(2))

— 9 /0 Tdr [K(x — o) + K(x + 7)) 6(2), (3.24)
K(z) = % 1 dee—ikxﬁ - % /O Tk Czj?:;: . (3.25)

Combining Egs. (3.19), (3.23), and (3.24), we find that the two-point correlation
function is given by

K(z,2") = K(z—2")+ K(z+2), (3.26)
2 [ k cos kx
Klz) = ——— / dk , 3.97
(z) B2 Jo 1 + cotanh(37k) (8:27)
with 3 = 2. The inverse Fourier transform (3.27) evaluates to
1 d?
= — In[1 2
K@) = 53y g7 oll+ (/27
1
= ke [(z+1i0%)7% = ( +im) 7], (3.28)

where 07 is a positive infinitesimal.

We derived[8] these expressions for the two-point correlation function for the case
[ = 2. A direct integration of the DMPK equation by Chalker and Macédo[27] shows
that the function K (z,2’) has in fact the 1/3 dependence indicated in Eq. (3.28), as
expected from general considerations.|[5]
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3.4 Universal conductance fluctuations

Now that we have the two-point correlation function, we can compute the variance

Var A = (A?) — (A)? of any linear statistic A = > a(z,) on the transmission

eigenvalues (recall that T,, = cosh™ z,,). By definition

Var A = — /Oodx /Oodx’a(x)a(x’)K(x, z'). (3.29)
0 0
Substituting Eq. (3.28) we find
1 [ kla(k)|?
Var A = — / dk , 3.30
o B2 Jo 1 + cotanh(37k) (3:30)

a(k) =2 /Oodx a(x) cos kz, (3.31)
0
or equivalently,
1 o0 o0 da(z)\ (da(z) 1+ m(x+a2)72

A=y [Cdo [ 1 (3.32
Var 2672 Jo Tl < dx )( v )" 1+ m2(x —2')~2 (3:32)
To obtain the variance of the conductance G/Gy = 3, T;, (with Gy = 2¢%/h), we

substitute a(z) = cosh™ z, hence a(k) = wk/sinh(37k), hence

2
Var G/Gy = G st (3.33)

in agreement with Eq. (1.5). In the same way one can compute the variance of other
transport properties. For example, for the shot-noise power[34] P/ Py =%, T,,(1-T,,)
(with Py = 2¢|V|Go and V the applied voltage) we substitute a(z) = cosh™?z —
cosh™ z, hence a(k) = 1rk(2 — k?)(sinh 37k) !, hence

46
Var P/Py = —— 37! .34
ar P/ Py = 5ooe 371, (3.34)

in agreement with the result obtained by a moment expansion of the DMPK equation
[25]. Another example is the conductance Gyg of a normal-superconductor junction,
which for § =1 is a linear statistic,[35] Gns/Go = 3, 2T2(2 — T,,) 2. We substitute
a(z) = 2cosh™ 2 (2—cosh™ z)? = 2 cosh™*(2z), hence a(k) = irk/sinh(7k), hence
16 48
Var Gng /Gy = — — —.
ar Gs/Go 15 7t
Finally, for the variance of the critical current I, of a point-contact Josephson junction
(which is also a linear statistic for § = 1)[36, 37] we compute

Var I,/ Iy = 0.0890, (3.36)

(3.35)

with Iy = eA/h and A the superconducting energy gap.

As in the previous subsection, we note that our results are derived for § = 2, and
that the 1/ dependence of the variance in Eq. (3.32) needs the justification provided
by the calculation of Chalker and Macédo.[27]
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4 Insulating regime

The solution (2.43) can also be simplified in the regime 1 < N < s of a conductor
which is long compared to the localization length N[. This is the insulating regime.
It is sufficient to consider the range x, > 1, since the probability that = < 1 is
of order N/s which is < 1. The appropriate asympotic expansion of the Legendre
function is

% ) ikx

. _ 2I(
P%(ik*l) (COSh 233') = (27T sinh 233') 1/2 Re m

for x> 1. (4.1)

For s/N > 1, the dominant contribution to the integral over k in Eq. (2.43) comes

from the range k < 1. In this range tanh(37k) — $7k and the ratio of Gamma

functions in Eq. (4.1) simplifies to
F(lik)

I'(5 + 3ik)

The k-integration can now be carried out analytically,

(21k\/7r) !for k< 1. (4.2)

/Oodk‘ exp(—k?*s/4N) k>t sin(kx,) =
0

(=1)" 272(N/s)™ exp(—22 N/$) Hopm—1(2n1/ N/5), (4.3)
with Ho,,—1 a Hermite polynomial. We then apply the determinantal identity [cf. Eq.
(3.3)]

Det Hap—1(2n\/N/s) = cDet 2" = c[[ @ [[ (23 — 27), (4.4)

% 1<J
with ¢ an z-independent number. Collecting results, we find that the general solution
(2.43) reduces in the insulating regime to

P({zn},s)=C(s)[] [(sinh2 z;—sinh? xl)(x?—xf)} 11 {exp(—:z:?N/s):z:i(sinh 2%‘)1/2} :

i<j i
(4.5)
(This formula was cited incorrectly in our Letter.[8])
The result (4.5) can be simplified further by ordering the x,,’s from small to large
and using that 1 < 71 < 29 € -+ < xy in the insulating regime (s > N). The
distribution function then factorizes,

P({z,},s) = C(s) H exp {(22 —1)x; — ZE?N/S]

= (ws/N) N/QHeXp[ (N/s)(z; —x,)ﬂ. (4.6)

The x,,’s have a gaussian distribution with mean z, = (s/N)(2n — 1) and variance
%S/N . The width of the gaussian is smaller than the mean spacing by a factor
(N/s)/2, which is < 1, so that indeed 1 < 7; < 29 < --- < Ty, as anticipated.

101



The conductance G/Gy = >, cosh™ ,, is dominated by zy, i.e. by the smallest
of the x,,’s. Since x; > 1 we may approximate G/Gy = 4 exp(—2z;). It follows that
the conductance has a log-normal distribution, with mean (In G/Gy) = —s/N +O(1)
and variance Var In G/Gy = 2s/N. Hence we conclude that

Var InG/Gy = —2(In G/Gy), (4.7)

in agreement with the result obtained by Pichard,[13] by directly solving the DMPK
equation in the localized regime.

The results obtained here are for the case 5 = 2. Pichard has shown that the
relationship (4.7) between mean and variance of In G/G, remains valid for other
values of [3, since both the mean and the variance have a 1/3 dependence on the
symmetry index.

5 Comparison with random-matrix theory

The random-matrix theory of quantum transport|[2, 3] is based on the postulate that
all correlations between the transmission eigenvalues are due to the jacobian (1.1).
The resulting distribution function (1.2) has the form of a Gibbs distribution with
a logarithmic repulsive interaction in the variables A, = (1 — T},)/T,,. There exists
a maximum-entropy argument for this distribution,[2, 3] but it has no microscopic
justification. In this paper we have shown, for the case of a quasi-1D geometry
without time-reversal symmetry, that the prediction of RMT is highly accurate but
not exact.

In the metallic regime (L < NI), the distribution is given by Eq. (3.5). In terms
of the A\-variables (A = sinh® ), the distribution takes the form (1.2) of RMT, but
with a different interaction

u(h, ) = —% In|X\; — A\ — %m |arcsinh?A\}/? — arcsinh®\}’?|. (5.1)
For A < 1 (i.e. for T close to unity) u(A;, A;) — —In|\; — A;|, so we derive the
logarithmic eigenvalue repulsion (1.3) for the strongly transmitting scattering chan-
nels. However, for A ~ 1 the interaction (5.1) is non-logarithmic. For fixed \; < 1,
u(X;, A;j) as a function of \; crosses over from —In |A;—X;[ to —5 In |A;—X;l as A; — oo
(see Fig. 1). It is remarkable that, for weakly transmitting channels, the interaction
is twice as small as predicted by considerations based solely on the jacobian. We
have no intuitive argument for this result. The reduced level repulsion for weakly
transmitting channels enhances the variance of the conductance fluctuations above
the prediction (1.4) of RMT. Indeed, as shown in Sec. III1.D, a calculation along the
lines of Ref. [5], but for the non-logarithmic interaction (5.1), resolves the § — =
discrepancy between RMT and diagrammatic perturbation theory, discussed in the
Introduction. The discrepancy is so small because only the weakly transmitting chan-
nels (which contribute little to the conductance) are affected by the non-logarithmic
interaction.
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u(0,N)

Fig. 5.1. Interaction potential u(\;, A;) for A; = 0 as a function of A\; = X. The
solid curve is the result (5.1) from the DMPK equation. The dashed curve is
the logarithmic repulsion (1.3) predicted by random-matrix theory. For A < 1
the two curves coincide. For A — oo their ratio approaches a factor of two.
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In the insulating regime (L > NI), the distribution is given by Eq. (4.5). In terms
of the A’s the distribution takes the form (1.2) of RMT, but again with the non-
logarithmic interaction (5.1). Since In A > 1 in the insulating regime, the interaction
(5.1) may be effectively simplified to u();, \;) = —3 In [\;—X;|, which is a factor of two
smaller than the interaction (1.3) predicted by RMT. This explains the factor-of-two
discrepancy between the results of RMT and of numerical simulations for the width
of the log-normal distribution of the conductance:[13] RMT predicts Var InG/Gy =
—(In G/Gy), which is twice as small as the correct result (4.7).

We conclude by mentioning some directions for future research. We have only
solved the case (3 = 2 of broken time-reversal symmetry. In that case the DMPK equa-
tion (1.6) can be mapped onto a free-fermion problem. For 5 = 1,4 the Sutherland-
type mapping which we have considered is onto an interacting Schrodinger equa-
tion. It might be possible to solve this equation exactly too, using techniques devel-
oped recently for the Sutherland hamiltonian.[29, 30] From the work of Chalker and
Macédo[27] we know that the two-point correlation function in the large-N limit has
a simple 1/3 dependence on the symmetry index. This poses strong restrictions on
a possible S-dependence of the eigenvalue interaction.

Another technical challenge is to compute the exact two-point correlation function
K(z,2',s) from the distribution function P({z,}, s). Our result (3.5) for P is exact,
but the large-N asymptotic result (3.28) for K ignores fine structure on the scale
of the eigenvalue spacing. (This large-/V result for K corresponds to the regime of
validity of the diagrammatic perturbation theory of UCF,[6, 7] while the exact result
for P goes beyond perturbation theory.) In RMT there exists a technique known
as the method of orthogonal polynomials,[9] which permits an exact computation of
K .[38] A logarithmic interaction seems essential for this method to work, and we see
no obvious way to generalize it to the non-logarithmic interaction (5.1).

It might be possible to come up with another maximum-entropy principle, differ-
ent from that of Muttalib, Pichard, and Stone,[2] which yields the correct eigenvalue
interaction (5.1) instead of the logarithmic interaction (1.3). Slevin and Nagao[39]
have recently proposed an alternative maximum-entropy principle, but their distri-
bution function does not improve the agreement with Eq. (1.5). ?

To go beyond quasi-one-dimensional geometries (long and narrow wires) remains
an outstanding problem. A numerical study of Slevin, Pichard, and Muttalib[40] has
indicated a significant break-down of the logarithmic repulsion for two- and three-
dimensional geometries (squares and cubes). A generalization of the DMPK equation
(1.6) to higher dimensions has been the subject of some recent investigations.[41, 42]
It remains to be seen whether the method developed here for Eq. (1.6) is of use for
that problem.

3The distribution function of Ref. [39] yields Var G/Gy = 0.148 3~!, which is more than 10%
above Eq. (1.5) [K. Slevin, private communication)].
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Summary

On the conductivity of strongly correlated
low-dimensional systems

Traditionally, low-dimensional models, i.e., models with spatial dimensions lower
than three, have served as pedagogical tools for studying real, three-dimensional
systems. Very often, systems whose theoretical description in three dimensions is
quite complicated, allow simple and sometimes even exact treatments in lower di-
mensions. Many theoretical concepts have their roots in low-dimensional, artificial
models. There is, however, another reason for studying low-dimensional systems.
Recent progress in the manufacturing technology and the availability of very pure
semiconducting materials, have made it possible to realize and investigate a number
of low-dimensional condensed matter systems in the laboratory. This has led to the
discovery of a number of interesting phenomena which can only occur in dimensions
lower than three.

This thesis deals with three topics from the physics of low-dimensional systems:
anyon superconductivity, the fractional quantum Hall effect, and the electrical con-
ductivity of a disordered wire. A common feature of all these systems is that strong
correlations play a crucial role. Consequently, the perturbative techniques, which
have proved to be quite successful in other branches of condensed matter physics,
turn out to be of little use in these systems.

Chapter 2 deals with the mean-field theory of anyon superconductivity. The
notion of anyons is inherently related to the definition of quantum statistics in two
dimensions. It is now well-known that the usual definition of quantum statistics,
which follows from the change of the sign of the wave function under particle exchange,
can be replaced by a more general definition where the phase acquired by the wave
function depends on the exchange path. Whereas in three dimensions this definition
yields the usual bosons and fermions, in two dimensions it opens the possibility for
a whole new range of particles interpolating between bosons and fermions. These
new particles are referred to as anyons or particles obeying fractional statistics. In
an alternative, but equivalent picture, an anyon is a composite particle consisting of
a charged boson or fermion pierced by an infinitely thin tube containing fictitious
magnetic flux perpendicular to the two-dimensional plane. The attached flux tubes
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induce a long-range vector-potential interaction between the particles. Although
there is still no experimental evidence, it has been suggested by R.B. Laughlin that
the charged excitations in the high-temperature superconductors are anyons. To see
how fractional statistics implies superconductivity, in chapter 2 we apply the mean-
field approximation to the vector-potential interaction.

One of the most remarkable phenomena discovered recently is the quantum Hall
effect (QHE) which occurs in the two-dimensional electron gas (2DEG), a thin layer
of highly mobile electrons whose motion perpendicular to the layer is quantized so
that the motion of the electrons is confined to a plane. It is found that at very high
perpendicular magnetic fields and very low temperatures, the Hall conductance of
the 2DEG is quantized in the units of e?/h where e is the electron charge and h is
the Planck constant. There are two types of QHE: the integer QHE where the Hall
conductance is an integer multiple of ¢?/h, and the fractional QHE where the Hall
conductance is a rational fraction of €?/h. In both cases, the origin of the quantization
of the Hall conductance is the incompressibility of the 2DEG at special values of
the electron density. However, while the incompressibility in the integer QHE is a
property of the noninteracting electrons, the incompressibility in the fractional QHE
is a genuine many-body effect caused by strong correlations between the electrons.

In chapter 3 we investigate the similarities between the ground-state energy spec-
tra in the integer and the fractional QHE’s. The analysis is based on numerical
results, and an adiabatic principle due to M. Greiter and F. Wilczek which contin-
uously relates the incompressible states of the integer QHE to the incompressible
states of the fractional QHE. The adiabatic principle of Greiter and Wilczek is based
on the introduction of a fictitious long-range vector-potential interaction between the
electrons. The same kind of interaction is studied in connection with anyons. It is
assumed that the incompressible states of the integer QHE evolve continuously into
the incompressible states of the fractional QHE by adiabatically switching on the
vector-potential interaction, i.e. by adiabatically attaching flux to the electrons.

The adiabatic principle is an exact prescription for constructing the fractional
QHE states from the integer QHE states, but it cannot be carried out in practice
unless suitable approximations are made. One possibility is the vector-mean-field
theory discussed in chapter 4. The vector-mean-field theory is quite similar to the
mean-field theory of anyon superconductivity (considered in chapter 2) where the
fictitious vector-potential interaction is treated in mean-field. Unlike the ordinary
Hartree-Fock calculations in which the mean-field approximation is applied to the
Coulomb interaction, the vector-mean-field theory successfully recovers the properties
of the uniform, unbounded fractional QHE states. In addition, the theory can be
easily applied to confined or non-uniform systems.

Finally, chapter 5 deals with the electrical conductivity of a (quasi) one-dimensional
system, a disordered wire. The motion of the electrons across the wire is quantized,
leading to a set of discrete modes similar to the discrete modes of the electromagnetic
field in a waveguide. The conductivity of the wire is determined by the transmission
eigenvalues of the individual modes, i.e., the probability for each mode to propagate
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through the wire. Usually, we are interested not in a particular sample, but in an
ensemble of disordered wires, each with a different realization of the disorder. The
average conductivity of the ensemble can then be calculated if one knows the probabil-
ity density of the transmission eigenvalues. The latter can be determined by solving
the scaling equation which governs the evolution of the probability density of the
transmission eigenvalues as the length of the sample increases. The scaling equation
is a diffusion (or Fokker-Planck) equation in the space of transmission eigenvalues.
The strong correlations in this problem result from the effective repulsion of these
eigenvalues. In chapter 5 we present an exact solution based on a mapping onto a
free-fermion problem. The obtained results are then used to test the predictions of
an alternative approach, the random matrix theory of the transmission eigenvalues.
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Samenvatting

Over het geleidingsvermogen van sterk
gecorreleerde laagdimensionale systemen

Laagdimensionale modellen, dat wil zeggen modellen waarin de dimensie van de
ruimte kleiner is dan drie, dienen vaak als leermodellen voor het bestuderen van reéle
driedimensionale systemen. Het komt vaker voor dat een driedimensionaal model
met een gecompliceerde theoretische beschrijving, een veel eenvoudigere, soms zelfs
exacte analyse toelaat in lagere dimensies. Veel van de begrippen uit de fysica van
de gecondenseerde materie hebben hun oorsprong in de hypothetische laagdimen-
sionale modellen. Er bestaat bovendien een andere reden voor het bestuderen van
laagdimensionale systemen. De recente ontwikkelingen in de fabricagetechnologie
en de beschikbaarheid van zeer zuivere halfgeleidermaterialen hebben het mogelijk
gemaakt om een aantal laagdimensionale systemen in het laboratorium te vervaardi-
gen en te onderzoeken. Dit heeft geleid tot de ontdekking van een aantal nieuwe
verschijnselen die slechts in één of twee dimensies kunnen voorkomen.

Dit proefschrift behandelt drie onderwerpen uit de fysica van de laagdimensionale
systemen: anyon supergeleiding, het fractionele quantum Hall effect, en de elektrische
geleiding van een wanordelijke draad. Een gemeenschappelijk kenmerk van al deze
systemen is, dat er een cruciale rol wordt gespeeld door sterke correlaties. Daarom
komen de technieken gebaseerd op storingsrekening, die hun nut bewezen hebben in
vele andere takken van de fysica van de gecondenseerde materie, hier niet van pas.

In hoofdstuk 2 behandelen we de gemiddelde-veld theorie van anyon supergeleid-
ing. Het begrip anyon is gerelateerd aan de definitie van de quantumstatistiek in twee
dimensies. Het is nu wel bekend dat de gangbare definitie van de quantumstatistiek,
die volgt uit de tekenverandering van de veeldeeltjesgolffunctie onder verwisseling van
identieke deeltjes, kan worden vervangen door een veel algemenere definitie waarin de
fase verkregen door de golffunctie afhangt van de baan van de deeltjes. Terwijl deze
nieuwe definitie in drie dimensies de gewone bosonen en fermionen oplevert, leidt het
in twee dimensies tot een breed scala van nieuwe deeltjes die interpoleren tussen boso-
nen en fermionen. Deze deeltjes worden anyonen, of deeltjes met fractionele statistiek
genoemd. In een andere aanpak wordt een anyon voorgesteld als een samengesteld
deeltje dat bestaat uit een geladen boson of fermion gebonden aan een oneindig dunne
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buis. Het buisje bevat fictieve magnetische flux die loodrecht staat op het tweedi-
mensionale vlak. De fluxbuisjes induceren een vector-potentiaal wisselwerking tussen
de deeltjes. Hoewel men nog niet beschikt over een empirisch bewijs, heeft R.B.
Laughlin een theorie voorgesteld waarin de geladen excitaties van de hogetemper-
atuur supergeleiders anyonen zijn. Om te zien hoe de fractionele statistiek kan leiden
tot supergeleiding, passen we in hoofdstuk 2 de gemiddelde-veld benadering toe op
de vector-potentiaal wisselwerking.

Een van de meest opmerkelijke ontdekkingen van de laatste twintig jaar is de
ontdekking van het quantum Hall effect (QHE) dat wordt waargenomen in een twee-
dimensionaal elektronengas (2DEG), een dunne laag van zeer beweeglijke elektronen
waarin de transversale beweging is gekwantiseerd zodat de elektronen zich alleen
maar kunnen bewegen in een vlak. Men heeft ontdekt dat bij zeer sterke transver-
sale magnetische velden en zeer lage temperaturen de Hall geleiding van het 2DEG
gekwantiseerd is in de eenheden van e?/h, waarin e de lading is van een elektron en
h is de constante van Planck. Men onderscheidt twee soorten QHE: het integer QHE
waarbij de Hall geleiding een gehele veelvoud is van e?/h, en het fractionele QHE
waarbij de Hall geleiding een rationele fractie is van €?/h. In beide gevallen moet de
oorsprong van de geleidingskwantisatie worden gezocht in de incompressibiliteit van
het 2DEG bij speciale elektronendichtheden. Echter, terwijl de incompressibiliteit in
het integer QHE een eigenschap is van niet-wisselwerkende elektronen, wordt de in-
compressibiliteit in het fractionele QHE veroorzaakt door de sterke correlatie tussen
de elektronen.

In hoofdstuk 3 bestuderen we de overeenkomst tussen de grondtoestand spectra in
het integer en het fractionele QHE. De analyse is gebaseerd op numerieke resultaten
en het adiabatisch principe van M. Greiter en F. Wilczek dat een integer QHE grond-
toestand continu relateert aan een fractionele QHE grondtoestand. Het adiabatische
principe van Greiter en Wilczek maakt gebruik van een fictieve vector-potentiaal wis-
selwerking tussen de elektronen. Een soortgelijke wisselwerking wordt bestudeerd in
verband met anyonen. Met neemt aan dat een integer QHE grondtoestand continu
evolueert in een fractionele QHE grondtoestand door het adiabatisch inschakelen van
de vector-potentiaal wisselwerking, dat wil zeggen door het adiabatisch toevoegen
van flux aan elektronen.

Het adiabatische principe is een exact voorschrift voor het construeren van de
fractionele QHE toestanden uit de integer QHE toestanden. Het kan echter niet
in de praktijk worden uitgevoerd tenzij er geschikte benaderingen worden gemaakt.
Een mogelijkheid is de vectoriéle-gemiddelde-veld theorie die wordt behandeld in
hoofdstuk 4. De vectoriéle-gemiddelde-veld theorie lijkt op de gemiddelde-veld the-
orie van anyon-supergeleiding waar men de gemiddelde-veld benadering toepast op
de vector-potentiaal wisselwerking. In tegenstelling tot een gewone Hartree-Fock
berekening waar de Coulomb wisselwerking behandeld wordt in de gemiddelde-veld
benadering, is de vectoriéle-gemiddelde-veld theorie in staat de eigenschappen van de
homogene fractionele QHE toestanden te verklaren. Bovendien kan men de vectoriéle-
gemiddelde-veld theorie eenvoudig generalizeren om ook de inhomogene fractionele
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QHE toestanden te kunnen beschrijven.

Tenslotte behandelen we in hoofdstuk 5 het elektrische geleidingsvermogen van
een (quasi) ééndimensionale wanordelijke geleider (wanordelijke draad). Door de
kwantisatie van de transversale beweging van de elektronen in de draad, ontstaan
er discrete modes vergelijkbaar met de discrete modes van het elektromagnetische
veld in een golfgeleider. Het geleidingsvermogen van de draad wordt bepaald door
de transmissie-eigenwaarden: de transmissie-eigenwaarde van elke mode is per defini-
tie de waarschijnlijkheid dat hij zich langs de draad kan voortplanten. Men is in
het algemeen geintresseerd in een ensemble van wanordelijke geleiders, elk met een
eigen realisatie van de wanorde. Het gemiddelde geleidingsvermogen kan dan worden
berekend als men beschikt over de gezamenlijke kansdichtheid van de transmissie-
eigenwaarden. Deze kan worden gevonden door het oplossen van de schaalvergelijking
die aangeeft hoe de gezamenlijke kansdichtheid verandert met de toenemende lengte
van de draad. De schaalvergelijking is een gecompliceerde diffusie (of Fokker-Planck)
vergelijking in de ruimte van transmissie-eigenwaarde. De sterke correlaties in dit
probleem zijn afkomstig van de effectieve repulsie van de transmissie-eigenwaarden.
In hoofdstuk 5 lossen we deze vergelijking exact op door hem af te beelden op een
systeem van vrije fermionen. De resultaten worden vervolgens vergeleken met die van
een alternatieve aanpak, de random-matrix theorie van de transmissie-eigenwaarden.
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Stellingen

. De gelijkenis in de energiespectra van niet-wisselwerkende elektronen in het
heeltallige gekwantiseerde Hall-effect en wisselwerkende elektronen in het frac-
tionele gekwantiseerde Hall-effect kan worden gezien als het resultaat van de
inductie van quasi-Landau-niveaus door de repulsie tussen de elektronen in het
laagste Landau-niveau.

. In tegenstelling tot bosonen lijden fermionen met hun grote kinetische energie
aan een statistische frustratie. Deze kan voor een deel worden gecompenseerd
door een magneetveld.

G.S. Canright en M.D. Johnson, Com-
ments Cond. Mat. Phys. 15, 77 (1990).

. De volledige statistische verdeling van het geleidingsvermogen van een wanorde-
lijke draad met twee tunnelbarrieres is onafhankelijk van de plaats van de
barrieres langs de draad, mits de afstand veel groter is dan de Fermi-golflengte.

. Dyson’s Brownse-beweging-model voor parametrische spectrale correlaties is
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