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The Electron-Positron Field, Coupled
to External Electromagnetic Potentials,
as an Elementary C* Algebra Theory

P. J. M. BONGAARTS*!

Department of Mathematics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

In recent years C* algebra concepts have been suggested for dealing rigorously with
the mathematical difficulties of Quantum Field Theory. To demonstrate some of the
possibilities of these concepts we present an explicit and completely rigorous C* algebra
treatment of the simple model of the electron-positron field interacting with an external,
classical electromagnetic field.

The usual results most of which cannot be derived in a rigorous way within the
ordinary Fock-Hilbert space formalism, are obtained here in a straightforward and
mathematically unobjectionable manner, in which divergent or ill-defined expressions

are absent.
In particular no readjustments because of vacuum contributions have to be made
in the resulting S operator and the terms of its perturbation series.

1. INTRODUCTION

In recent years a mathematically rigorous approach to general quantum field
theory has been developed in terms of abstract C* algebras. (1), (2), (3), (4). In
this approach a quantum system is characterized by the structure of the set of its
observable quantities, that form an abstract C* algebra. States, as generalized
expectation values, are positive linear functionals on that algebra, and physical
transformations such as connected with symmetries and with evolution in time,
are represented by structure preserving transformations, i.e., * automorphisms.

Some fundamental properties of relativistic local field theories have been
established within an axiomatic framework along these lines, as proposed in (4),
but one still has a long way to go if one wants to incorporate in it conventional
Lagrangian field theory, with its specific dynamical prescriptions.

* On leave of absence from the Instituut Lorentz voor Theoretische Natuurkunde, Leiden,
Netherlands.

* Supported by the Foundation for Fundamental Research of Matter (F.O.M.), Netherlands,
and by the Air Force Office of Scientific Research under contract no. F44620-67-c-0008.
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In view of this, and in order to obtain more understanding of the concrete
possibilities of C* algebra ideas, it may be useful to try to test them on simpler,
explicitly known models that exhibit some of the typical mathematical difficulties
of general quantum field theory.

As an example of such a field theoretic model we will treat by C* algebra methods
the electron positron field, interacting with given external Maxwell potentials.

It is possible to give a completely rigorous and explicit treatment of this model,
of its dynamics for finite times, and its assymptotic behavior leading to a well
defined S operator. The usual physically meaningful results are obtained in a
rigorous way, in which the divergences and ill-defined expressions inherent to the
conventional formulation of the model, are absent.

2. THE MODEL AND SOME OF ITS PROPERTIES

The physical situation is that of a system of electrons and positrons, not inter-
acting with each other but with a given classical electromagnetic field. In the usual
nonrigorous language it is described by a spinor field yi(x, 1), satisfying the equal
time anti-commutation relations

[u(x, 1), Pa(X', )] = [Pu(x, 1), (X', 1)), = O,
[a(x, 1), Pha™(X, )], = 8p0(x — X)), (1

and by a “second quantized” Hamiltonian

3 2
B= [ tF(x, 1) (41' kzl o % - mﬂ) J(x, t) : dx

- 3
+ e ’ s fH(x, 1)(A%(x) — X Y AR(X)) P(x, 1) : dx, (2)
o k=1
in which 4°(x) and A%(x) are given nonquantized electromagnetic potentials and
o®, B the usual matrices from Dirac’s theory.
The fields (x, 1) and {*(x, 1) are Heisenberg operators in the sense that they
characterize the time development of the system according to

h(x, t) = e'Phf(x, 0) 2L, (3)
This together with (1) and (2) gives the field equation

A B 3
) 8

l , k=1

This is of course the “second quantized” version of the wave equation introduced
by Dirac in 1928, in order to improve the quantum mechanical description of an
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electron in a given electromagnetic field of force (5, 6). He conceived it as a direct
relativistic generalization of the one particle Schrédinger equation, with the usual
interpretation of (x, 7) as a quantum mechanical wave-function. The negative
energy problem forced him later to modify the meaning of the equation. This
resulted in his “hole theory” (4, 8, 9), very successful as a physical theory, but at
the same time highly intuitive and difficult to formulate in a precise mathematical
way. Later formulations by others stressed in a more straightforward way the
many particle aspect inherent in the theory, by using the ideas of “second
quantization”, in which the wave-function y(x, r) becomes an “operator field”
acting in a many particle space of particles and anti-particles. (10, /7). This has
made it into a quantum field model; it is often presented as a first step in the study
of general quantum electrodynamics from which it can be obtained by simplifying
assumptions (/2, 13). In this formulation, characterized by (1), (2), (4) it shares
with quantum electrodynamics formal elegance but also some of its fundamental
mathematical difficulties. Perturbative calculations lead, as usual to divergent
expressions in the higher order S matrix elements. On the level of formal cal-
culations these infinities are relatively harmless. There is essentially one type of
divergent vacuum diagram, and its contributions to the S operator are taken care
of by a simple although arbitrary and mathematically meaningless prescription.
On a more fundamental level one find that it is very difficult to say what one of the
basic elements of the theory, the total Hamiltonian B, (2) means in precise mathe-
matical terms. Inspection of the interaction term B, of B, written in the usual way
by means of the Fourier transforms of the fields as a creation-annihilation operator
expression in momentum space shows that it contains an electron-positron pair
creation-part, that would carry the vacuum state and any n-particle state out of the
Fock-Hilbert space of square integrable many particle momentum wave-functions.
Detailed investigations in this situation have indicated that in the case where
there is only an electrostatic potential 4°(x), it is still possible to define in the
Fock-Hilbert space, in an indirect way a self adjoint operator that corresponds
to the formal expression (2) and can be called the total Hamiltonian (14-16).
In the general case where the potentials 4*(x) are also present, this seems to be
impossible however. In the case where B exists it has very awkward domain
properties. The Dyson perturbation series in the interaction picture is purely formal
therefore and has no meaning in a strict Hilbert space sense.

The C* algebra formulation of this theory that will be presented in the following
has none of these problems. It covers the general case of 4%(x) and 4*(x) and would
equally well apply, as will be obvious, to a slightly more general situation in which
for instance an extra term like

si [0 (3 oF.) gax

o,we=1 /
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is present, representing a given anomalous magnetic moment of the particles.
The same ideas could also be used to treat the case of time dependent potentials.

The C* algebra formalism will give some insight into the nature of the problems
of the conventional formulation; some of the above, rather loose remarks on these
problems will be stated and proved in a precise way in this context. Except for the
two theorems quoted in Section 5 only elementary material on C* algebras and
their representations will be needed.

3. THE ABSTRACT C* ALGEBRA THEORY

The abstract algebraic field theory that will be constructed consists of two
elements, a C* algebra generated by the fields at a fixed time, and a one parameter
group of *automorphisms, acting in this algebra and propagating the fields in
time, in accordance with a rigorous form of (2), (3), and (4).

I. Starting point for the construction of a field algebra is (1). The first step in a
rigorous definition of fields must be to smear them with test functions. It is sufficient
for the purposes of this model to smear in space only; time will be retained as a
separate variable. Fields will be therefore objects *(f), ¥(f), suggested by the
symbolical relations

K
W) = [ ¥ " ®) £) dx

ge=1

)
4 —

W = [ 3 ) ) dx,
a=1

in which f(x) = fu(x), « = 1,2, 3,4 are suitable complex testfunctions. They
must satisfy the following relations, suggested by (1)

(), YD) = [*(), (D) =0

W), 4D = [ T /) gu(x) dx. ©)

Y a=l

These fields ¢(f), ¥*(f) have to be defined as generating elements of an abstract
C* algebra, attached to a linear space of testfunctions f(x). Properties of the fields
can then be obtained from the study of this C* algebra and its representations.
Several authors have defined and investigated such an algebra of the canonical
anti-commutation relations, using however slightly different approaches. See for
instance (17, 2, 18, 19). Fortunately these different approaches all lead, in the
case of anti-commutation relations, to the same C* algebra (for a concise review
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of some of the variations, see (20)). We will use the formulation of abstract fermion
systems that can be found in (79), to which we refer for details.

Abstract fermion-systems may be generated by a real Hilbert space #, of even
finite or infinite dimensions, with inner-product (z, , z,), together with groups of
orthogonal transformations 7" of 2. There exist a unique complex *algebra,
Co(9¢), the Clifford algebra over #, having the properties:

19; Cy(s#) contains a unit 7 (540)
2% There is a real-linear 1-1 map R: # — Cy(#), the images R(z) are self-
adjoint and generate Cy(H) algebraically

3% [R(z1), R(zo)]y = 2z , 2o)pl

Vzy ; zp € . 7
One may construct Co(#°) as follows: Let A(#°) be the complex free tensor algebra
over the real space #. An involution operation is defined by

\ *

’\il...l',,zil ® Zi, ® @ zi,,) . Z /\f....i,.zi,, ® @ Z4, ® Ziy -

(rmne sum finite sum
(8)

Let J be the two-sided *ideal generated by elements

(2102, + 2, @2 — 2(zy , zp)pl),
(ie.: we S if:

w= Y ulz®@z+z,® z;, — 2zi,, z3)r I)
finite sum

for
u; , v; € A(GK) z;, € ).

Then Cy(o#) = A(#)]F, with R(z) the image of z under
A(H) — A(P)|S. 9)

To obtain a norm on Cy(#), the algebra is represented as an operator algebra in
Hilbert space, using in a standard fashion a special positive linear functional
E, on Cy(), the central state, that may be given by:

E(l) =1
Ey(R(z)) =0, VzesH#.

EO(R(zl)v---r R(Z")) ¥ 01

for all orthonormal sequences z, ..., z, from .
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The norm of A € Cy() is then the operator norm of the corresponding operator
in this representation.

Completion under this norm makes Cy(5) into a C* algebra C(2¢), the abstract
fermion algebra over .

The algebra C(5#) is simple, all its (non-zero) *representations are faithful
and norm-preserving. Its most useful property is: Each orthogonal transformation
T of # induces a unique *automorphism ¢, in C() such that ¢(R(z)) =
R(Tz), Yz e o#. A strongly continuous one parameter group of orthogonal trans-
formations 7(¢) induces a norm-continuous group of automorphisms ¢, in C(¢),
(ie., from lim,,, || Tz — T,z || = 0, Vz € A follows lim,., || b(A) — ¢,°(A)il =0
VYA € C(##). The o that will be used is however more special, because it will be a
complex Hilbert space, with complex inner product (z; , z,) such that (Az; , z,) =
Mz, , 25)). The elements of #, with the same addition law and the same multi-
plication, but only by real numbers, form of course a real vector space, that is a
real Hilbert space under the real inner product (z; , z;)x = Re(z; , z5). One con-
structs C(#) over 2 considered as a real space in this way. The extra possibility
of multiplying vectors with imaginary numbers, which has nothing to do with
multiplication with imaginary numbers in the algebra C(#°) as a complex vector
space is then used to define more convenient generators of C(J#):

U(z) = HRG) + iRG2)),
*(z) = HR() — iR(i2)).

They have the following properties, that follow immediately from (7) 2, 3.

(11)

(1) ¥*(z) depends complex-linearly on z & #; (z) depends complex-anti-
linearly on z € #.

(2) [¥(z), P(z))s = [P*(z0), ¥*(z2)], = 0
[¥(z), $*(2)) = (21, 20) 1

Note that the automorphism ¢, , induced by a (real) orthogonal transformation 7
in # will in general not preserve the way C(#) is generated by the y(z2); i.e.,
$+((2)) % Y(Tz). However for the special case when T is also unitary with
respect to (z; , 2,), then ¢((2)) = Y(T2).

We are now in a position to define for our model the fields (f), s*(f) and the
algebra they generate:

Take # to be the complex L, space of functions f(x), « = 1, 2, 3, 4 with the
inner product

(12)

‘ ———
(.9 = [ ¥ 7 2.(x) dx. (13)

“ a=l
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The field algebra is then C(5¢), and the fields ¥(f), ¥*(f) the generators defined
by (11). Note that (12) corresponds with (5) and (6).

II. In order to obtain suitable automorphisms ¢, that represent the temporal
evolution we employ Eq. (4) as a classical “c-number” equation. The expressions

3

Hy = —i}) o* ;% + mf

k=1
(14)
3
H' =H+e ;A"(x) — Y oka¥x),

k=1

are formally self-adjoint with respect to the inner product (13) in . It is known,
(21), that H,' is essentially selfadjoint, for instance on the functions f,(x) from the
Schwartz space (S). This is also known for H’, on the same domain provided
the potentials 4°(x), 4%(x) are chosen in a physically reasonable way. For instance
in the case of a purely electrostatic Coulomb potential

Ze
| x |
(see (21)) and in the obvious case where 4°(x), 4*(x) are bounded, measurable
functions. We assume that we are dealing with such a situation, so that we have H, ,

H, the selfadjoint extensions of H,’, H'.
Equation (4), as a classical equation is then solved, in Hilbert space sense by:
f(t) = e~#0). (15)

The operators e~*#* are unitary in #, and therefore induce automorphisms ¢, in
C(£), such that

AY(x) = for Z < 68,

() = Y(e'BY), for all fe 2. (16)

These ¢, are the automorphisms that describe the temporal evolution of the
abstract quantum field, they correspond to relation (3).

Instead of letting ¢, act on the operators and having a generalized Heisenberg
picture, one may define a generalized Schrédinger picture, where the states carry
the temporal evolution by E(A4) = E(¢(A)).

It should be noted that the time dependent fields ,(f) = $,(J(f)) satisfy the
field Eq. (4) in a precise generalized functions sense:

Using

i | [ 250 — ] ] =0

Vf e 2(H), (Z(H) is the domain of H)
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and || ¥(f)|l = ||f]l, one derives immediately:

1‘}9” ‘/’t*u(f)A‘ ) ,1/,‘(,'1-][)” =0

or
2 9if) = —ibdHp),

for all fe Z(H), and in the sense of norm convergence in C(5¢).
It would be easy to derive from the foregoing a 4-dimensional Minkowski space
formulation defining

b = [ wds) pte) a,

for u,(x) = f.(x)p(?)
fi(x) = S(R®), p(t) € S(RY) (Schwartz functions),

and extending this to a suitable class of testfunctions on space-time. This would
lead to formulation in terms of vacuum expectation values of products of fields.
One can easily compute the anti-commutation relations for the fields at different
times

), $()), = [P*@w), §*@)), = 0,

and

W, $@)), = [ [ drdr’ (1), 4@ p0) )
) [ ¢, e ) p(a) p(t) dit .
This may be written symbolically as
[ [ = o 8s, ) Butr) ds ax

and leads to the usual singular anti-commutation function:

[ful®), (X)) = —iSuslx, X'),

for i = y*B. For the free equation (i.e., 4%x) = 0, A¥(x) = 0), this singular
function is well-known, for the perturbed (i.e., the full equation) it can be deter-
mined, but in both cases it is a generalized “‘c-number” function, completely
determined by the classical equations.
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It will be useful to distinguish explicitly in the following between the free and
perturbed equation. We consider separately the automorphisms ¢, as defined
and ¢,° defined in the same way with H, instead of H.

4. HILBERT SPACE REPRESENTATIONS OF THE FIELDS

We will represent the abstract field theory, the system {C(#°), ¢,} or {C(#), b,
as an operator theory in Hilbert space.

DEFINITION. A physical representation of the abstract field system {CC), b}
is a *representation of C(o#) as an algebra of bounded operators in a Hilbert space
2, which may without essential loss of generality be assumed to be irreducible,
and such that

I. There exist a one parameter, strongly continuous group of unitary operators
et in X" that implement ¢,
d(A) = e'Bt4e—iBt for all 4 € C(5#),

(existence of Hamiltonian as a selfadjoint operator).
2. B = 0 (positivity of the energy).

3. There exist a unique vector @, (the vacuum) in " such that e/®'@, — D, ,
forall € R, (17)

(To avoid cumbersome notation, the same symbols denote objects from the
abstract algebra C(5#°) and their image under the representation, as long as this
does not lead to confusion). The same definition applies of course to the free
field {C(s¢), ¢.°}.

It has been shown by M. Weinless (22), that an abstract quantum field system
{C(), ¢4} in which the ¢, are connected with a continuous group of orthogonal
transformations 0(¢) in # always has a physical representation, and moreover that
itis unique, up to unitary equivalence, provided 0(¢) has no vectors z € 7, 0(1)z = z,
for all 7 (This is true for e*#o! and may be assumed for (i) ¥

We construct this representation, explicitly, separately for the free and the
perturbed field. For the free field this representation is of course well-known,
although the representation is usually not very transparent. The construction that
will be given is essentially the same for the two cases, no Fourier transformation
of the fields is used because that would be helpful only in the free case.

It should be emphasized that the two representation spaces X, and ¢ are a
priori completely unrelated. This is overlooked in the conventional formulation
of the theory, where one tries (more or less implicitly) to force the free and the
perturbed theory both together in one Hilbert space.
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The construction will employ J.M. Cook’s general, rigorous and *“coordinate
free” formulation of “second quantization™ (23). This will be reviewed briefly first.
Let .# be a given complex Hilbert space; physically the one-particle space,
together with groups of unitary operators, representing one-particle transfor-
mations. An anti-symmetric many particle space is defined as

Vil) = My D MO(MRDMDMRDM QDM D, (18)

in which .#,, is a one dimensional space, with a unit vector @, , (the no particle
vector) and the subscript 4 means anti-symmetrization of the tensor products.
For each z € .# one defines an annihilation operator C(z) by extension of

D, —0
Z—(z,2) D, (19)
Y sign o(z,m ® @ zom) = Vn Y, sign o(z, z,0)(Zow @ ® Zotm)
perm o o

for all finite sets z; ,..., 2, € .

This defines a bounded operator C(z) in Vi(.#) with | C(z)|| = | z||; a creation
operator for each z is defined as C*(z). Note that the norm closed operator algebra
generated by all the C(z), C*(z) is a special representation, the Fock-Cook
representation of the algebra C(.#), as defined earlier, however that is not the
point of view taken in this section. Operators in .# induce operators in V()
in two ways:

1. A unitary U gives a unitary I'(U) in Vz(.#) by extension of

D, — D,
(20)
Y sign o(z,) ® ** @ Zow) > . sign o(Uz,q) ® *** @ Uzo(w)-

o o

2. A self-adjoint 4 in .# gives a self-adjoint 2(4) in V() by extension of

D, —>0

Y sign o(z,m @ * ® Zogw) —> X sign o(Az,) ® Zawy @+ @ Zotw)
o

o

(21)

+ Y sign o(z,q) ® Az, @ *** @ Zotw) +
o

+ ¥ sign o(z,q) ® *** ® Azy(m)-
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One has
A= 0<24) =0, (22)
and the relations
[(et1t) = et (23)
eI e=iRAL — ((gidt Bo-idt) (24)
for A, B self-adjoint in J; t € R,
eRAAN(C(Z) e-it — (C(gtlz), (25)

forall ze#, te R

So far this would be sufficient for a formulation of “second quantization” as it is
used for instance in non-relativistic many body theory, where the one-particle space
« is the obvious space of one-particle wave functions. This is not the case for
relativistic equations. Dirac’s equation cannot be interpreted as a single particle
equation in the sense of the non-relativistic Schrodinger equation. This fact led
to hole theory and later to a quantum field formulation. For this reason we
introduced in Section 3 the more general concept of Clifford algebras, which
allows the use of transformations that are only real orthogonal instead of unitary
in the physical one-particle space. # is not the physical one-particle space, but
a convenient mathematical space to define the fields and their transformations.
We now construct the physical representation spaces:

I. THE Free FIELD {C(#), %)

Let # = H, ® H_, where H#, and H#_ are the subspaces connected with the
positive and negative part of the spectrum of H, . (Corresponding projections P, ,
P_.) We use a conjugation operator U in J# (i.e., U is anti-unitary and U? = 1)
satisfying:

H,U = —UH,, (26)
or equivalently
UP =20 27)

Any U having these properties could be used, different ones leading to equivalent
representations; we take U to be the charge conjugation, uniquely defined, up to a
phase factor by

(UN). x) =Y Co Ti(X), (28)
B

C,s a unitary matrix with
ClyuC = —yh, (29)
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or
CBC = —B, C-wC = &, (30)
where

B = Pon -

We simplify this by assuming the ~#, B to be in a Majorana representation, in that
case C = 1, and charge conjugation is just complex conjugation of f(x).

Define a physical one-particle space #' = #, @ H#,, where #;, H, are
copies of #, , I,, I, the identification maps 3, — ¥, , #, — #; and P,, P,
projections on J#, , #; .

Define a (real) orthogonal map y:

y i —H,
as
y = LP,. 4+ 1L,LUP_, (31)
and then
vy = LP, + DIhE, - (32)

The representation space ., is now the many particle space over J#”:
Hy = VH(H") (33)
We define operators in 7 ;
PHUf) = ClyPof)
annihilation of a particle;
$o(f) = C*yP-f),
creation of an antiparticle;
YHH(f) = CHyPof)
creation of a particle;
YOX(f) = ClyP-f)
annihilation of an antiparticle;

(for all fe ), (34)

and then field operators.

Wf) = 490 + 4 : (35)
U*(f) = ¢P*) + 7).
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It is easy to check that these field operators satisfy (12) and represent the abstract
elements (f), Y*(f) from C(5°); the norm closed operator algebra they generate
represents C(o#). We verify that this is the physical representation: note that

'yem"‘y—l — ye‘”"'iﬂ,y" e yeiuotp__,y—x

= L,P. ™[ P, + ILUP_¢™'UI'P,
= PP, + IP.e"™'I;'P, (35)
= expli([,P, Hyl;") Pyt] P, + expli(L,P Hyl;") P,t] P,

expli{(I,PHyl;") P, + (I.P Hyl;") P} 1],

then for fe #
SN = $&(f) = ™' f) = ™' f) + ¢ ™)
= CyP,e™'f) + C*(yP_e"™'f)
= Clye"™y7yP,f) + C*(ye'™'y'yP_f)
using (35) and (25)

[ - eiBotC('yP*f) e—iﬁol ‘_¥_ eiBolc*(yP_f) e—iﬁot L 1A eiBotl/l(f) e—l'Bot (36)
with By = I,H,P.I;*P, + I,P H,I"\P,), because

I,HP.I;*P, + I,P.H,J;*P, >0,

we have B, > 0. (using (22)), and of course B,®@, = 0.

Note that the state vectors in this “physical” many-particle space %, are
nothing else than sequences of antisymmetric wave functions (separately for
particles and antiparticles). In the Schrédinger picture they are essentially linear
combinations of products of positive energy solutions of the free Dirac equation.

Note also that the many-particle description in this case is really superfluous,
because all n-particle and m-anti-particle subspaces are invariant under time
development. If one introduces the interaction in this same space 4, (in the cases
where this is rigorously possible), this is no longer true, the different subspaces
mix, there is a continuous creation and annihilation of particle-anti-particle
pairs.

l It is in this sense that the positivity requirement for the energy makes a one-
particle formulation of the full Dirac equation impossible and forces it to be a
i true many-particle or quantum field equation.
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II. THE PERTURBED FIELD {C(£),d,}

One expresses the dependence of H on the charge e by writing H(e), one then
may consider also H(—e). Analogous to the free field case we define:

=2 oHE, P2 Y
o — %('~«') ‘(\’/ '”,(_—t)’ [)i‘—r), P(__').

We have
UH(e) = —H(—e)U, (37)

or

UP® = PSU

(38)
UP® — p-y
define the physical one-particle space:
H" = Hy) DH, (39)

with projections P,’, P, on J#,’, #,'. The #, and J#, are copies of A and
A% with the identification mappings

L :HY — H,
Iul : '#E_e) —= ‘#;"‘

analogous to v there is an orthogonal v

v's o — H"
v = I’P¥ + I,UPY (40)
v = L7'P, + ULPy, (41)

the representation space is defined as
A = V(") (42)
The fields are defined similarly as in (34), (35)
() = COPY?f) + C*wPPf) 43)

(f), ¥*(f) have again all the properties required by the definitions.
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Straightforward calculations show:

$[P(N)] = $(f) = YY) = ePY(f) e VfeH, (44)

with
B = QI,’H(e) PXI;*P,’ + I,’H(—e) P{OI*P,), (45)

so B > 0 and of course B®, = 0 (P, the no-particle vector in %").

Note that " is again a space of antisymmetric wave functions, however in the
Schrédinger picture, the particles are represented by positive energy solutions of
Dirac’s Eq. (4), while the anti-particles are represented by positive energy solutions
of the equation obtained from (4) by reversing the sign of the charge e. This
agrees with the physical idea of an anti-particle as behaving in the same way as a
particle but with opposite charge.

5. THE TOTAL HAMILTONIAN IN THE FOCK SPACE OF THE FREE FIELDS

As we have seen, the natural physical, i.e., positive energy representations of
the free and perturbed time dependent fields are in two different Hilbert spaces,
Ay and A It is in these, a priori unrelated spaces that the formal expressions for
the free and total Hamiltonians are defined as positive self-adjoint operators,
Byin Xy, Bin X',

In the conventional formulation one would assume (implicitly) that there is only
one space, J,, in which both B, and B act. Because the interaction term as an
expression in momentum space creation and annihilation operators does not
represent an operator in ¢, , the total Hamiltonian B is not defined as such an
expression. There may however still exist a self-adjoint operator, defined in a
different way, that can be considered to be the total Hamiltonian. Before trying
to decide whether this is the case, one has of course to agree on a general definition
of what makes a Hamiltonian, choosing a precise interpretation of the heuristic
properties of the formal “second quantized” expression (2).

We base our definition on the observation that formally B is determined, uniquely
up to an additive real constant, by its commutation relations with the (irreducible)
fields ¥(x), ¢*(x). These follow from (1) and (2), and are e.g., for ¥(x):

3
[B, Y(x)] = 2( Y, io* 8i\‘ - mﬁ) — e(A%(x) — a*‘A"(x))t B(x), (46)
= | '
for the smeared fields (5), this becomes

(B, (N = B, [ 3 4 Ji) dx] = — [ 3 b.0HP, & dx = —n
o p= 4 )




123 AN ELEMENTARY C* ALGEBRA FIELD THEORY

In order to avoid domain problems, we bring this in an exponentiated form
and arrive at the following rigorous relation that a self-adjoint operator B should
satisfy if it is to be called the total Hamiltonian:

() e 1B = i e'B¥f), forall fes#, te R (48)

If such a B exists, it is determined uniquely, up to a additive real constant by (48).
We will derive a necessary and sufficient condition on the potential A4°x),
A¥(x) for the existence of such a B. We need two theorems for this:

Tueorem (1). (D. Shale, W. F. Stinespring (24)). Let # be a complex Hilbert
space, C(#) the C* algebra over # as defined in Section 3; T a real orthogonal
operator in 4 (i.e., with respect to # as a real Hilbert space), ¢ the *automorphism
of C(A#) such that ¢(R(z)) = R(Tz), for all z € M. Then ¢y is unitary implement-
able in the Fock—Cook representation of C(#), with respect to 4 as a complex
space, if and only if Ti — iT is a real Hilbert-Schmidt operator in M.

TaeoreM (2). (R. Kallman (25)): Let o7 be a separable C* algebra in a separable
Hilbert space Z; let the weak closure of </ be all bounded operators in . Let ¢,
be a one parameter group of *automorphisms, norm continuous in t, ie.:
limg.,, || d(A) — qS,o(A)H =0, t, tye Ry, A€ . Let there exist unitary operators
W(t) in &, te R, such that $A) = W(t) AW(t)*;YA € o/. Then there exists a
strongly continuous one parameter group e'® that implements the automorphism

d(A) = etPt4e 1B, Ae .

TueoreM (3). There exists a self-adjoint operator B in Xy , satisfying (48) if and
only if the potentials A%(x), A*(x) are such that P.e~"#'P_ is a (complex linear)
Hilbert-Schmidt operator in .

Proof. In X we have a representation of the algebra C(5#°) and automorphisms
é, such that ¢,(/(f)) = Y(e'#f). The question of existence of B is the question
whether these ¢, are unitary implementable (u.i.) for all #; If this is so, they can
be implemented by a strongly continuous one-parameter group of unitary operators
¢'Bt because the ¢, are such that Theorem (2) can be applied.

The field operator algebra is a representation of the abstract algebra C(¢), but
can also be considered as a representation of the algebra C(3#), by identifying the
self-adjoint generators

R(f) = Re(yf) (49)
R(f) = ¥(f) + ¥*(f) (50)
Ri(2) = C(2) + CX(2), (51)
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for all fe A, ze #'; and vy, C(z) etc. as defined in Section 4. From (50), (49):

Wf) = 5 RY) + 5 RGf)
52
1 ,- . (52)
x/x(e'.”‘f) 7! lsz(‘yC’m‘f) ¥ 2{ Re(yie'™), (53)

Call yeifty=1 — O(t), a group of operators in ", that are only real linear,
and therefore not unitary but only real orthogonal. Call yiy—* = _#; then
J = i(P, — P,), unitary in J#’. Now y(f) — J(e'#f) is (u.i.), Vf € # whenever

Re(2) + 5 Re(J2) > 5 RHO() 2) +  Re(FO() 2), (54

BN —

, is (u.i.) for all z € #'. Because 7 is unitary in . Rg(z) — Rp(0(7)z) is (u.i.) is
equivalent to Rp(#z) — Rg(F0(t)z) is (u.i.) Vze#’, and therefore (5.4) is
equivalent to

Rp(z) — Rp(0(1)z) is (u.i.), (55)
for all z € #” (and all ¢). Using Theorem (1), this is equivalent to 0(7)i — i0(¢) a real
Hilbert Schmidt operator, (H.S.), in 2, or because y : # — #' is orthogonal,
y~X(0(z)i — i0(t))y = a real (H.S.) operator in 5#. Now
Yy HO0(2)i — iO(t))y = eBly~liy — yliyeltt = ¢BYiP, — iP_) — (iP, — iP_)e'Ht
. = —2i(P,e!H'P_ — P_e'HP)),
This is a complex linear operator, so we have P e'H'P_ — P_¢'H'P, must be
(complex) (H.S.) in 52, for all z. This is equivalent to P,e—*#*P_is (H.S.) for all .
Q.E.D. As an application of this criterion we prove:
THEOREM (4). The Hamiltonian B exist in Xy , in the sense of (48), if
" 19 A*x) = 0

2% A%x) is a bounded L, function whose fourier transform

2 1
0, ~fi8'X 407,
A%(s) = B f e A (x) dx,
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is continuous except possibly at s = 0, and has the following behaviour at 0, <o :
3 positive numbers Cy , Cy , € , €, 8, N, such that

| A%s)| < C, |s|™* for 0<|8| <
A%Ys) < Cp | s |72 for N <|s|.

Proof. Introduce M(s) = max ,eA%(s); this is a continuous function for
s > 0, and has the same properties for s — 0, oo as 4%(s).
We prove first several lemmas:

LemMA (1). H, self adjoint, H, bounded (so H = H, + H, self-adjoint and
Y(H) = Z(H,)) then

t

o ¢ otl A |
ettt = 1 + ¥ (=) J dt, J dty -+ J dt, Hy(ty) -+ Hy(t,), (56)
ne=l 0 0 0

(Dyson series for finite times),

with Hy(s) = e#o*H,e~"H#*, The convergence is with respect to operator norms, and
is uniform in t for | t | < C, for all C > 0.

Proof. Define sequence
Ry(t) =1
t
Ry(t) = —if Hy(t) dt’
0
(57)
o1
R(t) = —i | Hy(t") R,,(t") dt’,
-9
n=23..:-

Each term is a well defined bounded operator, for all 7 RY, and strongly con-
tinuous in 7. (The integrals are in the strong sense, for properties of such integrals,
see (26).)

Consider | 7| < C, C > 0, fixed

[ Ro(’)l1 =1,
| RI < Hill | t] <|IHllC

t oy ;H ”2
R <1 1RGO <13

general

| In
R < L m,
ni

CZ
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This proves the convergence in operator norm of the right hand side of (56); since

F(1) = Y Ru1),

n=0
the convergence is uniform on all finite z-intervals, the R, (7) are strongly continuous;
therefore F(7) is strongly continuous in ¢z. Call U,(?) = Z:’;o R(t), then from (57),

N

Un(’) =1— ’J Ill(") (jn—l(tl) dt’
0
ni=1x2. .

Taking lim,,.,, on both sides, again using the uniform convergence of U,(¢) — F(¢)
we have for F(z):

F(t) = 1 — if‘ H{t) F(t') dt. (58)
0

As an equation, this has a unique strongly continuous solution. (Let 4(7) be the
difference of two such solutions, then

st
At) = —iJ H(t') A" dt'; for |t| <C, C>0;
0

iteration gives:

140 @) < L1

[2|™ |ax | F(z') @ ||
for all De#, n = 1,2,.. so A(t) = 0,Vr.) (58) is satisfied by e'Hote—iHt: For
DePD(H) = 2(H,) = Z:

(e Hore=tHn _ | ‘
I h 'H1 '
“ SHM (N _ 1) L omiHO _ | 1e4 : ‘
I : + iH — I]foz o|
,—iHh __ tHoh __
< e (‘—h—'—) + if| o + “5"—— — iH,| @]
- (59)
—iHh __
s Lo — —ind + @, with s = lim @, = 0

SO
—iHoh _ |

< e — 1) HO || + || @k + |1 — iH,| @]
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All three terms go to 0 for 2 — 0, so

iHoh ,~iHN

- e _ .
s-lim — & = —iH, D VP e 9.
h=0 h
From this
iHy(t+h) —~iH(t4+h) iHt ,~iHt
S =g e — e . i A ’
s-lim = —ie'™'H e~ 'd VP e 2.
h-0 h
Or
d 5 o e
Tl "(.’IH"‘L’ xl{tq); ' —l("”°'H1e :HI(D YO e 9.

dt '

Both sides can be integrated on [0, 7] and extended to all ® € Z

» ; rt " ’ ’
elllote—x}lt =] e ’J Hl(’l) etHOt e—th dll,
0

SO

F(’) P el'Hole—l'Hf.

LeEMMA (2). Let B(t) be a Hilbert-Schmidt operator for all t € [a, bl, B(t) is
strongly continuous in t € [a, b] and || B(t)|l; < f(1), Vi€ [a, b] for some f(t) =0,
integrable on [a, b]. Then A = f: B(t) dt is (H.S.) and

b
1Al < [ 1B@). .
(We use (H.S.) for Hilbert-Schmidt and denote the Hilbert-Schmidt norm of a

(H.S.) operator B by || Bly.)

Proof. Choose orthonormal base @, in #.
0 1/2
|| B(t)lly = (Z I B(')d’pW)
p=1
5 n 1/2
—tim (3 180 @, 17) "
e

The term || B(?)|, is a limit of continuous functions, all bounded by an integrable
function f(¢); therefore || B(f)|, is integrable on [a, b].
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Fanlt'st) = Y (@, , B(t") DYB(") D, , D,)|

p.q=1

@

< X @y, B(t) D)B(") Py, Py)l

p,a=1

< || Btz || B(")lz -

n,m

b b
> @y, AB < [ dt” [ dt” Fun(t', 1)
i b ab
< [ ar [ | B || BA")e

= j | By dr)

Therefore
e N b 2
Y @y, ABE = || A3 < ([ 1l BO dt) < 0.

?.q=1

LemMmA (3). The H and H, as in Lemma (1), P_ a spectral projection of H, ,
P.=1—P_;If PR(t)P_. = —ij:, P H\(t") P_dt" is (H.S.), and || P, Ry(t)P_
is bounded, for | t | < C, C > 0, then P.e~"#'P_is (H.S.) for | t| < C.

Proof. || P.Ry(t)P_|ls <A, |t| <Cfornz=1,
t
PR P. = —i f P H\(t') R(t)) P_dt’

0
t

- j P H\(t') P.R,(t") P_ dt’
0
t

= J’ P H(t") P_R,(t") P_dt".
0

Suppose that P, R,(t")P_is (H.S.)for | ' | < C, and that|| P, R,(t") P_||,is bounded

by an integrable function for |#'| < C. Then the first integral is (H.S.) by
Lemma (2) and also

t t
| =i [ Pb(e) PR Pd'| < Hyl [ 1| PR) P_y dt'.
Yo 2 0
The second term can be written as

t
[ 4 PR PY RO P
= P, Ry(t) P_R,(t) P_ + iJ.‘ P R(t") P_Hy(t") R,,(¢") dt’.
0
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This shows that it is also (H.S.), it’s (H.S.) norm

o1
< AR+ 4 J | Hy || || Roy(2')l| dt’
0

Q/ 2A '_]_1-1_1#. Cn_
n:
Therefore, by induction all terms P, R,(¢) P_ are (H.S.) for | 7| < C and
i | ||n
| PoRuis®) P-lly < Il 1| PuRot) P_ [l dt” + 24 21IC o,
0 !

Repeated application of this gives

|iIn—1
E; P+Rn([) P Ir_» S (2"1 — ]) A |(| I'llf ’)‘ Ccn-1
| PR P_ly < ¥ AQn — 1 ) 144 L on
n=1 23 ])‘
k-1
- Z A “ Ill'- - 2A Z =l d Hl\ ”.
n=0 n=0
The first term is
\\A Z ” i’ill'] Cn: Aee”lﬂc.
n=0
The second term
24 ]l 1{1 |‘ C Z M 111 |l ) Cn 1 (\ 24 ,\ 111 “ C(,“”l"c
n=1

SO

k
Y | PoRy(?) P_|l; < A(1 + 2| H,y || C) e" ™€,

ne=1

The series converges in the (H.S.) norm, the sum is (H.S.); it converges also in the
operator norm to P eHote—H!P_: the limits are the same, therefore P e'Hote—tH!
and finally P.e~*#tP_is (H.S.) for || < C. Q.E.D.

To prove the theorem we only have to show that P R,(¢) P_ is (H.S.) for all ¢,
and with the properties of 4%(x), A*(x) as stated.
We use the “momentum representation” for J#, by means of the Fourier transform

l ik*x -
100 = o [ 0 .
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J is now the L, space of functions f,(k), p = 1,2,3,4., H,
(e = ol, o, o®), Py are represented by

Pul) = 5 (1 £ LK AP

The operator R, R(?) P_ = —i_[(', P H\(t") P_dt" has the kernel
t ) . A .
—ief P.(k,) AT Ak, — ky) P_(ky) PRELUAT
0

= eP (k) P_(k,) /fn(kl — ky) w(ky) + w(ky)

P.R(t) P_is (H.S.) if

for w(k) = (k* + m®)'%, and H, is given by the integral kernel eA%k, — k).

I — explifw(ky) + w(ky)} 7]

e - _l — exp[(jcp(kl) (u(k:)}i]; a

| J dk, dk, | eA%k, — k,)|* | —— o) T o)
v -0 1 | 2

- Tr{P,(k,) P_(k,)} < o0.

Using well known trace properties of o, B

o pto0 ’ . N 2 ..

| f dk, dk, (1 — ";(k:i)z(%) | ek, — k)2

[ L= pliatty + @)
w(k,) + w(k,)

-0

2
=

It is sufficient to prove

e k; * ko + m?® | I
.”_, ( o ZT(];)T(H) M( Kk, — K, |)
.| 1 — expli(w(ky) + w(ky)) ¢]
w(k,) + wk,)

2

dk, dk, < oo.

Introduce new variables: k, = k, + k,, k; = k; — k, .

The integrand is a function of k, == k,|,k; = | k;| and u = cos(k,, k,);
after introducing polar variables and integrating over some of these, one gets the

condition

@ a0 p4+l
[ fk, ko vuy gl Koy wp Meay k 2g? die, dicy du <
0 0 -1
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with
k2 — kg® + 4m?
fbess ks w) = | — =g »

1 — exp[}{(a@ + bu)'/? + (a — bu)*’*} 1]
H(a + bu)’? + (a — bu)'/?} )

a = k2 + ki + 4m?, = 2k kq
ke=0, k=20, m>0 —1<u<-+l

glks, ka,u) =

We investigate first the integral
© a4l
f J fe%k 2 dk, du.
oY -1
We have the following useful inequalities

kisikas B
1 0 < (@ — b2 < (@ — b2 < a.
: 0 < (a+ b2+ (a— b2 < (a+ bu)r’? + (a — bu)*’* < 2a'P.

. LkE — ki + 4m?
(@ — bR

W N

5

L=<

From these there follow inequalities for £, g:
(a) for flk,, ka, u):
1: if k2 + 4m?® > k;*

B k2 — kg2 + 4m?
(az —— b?)l /2

2kq?

0<1 < flks, kas u) <

2: ifk2+ dm® = k2 flks, ka,u) = 1.
3: if k2 + dm?® < k,*:

2k 4* - 3 3 k2 — kg® + 4m?
< i Sfky, kasu) <1 — @ — Boyn

1

(b) for gk, , kq, u):
i expl(i2){(a + bu)’? + (a — bu)*/?} 1] — 1

kE+ ki + 4m®

0 < glky, kg, u) < i@ T b+ (@ — b

_ 4
@+ b+ (@a—byr

(60)

l1:a>b>=0, so a— bu, a-+ bu, a® — b** > 0 for all admitted values of

(61)
(62)
(63)

(64)
(65)

<2

' (66)

|

(67)
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Using (64) (67) we have for large &, , i.e., for k2 > k,® — 4m?*

2k kq? 16
2+ ko 4 dm® {((ks + ka)? + 4m®)1/2 4 ((ks — ka)® + 4m?))L/2)2

<< 2f 2 <
0 \fg ks ~ ks
for k,— oo, this behaves like 8k,%/k 2, so (60) converges, for all k; = 0. We now
investigate
[* Mk Ako) kit dk, (68)
0

with

.0 +1

A(ky) = J f 2% 2 dk, du.
0 -1

We prove a few properties of A(k,)
1: A(ky) is continuous for all k; > 0; for 0 < k, < k, we have (64) (65) (66):
0 < flks, ka,u) <2, for k, > kg, , because of (64)

kd + ki + 4m* = k2

0 t;f(kx ’ kd y U) <
From (67):

0 < gtk,, kg, u)p < /(8,2 so 0 <fek? < hik,, ky),
with
hk, , kg) = 16 for 0 <k, <k,
16k 2 &)
= kﬁd for k; <k,

The term fg?k 2 is a C® function in k,, k4, u, so f:;fgz du is a C* function in
ky,ka, and Ay(ks) = [o dk k2 [*} fe*du is C= in k, for every 0 <N < oo.
For N > k; > 0:

| 4G — Ak < 2 [ b, k) dley, = 2 kgt (70)
AV

For 0 <k;, ki <N:
| A(ky) — A(kg)|
< | A(ky") — Ay(ky)| + | Ay(ka) — Antka)l + | A(kg) — Ax(ky)|

< 32-

2 2
(k_d__jv:_kd_) + | An(ks) — Ayn(ka)l,
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and for kg, k' < M < N this is

2

> M
<64

+ | Anlks’) — An(ka)l. (71)
Using continuity of all Ay(k,), (71) gives in the usual way continuity of A(k,)
forallk; >0

2: limy ., A(k )]k exist. Write f(k,, kg, u) as

dk kA1 — u®) + 4m?}
(a® — b2u2) 2 {(a® — b*uP)'/® + k2 — k + 4m*}’

one obtains

i K 5. KW | 1 — expli(k,® + 4m®)'/2 t]|*
/!f,n% 7 IR (] k2 + 4/;12) (ks* -+ 4m?) i (72)
for kg < 2m, from (64) (67)
fek? 32 i
k& SKET kgt amd (@@ + by + (a — by PP
32 1

<
T (k32 + 4m?) 2k + 4m®)

This is integrable on —1 <u < 1, 0 <k, < o, so the dominated convergence
theorem of Lebesgue gives

L a1 @ 2] 2
lim A2 _ [ g [ ak, jim B
Y

kg0 I\'ar‘2 0 kg0 kd2

3: (A(k,))/k, remains bounded for k; — oo because
Ak <2 [ hky, ko) die, = 64k, .
0

This proves the convergence of (68) and therefore P, R,(r) P_ is (H.S.), its (H.S.)
norm bounded by a constant, independent of 7; this proves the theorem.

The same sort of question as was answered in Theorem (3) and (4) about B
can be asked about the interaction term B, separately, using its commutation
relations with #(x), ¥*(x) in the same way as for B, one defines B, as the self-
adjoint operator such that

eEPY(f) e = Y(e'™f), forall feH, TeR (72)
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It seems very unlikely that the potentials can be chosen such that this B, exists.
This is clear from the following theorem.

THEOREM (5). Let H, be such that

1: AXx) = 0,k = 1,2, 3.

2: A%x) is a C* function with compact support (non-empty). Then there exists
no self-adjoint operator B, , satisfying (72) in X, . (Note that for this case B, and B
both exist in A, , according to the preceding theorem.)

Proof. A trivial generalization of Theorem (3) shows that B, exists in %,
if and only if

P @ p_is (H.S.), (73)

or
P.G(x)P_ is (H.S.), with G(x) =1 — "™ (74)

The function G(x) is also a C= function with compact support, and its fourier trans-
form G(s) is in the space (S) of Schwartz. We prove that the kernel

P.(k,)P_(k,) G(k, — k) isnot (H.S.)

or that the integral

k.k, + m? 3
J.J' (l — m) IG(kl — ky)|* dk, dk, , (75)

diverges. Introduce p, = k, , p. = k; — k., we have the repeated integral

o [ P — po) + m?
[ axiC@ar [ (11— GEToe) oy

If (75) converges, then

L PPy — Po) + m*
f_x ([ 2 ﬂl’(Plﬂ w(p; — P2) ) ahs ® (16)

(Fubini, for almost all p,).
Using p = |p1 |, ps = | p2 |, and u = cos(p, , p»), then this can be written as a
repeated integral over p,® dp, du and (76) implies

AT pi* — prpou + m? s
J-o (l (P + m*)'2 (ps® + ps® — 2py pou + m*)/2 ) s

(for almost all p, , u.)
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It is easy to verify that the integrand has a limit for p; — oo, it is §p,*»* which
contradicts (78). Q.E.D.

6. SCATTERING THEORY, S-OPERATOR

In the formal derivation of the S-operator and its perturbation series, one uses
an interaction picture,

P'™(r) = €Po'eP'P(0), (79)

the evolution operator in this picture
Ut 1) = e g oh, (80)

is supposed to give the S-operator by

S = lim U(t, to).
1+

{o—b—fz

Because as we have seen, B in general does not make sense in the Hilbert space
of the free field, where B, is defined, U(t, t,) is meaningless, and the question
whether U(, t,) converges to an S-operator cannot even be asked. The essential
ideas of this procedure can however easily be formulated rigorously in the algebraic
description. We need some assumptions on the scattering behavior of the classical
equation. We are not interested here in this classical behavior as such, but want to
show how it determines the scattering theory of the corresponding quantum field
completely. The following assumptions serve this prupose, but are rather restrictive
on the potentials 4%(x), A*(p) see (27). Weaker assumptions would involve us in
inessential complication that we want to avoid. Suppose 4%(x), 4%(p) are such that

lim e#te™ ot — W, (81)
4w

exist as strong limits in 7, and are unitary. The classical S-operator is then

Sa = W, *W_. (82)

A definition of a generalized interaction picture for the field is suggested by the
idea of E(A) as a generalized expectation value (@, A®). For each state E(4) of
C(o) (considered as a state at 1 = 0)

E™(A) = E(¢$:4°dA)). (83)
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The functional EI"(4) is determined by its values on all products of fields.

EMUR) = () = E(ed%e ()] =+ b b(£))
= E((e'e™Molfy) -+ Y(e'e '),

because of (81), of the norm-continuity of (f) as a function of f€ #, and of the
continuity of E(A4) we have

Jim, NG - ) = EGUWL) -+ (W),

For each E(A) there exist therefore states Ei(4) = lim,,i, E/"(A4). The out-
coming state is then given by

E.((f) - () = (P, Y(Seify) -+ Y(Séifn) P-)

Because S¢; is a unitary operator in #, commuting with H, the transformation
U(f) — Y(SXf) can be unitarily implemented in ;. (PSP = 0). This means
that there exist a unitary operator S in %, determined uniquely, up to a phase
factor such that

WSS = S*Uf)S forall fe #. (84)
Use the arguments leading to (36). In % :
(Saf) = ClyP.Saf) + C*(yP_Saf)
(with (23), (24))
= I'ySay™) C(yP.f) I'(ySay™)
+ I'YySery™) C*yP_f) I'(ySery™)

= I'YySary™) ¥(f) I'(ySery™) (85)

So
S = I'(ySay™) = I(S), (86)

and
S' = ySay™ = I(P,Sa) I;*P, + I(UP_SalU) I;*P,. (87)

Because of (26) (37), Sci(e)U = USa(—e), so (86) can also be written as

S" = I(P.Sce) I;'P, + I(P.Sei(—e)) I;*P, , (88)
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which makes its physical meaning clear. Consider now an incoming state E_(A4)
that is given by a vector @_ in the free Fock space %

E(4) = (P, 4D.)

The corresponding outgoing state is then given by

E.((fy) = () = E_((Seify) = Y(Scifu)

I

(P, Y(Scif) = YSaif) D) = (SP_, Y(fy) =+ $(fn) SP-),

so E.(A) is also given as a vector state in 4 :
E.(A) = (D., AD,) VAe C(K); with @, = SO_

(Note that the arbitrariness of a phase factor in S in (83) has been used to obtain
SP, = D, , D, vacuum of free Fock space.)

The following observation on the physical interpretation of this result should
be made: As we noted earlier the Dirac Equation (4) describes essentially a many-
particle situation; this is due to the requirement of positive energy. The operator
e-'Bt when it exists in 4 , mixes subspaces of different particle and anti-particle
numbers N, , N, . Pairs of particles and antiparticles are created and annihilated
continuously; only the difference N, — N, is constant (charge conservation).

However, for the limit 7 — - oo, the theory reduces to a one-particle situation.
The scattering operator S that we have derived is a product operator I'(S;,) as
defined in (20), generated by a one-particle operator Sep = ySay~! in the physical
one-particle space #". Such a product operator does not create or annihilate
particles or anti-particles; N, and N, are conserved separately. Each particle
or anti-particle is individually scattered by the electromagnetic field, completely
independent of the others. This is an assymptotic result, for t — o0 and comes
from a dynamical situation for finite times that is more complicated. Nevertheless
once this result has been obtained the many particle space #; becomes superfluous;
all physical information on S in .#j is contained in Se » acting in #”'. Moreover
because “S.; has no matrix elements between #, and ;" one can consider
separately the parts of S, that scatter a particle and an antiparticle.

One has S\,P, = I,(P.Sa) I;'P,, acting in %, which is identical to P,Se
in #. : so the scattering of a particle is described by the positive energy part of the
classical S-operator.

One has SyP, = I, = I(UP_SaU)I;'P, acting in 5, , which is identical to
UP_SaU in #. and is obtained from P_Sa in ., so the scattering of an anti-
particle is described by the negative energy part of the classical S-operator, provided
a transformation using the charge conjugation U is performed.
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If one writes the dependence on e again explicitly one has

Ue—tH(e)t — eﬂH(—v)lU‘
SO
UP_Sc(e)U = P USc(e)U = P Sci(—e).

This means that the scattering of an anti-particle can also be given by the positive
energy part of the classical S-operator for opposite charge —e.

(We are aware that we are using a somewhat more abstract language than is
standard in most of the physical literature on this and related problems. For
rigorous investigations in the essentially mathematical pecularities of field theory
this seems to be unavoidable. Restatement of the results in the more usual language
of integral-kernels, ‘‘S-matrix elements”, in momentum and spin variables is
not difficult and is left to the reader.)

Finally something must be said about the status of the perturbation series for
the S-operator in this model. As we have noted in the beginning of this paragraph,
this series and the procedure leading to it is purely formal, there is no way of giving
it a precise meaning in terms of operators in the Hilbert space %, . Still one can
use this formal collection of integral expressions, some of which are infinite for
approximative calculation of S. The reason for this can be understood from the
following: Calculation of the scattering operator S in .%4;, can be reduced to
calculation of S;; in #”, and therefore to S in #. The S has a perturbation
series

Sa=1—i[" m@yd+ S ([ 1) B} dey diy +

This will exist and converge to S¢; under certain physically reasonable assumptions
on the potentials 4°(x), 4*(x); it has none of the problems of the corresponding
formal series of S in % .

“Matrix elements” of S¢1 (and therefore of S) can be approximated by terms
of this series; it is not difficult to verify that one will get the same expressions as
from the formal series in 47 , except that the expressions corresponding to vacuum
diagrams are automatically absent.
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SAMENVATTING

In dit proefschrift wordt een eenvoudig model uit de quantumveldentheorie
op mathematisch strenge wijze beschreven met behulp van C*-algebra-
begrippen.

De situatie die door dit model beschreven wordt, is die van een systeem van
electronen en positronen die niet met elkaar in wisselwerking zijn maar wel
met een gegeven uitwendig, niet gequantiseerd electromagnetisch veld.

De beschrijving van dit model op de gebruikelijke wijze met operatoren en
vectoren in de Fock-Hilbertruimte vertoont enkele van de voor de quantum-
veldentheorie karakteristiecke divergenties. De totale Hamiltoniaan is een
formele uitdrukking in de veldoperatoren en is niet gedefinieerd als zelf-
geadjungeerde operator. Dientengevolge heeft de daaruit afgeleide storings-
theorie geen mathematische betekenis. De reeks die, althans formeel, voor de
S-operator kan worden opgeschreven, bevat divergente vacuumtermen. Deze
termen kunnen worden geélimineerd en een bruikbaar resultaat kan worden
verkregen. De daarbij gebruikte procedure kan echter niet worden gemotiveerd
en is ook mathematisch hoogst onbevredigend. Voor dit model is het mogelijk
met behulp van C*-algebrabegrippen hetzelfde resultaat te verkrijgen, maar
dan op een eenduidig bepaalde en wiskundig strenge manier.

In § 3 worden de twee elementen waaruit een C*-algebrabeschrijving van
een quantumveld bestaat, geconstrueerd, n.l. de abstracte algebra van veld-
operatoren en de groep van automorphismen die deze algebra in de tijd trans-
formeert.

De veldoperatorenalgebra is een bijzonder geval van een algebra voort-
gebracht door anticommutatierelaties. De tijdsevolutie-automorphismen zijn
afkomstig van de tijdsevolutie van oplossingen van de veldvergelijking, be-
schouwd als klassieke partiéle differentiaalvergelijking.

In §4 worden representaties van dit abstracte quantumveld in Hilbert-
ruimtes onderzocht. Er bestaat een eenduidig bepaalde representatie met
positieve energie; voor elk gegeven stel electromagnetische potentialen dat aan
redelijke eisen voldoet. Deze representatie wordt geconstrueerd, evenals die
van het vrije veld.

In § 5 wordt aangetoond dat in sommige gevallen er toch een zelfgeadjun-
geerde operator bestaat, in de Fockruimte, die opgevat kan worden als totale
Hamiltoniaan. Het definitiegebied van deze operator is echter zodanig dat hij
niet gebruikt kan worden voor storingstheorie.

In § 6 wordt de verstrooiingstheorie van het model behandeld. Een interactie-
beeld in de gewone zin kan in het algemeen niet worden gedefinieerd. Het is
echter wel mogelijk een gegeneraliseerd interactiebeeld in het C*-algebra-



ysteem in te voeren. Als de oplossingen van de klassieke vergelijking een

bevredigend asymptotisch gedrag vertonen, leidt dit gegeneraliseerde inter-
actiebeeld tot een verstrooiingsautomorphisme, waarvan blijkt dat het ge-
representeerd kan worden door een unitaire S-operator in de Fockruimte.
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STELLINGEN

1

Er bestaat in de Fockruimte van het vrije Diracveld geen zelfgeadjungeerde
operator die de totale lading in een eindig volume beschrijft en die correspondeert
met de gebruikelijke formele operatoruitdrukking voor die grootheid.

Paragraaf 5 van dit proefschrift.

2

Een essenti¢le wiskundige moeilijkheid die optreedt bij het gebruik van een in-
definiet “inwendig product’, zoals dat van Gupta en Bleuler voor het vrije foton-
veld, wordt niet opgelost door zo'n product te definiéren met behulp van een
metrische operator in een ruimte met een echt, definiet inwendig product.

S. N. Gupta. Proc. Phys. Soc. (London) A 63, 681 (1950)
K. Bleuler. Helv. Phys. Acta 23, 564 (1950)

K. L. Pandit. Nuovo Cimento, Ser. 10, Suppl. vol. 11
(1959)

3

In verband met recente ontwikkelingen in de quantumveldentheorie zou het
wenselijk zijn een mathematisch-strenge spectraaltheorie te ontwikkelen voor
operatoren in een “Hilbertruimte met indefiniete metriek’. Deze ruimte zou dan
kunnen worden opgevat als een locaal-convexe topologische ruimte, voorzien van
een continue, hermitische, niet-ontaarde vorm.

4
De wijze waarop Wigner bij zijn beschouwingen over de Lorentz-groep het begrip
‘representation up to a factor’ hanteert, is verwarrend en maakt niet duidelijk of
hiermee een ‘projectieve representatie’ dan wel een ‘meerwaardige representatie’

wordt bedoeld.

E. P. Wigner, Ann. of Math, 40, 149 (1937).



ﬁ

De bewering van Domb en Wyles dat de soortelijke-warmtecurve van Gd VO,
zoals deze is gemeten door Cashion en medewerkers, dicht bij de Néel temperatuur
en abnormale vorm heeft, die zou wijzen op een sterke koppeling tussen het spin-
systeem en het rooster. berust op een aanvechtbare interpretatie van de meet-
resultaten.

€

C. Domb, J. A. Wyles. J. Phys. C (Solid State Physics)
2, 2435 (1969)
J. D. Cashion at al. Proc. Colloque Int. du C.N.R.S.:

Sur les Elements des Terres Rares (1969). To be published.

6

+

Wegens het feit dat de huidige experimentele kennis van het proces K" —n"n~ e" v
diverse interpretaties openlaat, is het niet verwonderlijk dat het model van Roberts
en Wagner dit proces kan beschrijven.
R. G. Roberts, F. Wagner. In: Proc. Topical Conference
on Weak Interactions. CERN 69-7, p. 281.

-

Men kan een voorbeeld geven van een oneindig-dimensionale Banach-Liealgebra
die een abstracte Liegroep karakteriseert, maar die toch niet continu geinjecteerd
kan worden in de Liealgebra van begrensde lineaire operatoren van een Banach-
ruimte.

8

De invloed van crossrelaxatie-verschijnselen op kernspin-roosterrelaxatie en
dynamische kernpolarisatie kan uitstekend worden onderzocht in met zink ver-
dund NiSiF,-6H,0.

9
Men zegt vaak dat een getal ‘verdwijnt’ als men bedoelt dat het gelijk is aan nul.

Dit is een betreurenswaardig anglicisme.

10

Het verdient aanbeveling een voorwaardelijke kiesdrempel in te stellen die het
optreden van een nieuwe politieke partij niet belemmert en pas in werking treedt
als zo'n partij voor de tweede maal aan dezelfde soort verkiezingen deelneemt.

P. J. M. Bongaarts










