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INTRODUCTION

The purpose of this thesis is the study of different aspects of the theory
of alpha emission. In the first chapter the internal problem of the formation
of the alpha particle from the nucleons in the nucleus is examined. The alpha
particle is supposed to be formed out of four nucleons in definite shell model
states. An approximate wave function for the system is then proposed,
which leads to a boundary condition at the nuclear surface to be satisfied
by the wave function for the alpha particle. From this boundary condition
we are able to calculate absolute transition probabilities in alpha decay,
thus relating the lifetime and the radius of the alpha emitting nucleus. In
the second chapter of this thesis we consider the directional distribution
of alpha radiation from oriented nuclei and give the general formulae for
the directional distribution as a function of the degree of orientation of the
ensemble of emitting nuclei. It is shown that one can deduce from the
measurements on alpha directional distributions of oriented, spheroidally
deformed nuclei whether the preferential emission of the alpha particles
takes place from the poles or from the equator of the nucleus. This provides
a possibility of obtaining independent experimental information concerning
the preformation problem of alpha particles studied in the first chapter.
In the classical limit, i.e. for “heavy” nuclei and large angular momenta,
it is shown that the averaging procedures which are used for the derivation
of the formulae for the directional distributions can be interpreted in a
simple geometrical way. For this purpose some results of the next chapter
are used. In the third chapter the classical limits (asymptotic expressions for
large angular momenta) of Clebsch-Gordan coefficients, Racah coefficients
and the coefficients of the matrix representation of the rotational group are
investigated; this chapter may be read independently of the others.

The contents of this thesis are also published in Physica (Physica 23
(1957) 955 ; 24 (1958) 233 ; 24 (1958) 263). Some earlier work on alpha
disintegration appeared in Physica 21 (1955) 449.



Chapter  I

ON THE THEORY OF EMISSION OF ALPHA PARTICLES
AS RELATED TO THE STRUCTURE OF THE NUCLEUS

Synopsis
The internal problem of the formation of the alpha particles emitted in alpha

disintegration is considered. In this respect the mean free path of alpha particles in
nuclear matter is important. A comparison is made with the optical model treatment
of alpha particle scattering; the significance of the alpha particle potential well para­
meters is discussed. A short mean free path for the alpha particles in nuclear matter
suggests that the alpha particle formation can be characterized approximately by
a boundary condition on the nuclear surface, which further determines the alpha
particle propagation in the external region. An approximate wave function representing
a nucleus with shell structure emitting an alpha particle is proposed and provides
an expression for this boundary condition. Such an expression can be used for the
calculation of absolute as well as relative transition probabilities in alpha decay. The
value for the radius of the alpha particle potential well, which is obtained in this way
from the alpha decay probability is in good agreement with the radius of the potential
well determined from alpha particle scattering. A summary is given of the experimental
information which would be useful for a further test of the picture of alpha particle
formation.

§ 1. Introduction. The theory of alpha disintegration may be divided
into two parts:

(1) the external problem of propagation of the alpha particle once it has
left the nuclear region,

(2) the internal problem concerning the formation of the alpha particle
from the nucleons in the nucleus.

In this paper we shall be mainly concerned with the internal problem.
The value of the original theory of alpha disintegration 1)2)3)4)5)6) given
in 1928 consists fnainly of a derivation of the lifetime-energy relation from
the quantum mechanical barrier penetration formula. The situation con­
cerning the internal problem has been unclear for a long time. Only recently
a number of suggestions were made by Perlm an, Ghiorso and Seaborg 7)
R a sm u ssen 8), T h o m a s9), G riffing and W h eeler10) 11), Bohr,
Fröm an and M ott'elson12), Tolhoek and B russaard13), R asm ussen
and Segall u ), Fröm an 15) and Mang 16), which have a bearing on the
topic of alpha particle formation and nuclear structure, to which this paper
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is also devoted. Furthermore it is useful to make some comparison of alpha
disintegration and the scattering of energetic alpha particles by nuclei17)18).

In § 2 of this paper we give a discussion of some concepts used in the
theory of alpha disintegration and also summarize some results of earlier
papers. In § 3 we discuss the meaning of the data obtained by the analysis
of alpha particle scattering. A proposal for an approximate solution of the
internal problem (leading to a boundary condition for the alpha particle
wave function at the nuclear surface) is given in § 4 and used for an estimate
of the absolute transition probability for alpha disintegration. In § 5 a
discussion is given of the experimental material, which would be useful for
testing the ideas on the internal problem and making them more precise.

§ 2. Discussion of the basic concepts of the theory of alpha disintegration.
The potential which the alpha particle experiences is no problem if the
alpha particle is outside the range of the nuclear forces of the nucleus; it
is then simply the electric field of the nucleus. However, it is by no means
simple to decide to what extent the influence of the nucleus on an alpha
particle within the nuclear region can be described by a nuclear potential well.
In this respect it would be of importance to know whether an alpha particle
can move as a definite entity within nuclear matter. Here we could intro­
duce a mean free path la of the alpha particle indicating the distance over
which it travels before dissociating. la should be compared with the nuclear
radius R(& 8 X 1C)-13 cm for heavy nuclei) and the nuclear surface thickness
s 1.3 X 10-13cm; R and s are considered as parameters characterizing
the nuclear matter distribution, s being chosen as the distance over which
the density falls from 80% to 20% of the central density). One may also
compare la with the radius of the alpha particle which has a value of
(}a on 1.6 X 10-13 cm 19).

The older versions of the theory of alpha disintegration assume that the
alpha particle exists as such before being emitted and is contained in the
nuclear potential well, which serves as a box. This picture would be plausible if
la R. In this case one may expect alpha particles to move as definite
sub-units in the nucleus (cf. the alpha particle model of the nucleus). Even
for smaller values of la the notion of a nuclear potential well for alpha
particles could be useful. However, one needs no longer to expect alpha
particles to exist as sub-units of the nucleus with any appreciable probability,
so that this picture could be compatible with a shell model wave function
for the nucleus (this picture was used and elaborated in an earlier paper13)).
If finally la becomes very small (la * s), this has as a consequence that alpha
particles cannot move as well defined units within nuclear matter and the
notion of a nuclear potential well may have only a meaning for the nuclear
surface region, but will no longer be useful for the inner region of the nucleus.

It is difficult to determine la. A theoretical determination would present
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a very complex problem and we do not attempt here to solve it. The ex­
perimental data, which may be used for a determination of la, are the
scattering cross sections of alpha particles (of kinetic energies of about 20
to 40 MeV) by nuclei. These data have been analyzed in terms of an optical
model by Igo and T haler 17) and by C heston and G lassgold 18). They
assume a complex potential well of which the imaginary part characterizes
the absorption

Vc(r) =  V(r) +  iW (r) =  (F0 +  iW 0)/{ 1 +  exp [(r -  R)/d]}. (2.1)

The absorption due to a complex potential V -f- iW  can be alternatively
expressed by the mean free path la (defined as the distance over which the
intensity of a wave decreases by a factor e), related to it according to 17)

I - 2 =  (4M!W)Tint [{(PT/r<n<)2 4- l}i -  1], (2.2)

where M  is the mass of the alpha particle and Tint represents the local
kinetic energy: Tint(r) =  E — {V(r) -f- Veoui(r)}. Here E  is the kinetic
energy at large distance and VCoui is the potential energy of the alpha
particle in the Coulomb field of the nucleus. In this way a mean free path
la — (1.0 to 1.5) X 10-13 cm is found for the value of r at which V(r) =  — 20
MeV for a scattered alpha particle of 22 MeV. This means that la is short in
the surface region and that we have the case mentioned at the end of the
last paragraph, in which the central part of the potential is scarcely observable
(cf. the discussion in § 3; we do not give any number for la for a value of r
such that r <^.R, as such a number probably has no real significance).
It should be realized that la (as well as V(r)) will in general depend on the
energy of the alpha particle, so tha t la will probably have different values
for alpha particle scattering and alpha disintegration. In this respect it would
be interesting if an investigation were made to detect how la changes with
the energy of the scattered alpha particles. However, we shall tentatively
assume that la has a small value also for alpha disintegration.

We should like to point here to the dubious character of a way of reasoning
which is sometimes presented in this context (assuming a value of la suf­
ficiently large to speak of a nuclear potential well throughout the nucleus and
thinking of one alpha particle in the well in the initial state): (a) the alpha
particle is a boson being composed out of 4 nucleons, (b) the nuclear poten­
tial well is shallow (about 20 MeV; i.e. about the height of the Coulomb
barrier at the nuclear surface minus the kinetic energy of the alpha particle
at large distance from the nucleus) since the alpha particle should be in the
lowest possible state in the potential well before emission. Otherwise a lower
nuclear state could be reached by a transition of the alpha particle. This
transition would not be forbidden because the Pauli principle does not act
for a boson. This reasoning is subject to the following criticism: (a) the
Ehrenfest-Oppenheimer theorem 20) on the boson or fermion character of
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composite particles is subject to a limitation; it can no longer be applied
if the composite particles penetrate each other or if they are penetrated by
the kind of particles from which they are formed, (b) therefore an alpha
particle within a nucleus cannot be considered as an independent boson;
it should be analyzed in terms of nucleon states in order to see how the Pauli
principle acts on it and there is no need for the alpha particle well to be
as shallow as about 20 MeV.

If it is assumed that (a) the nucleons of the nucleus are (at least predomi­
nantly) in individual particle shell model states and (b) that no states,
representing alpha particles moving within the nucleus, are admixed to the
nuclear wave function with an appreciable probability, the problem arises
whether the emitted alpha particle can be said to be formed from nucleons
in definite orbits. If during alpha emission the nucleons disappear from four
shell model states, one can say that the alpha particle was formed from the
four nucleons in these states. We might then try to obtain a description
of the alpha emission by taking only the wave functions of the nucleons
from which the alpha particle is formed and by assuming further that the
influence of the other nucleons is simply described by potential wells for the
transforming nucleons and the alpha particle respectively. As far as ex­
perimental evidence on the shell model configurations for the initial and
final states of an alpha transition is available, it does not disagree with this
picture. The fact that alpha transitions often lead to the ground state or
a low lying excited state of the daughter nucleus shows that the shell model
states involved in the alpha emission are the states with the highest energies
of the nucleons.

The preceding picture can be elaborated as well for spherical nuclei as for
nuclei with an intrinsic spheroidal deformation. In order to have a definite
picture we shall go into some more detail for the case of the spheroidally
deformed nuclei. The projection Q of the total angular momentum of a
nucleon on the nuclear symmetry axis is a good quantum number, charac-
erizing the independent particle motion. The eigenstates of the nucleons
cf. N ils so n 21), M oszkowski 22), G o t t f r i e d 23)) are doubly degenerate,

having the same energy for ±  By K, we denote, as is customary, the
component of the total angular momentum of the nucleus along the nuclear
symmetry axis. A schematic representation of the nucleon states is given in
fig. 1. On the basis of the preceding picture one may conjecture (cf. 12)) that
alpha particle formation will be favored, if the two neutrons involved in
the alpha emission have quantum numbers ±  &n and the two protons
involved have quantum numbers i  &p '■ the wave functions of such nucleon
pairs have the largest possible overlap, which seems favörable for alpha
particle formation (this is formulated with more precision in § 4). Such favored
alpha emission would be represented in the schematic fig. 1 by alpha particle
formation from the nucleon states 1, 2, 3, 4; the alpha particle which is
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formed would be characterized by m' =  0 (m' being the component of the an­
gular momentum of the alpha particle along the nuclear symmetry axis) on or
just outside the nuclear surface and the alpha transition by the selection
rules (1) AK  =  0 and (2) no change of parity. If the propagation of the alpha
particle in the external region can be determined from a boundary condition
on the nuclear surface, the boundary condition can be chosen to be real in this
case of favored alpha emission (cf. (4.17)). Furthermore one would also

‘energy

■e. p

ft ft ^
^ 2

neutrons

- ± « p

■± n "  - £ 5 — © - ± f i p

protons

ft ft ft f t .$
neutrons

r j
C\ )  KJ

protons
Odd A Even A

Fig. 1. Schematic representation of alpha particle formation from shell model states of
nucleons (for spheroidal nuclei). These states are characterized by a quantum number
Q. I t  is supposed that favored alpha emission occurs if the alpha particle is formed
from two sets of paired nucleons, such as 1,2, 3, 4. For odd-^4 nuclei an unfavored
transition occurs if the alpha particle is formed from the nucleons 1, 2, 3, 5; such

a transition may lead to the ground state of the daughter nucleus.

expect that emission of an alpha particle from an odd-zl nucleus formed
from the nucleons 1, 2, 3, 5 would be possible (and it may very well present
the most energetic alpha transition to the ground state of the nucleus);
however, a smaller intrinsic probability should be expected for such alpha
emission since the states 3 and 5 will not overlap too well. Such alpha
emission may be called unfavored (in such transitions K, as well as the
parity may change). Finally it can be remarked that the favored alpha
emission from an even-even and an odd-^4 nucleus should be very analogous,
if in both cases the alpha particle is formed from the same nucleon states
(say, states 1, 2, 3, 4 in fig. 1 as well for odd A as for even A).

In order to test this picture experimentally one needs well analyzed
alpha disintegration schemes with spin and parity assignments. Furthermore
one can obtain a sort of intrinsic alpha particle formation probabili­
ty 12) 15) 24) in the following way: define as Po(Z,E) the smoothed out
Geiger-Nuttal law for even-even nuclei for ground state to ground state
transitions (supposedly favored); this function is of the form

loiog Po{Z, E) =  C(Z) -  D(Z)E~K (2.3)
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According to B o h r, F rö m a n  and M o t te l s o n 12) 15) one may define an
F-value for any alpha emission of odd- or even-A nuclei, as

where Pa is the measured transition probability and P q(Z, E) has the value
according to  (2.3). One should expect th a t the so defined F -value is a sort
of intrinsic formation probability, which should be largest for the favored
alpha transitions. Thus one should be able to test the above picture by
checking in alpha disintegration schemes (with spin and parity  assignments)
whether high F-values correspond to  the selection rules: AK  =  0, no change
of parity. Although there are some cases in which this is confirmed 15)
(p. 51), one should like to have more extensive experimental information.

§ 3. The optical model interpretation of alpha particle scattering. Although
various models have been proposed 17) 18) 25) 26) 27) 28) 29) 30) for the
description of alpha particle scattering, the optical model (description by
a complex potential well) seems most adequate. Alpha particle scattering
data  were analyzed with the aid of the optical model by Ig o  and T h a le r  17)
and by C h e s to n  and G la s sg o ld  18). These authors noticed th a t the
elastic scattering cross sections are insensitive to large changes in the inner
part of the potential well. The same data  for the scattering of 22 MeV alpha
particles by Ag could be fitted about equally w ell18) with the parameters (cf.
(2.1)) :F 0= —50MeV; JF0= —20M eV ;i?= 7 .5x  10~13cm; <f=0.60x 10~13cm
and Vo =  —150 MeV; W 0 =  —20 MeV; R  =  7.09 x l 0 - 13cm; d =  Q.60 X
X 10~13cm. The inner parts of the potential wells are very different for both
sets of parameters, although the outward tails do not differ very much.
This can be understood as a consequence of the strong absorption by the
imaginary part of the potential, which prevents the alpha particle waves
from reaching the central part of the nucleus with any appreciable amplitude.

This argument for the insensitivity of the scattering cross sections for the
inner part of the potential well can easily be brought into a more quantita­
tive form, if the shape of the potential allows the application of the WKB-
m ethod to the Schrödinger equation. We show this in the following way.
In the optical model the wave function in the nucleus must be a solution
of the Schrödinger equation with a complex potential energy

F =  PJPo(Z, E) (2.4)

— [7i2/(2Af)] Arp -j- {Vc(r) — E] ip =  0, (3.1)

where
Vc\r) =  V(r) +  iW{r),

V(r) and W(r) being real functions. If we substitute

V =  Stol O/7") u lm(r) Vim.{&, <p),

(3.2)

(3.3)
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we find for the radial part uim(r)

— |7i2/(2M)](d2/dr2) utm(r) +
+{F(r) +  iW{r) - E  + %*l{l +  l)/(2Mr2)} uim(r) =  0. (3.4)

Also in this case of a complex potential energy we may use the WKB-solution
just as in the real case (cf., e.g., F u r r y 31)). However, the WKB-connection
formulae (at the turning points of the wave function) may be different 31) 32),
but these formulae are not needed here since we are interested only in
the insensitivity of the solution for a change in the real part of the inner
core of the potential well. The fact that the potential is complex has the
consequence that no rigorous distinction between exponential and oscillatory
region exists (the wave number generally being complex, neither real nor
pure imaginary). However, we shall suppose that W  is not too large in compar­
ison with V and define the exponential and oscillatory regions according
to the sign of the real part of the expression in parentheses {} in (3.5).

The WKB-solution for uim(r) deduced from (3.4) has the following form
in the oscillatory region (and a similar expression in the exponential region)

exp [t Jr {E -  V(r)—m {l  +  l)/(2Mr2) -  iW{r)f dr]
Vlm̂  =  {E -  V{r) -  m (l  + \)l(2Mr2) -  iW{r)}*

(3.5) implies that we have two (oscillatory) solutions, one v\m{r) with
decreasing amplitude for decreasing values of r and the other one vf^(r)
with increasing amplitude for decreasing values of r. (cf. fig. 2 for a qualita­
tive comparison of the behavior of the wave functions in some cases).
The linear superposition of these two solutions, which represents the wave
function in the case of the scattering of alpha particles, is determined by the
boundary condition at the origin, namely

u[m(r) =  0 for r =  0. (3.6)

If the absorption is sufficiently strong, the condition (3.6) implies that the
solution vljjr) will be practically absent. Therefore the behavior of the
solution uim(r) en vjm(r) in the neighborhood of the nuclear surface does
not change if the inner part of the potential well is altered. The behavior of
uim{r) for r >  R is fixed if the boundary conditions on the nuclear surface
are given. The asymptotic behavior of uim(r) for r-> oo determines the
scattering phases and hence the scattering cross sections, which turn out to
be insensitive to changes of the inner part of the potential if there is strong
absorption. This confirms the conjecture formulated in the beginning of
this section on a somewhat more intuitive basis.

In this way it is understandable that different potential wells (with strong
absorption) can all give reasonable fits to the scattering cross sections, if
they are about the same in the outer region, even if they differ much in the
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inner part of the potential well. This inner part of the well is a quantity
which seems to be nearly “unobservable”.

Energy

Fig. 2. Schematic representations of wave functions and boundary conditions: (6) for
alpha disintegration (with energy Ea) and (c, d) alpha particle scattering (with energy
Escat), determined (a) by a potential V(r). The wave functions of the alpha particle
are represented in a complex diagram in order to distinguish between standing waves
(sine curve in a plane) and running waves (helix). The turning points (ra, rj, r&') form
the boundaries between the oscillatory regions I, III and the exponential region II.
Fig. 26 represents the (nearly stationary) decaying state for alpha disintegration:
sine curve * in I, helix in III (the picture of an alpha particle in a box is taken for this
figure). Fig. 2c represents the scattering of an alpha particle, in case there is no ab­
sorption within the nucleus: sine curves in I and III; boundary condition u =  0 for
r =  0. Fig. 2d represents such a scattering for strong absorption within the nuclear
potential well: sine curve * in III, helix for ingoing wave in I ; the boundary condition
u =  0 for r =  0 can be replaced for strong absorption by the condition: ingoing wave
only inside the nuclear surface. (* sine curve, situated nearly but not entirely in one
plane).

§ 4. Theory of alpha emission based, on boundary conditions at the nuclear
surface. In this section we formulate a proposal for fitting the alpha particle

9
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wave function in the exterior region to a shell model wave function in the
nucleus. This proposal is based on the assumption of a short mean free path
for alpha particles in nuclear matter. As a consequence we take that the
alpha particle does not exist as a definite entity inside the nucleus but is
formed from four nucleons in shell model states (mostly the states of the
highest possible energies, cf. § 2) in the surface region of the nucleus. It is
further assumed that the shell model states of the remaining A — 4 nucleons
remain unchanged during the process of alpha emission (and we shall not
write their wave functions explicitly). We shall call the wave functions of
the four nucleons from which the alpha particle is composed y>k(k= 1,2 for
the neutrons and k =  3,4 for the protons). We shall write more explicitly

y>k(Xi, Si) =  A k{Xi) a(i) +  Bje(Xi) P{i) (i, k =  1,2 and 3,4). (4.1)

Starting from (4.1) one obtains as the antisymmetrized wave function for
the two neutrons

v>n(i,2) =  W2 ln(xi> si) n(x2, s2) — n(xi> si) nfa, «2)} =
=  i \ / 2  (a(l) a(2) [Ai(xi) A2 (^2) — A2(xi) A i(x2)] +

+  fi(l) m  [£i(xi) S 2(X2) -  -B2(x i) B i ( X i ) ]  +
+  a(l) p{2) [Ai(xi) B-i{Xi} — A2(xi) S i(x 2)] +
+  p(\) a(2) [5 i (x3.) A2(x2) -  5 2(X!) A i (x2)]}. (4.2)

In an entirely analogous way we introduce y>p (3,4) for the protons and we
write for the product wave function

'f'shiXi, Si) — y>»(1,2) y>P (3,4). (4.3)

The motion of an alpha particle will be described by (if the alpha particle
moves as a whole with undisturbed internal structure)

^ a(X«. s<).= ë(Z ) z(5l> ?2, ?3, Sl, S2, S3, S4), (4-4)
where Z =  x« is the center of mass of the alpha particle, §ƒ(/= 1,2,3)
are the internal space coordinates of the alpha particle (see below), s$
(* =  1,2,3,4) the spin coordinates of the four component nucleons, g(Z)
describes the motion of the center of mass of the alpha particle, xi%i> %3,
si, S2, S3, describes the intrinsic state of the alpha particle.

For the spatial dependence of x a Gaussian function seems reasonable 16)19)
(for other choices cf. 33)). We introduce the relative coordinates

1U =  x t - Z  (» =  1,2,3,4) (4.5)
and the internal coordinates

-  W 2&1 -  Sa) =  iV2(*l -  * 2), \2  =  W 2&3 -  ?4) =  iV 2(*3-X 4),
%3 =  i(Ci +  ?a -  ?8 -  ?4) =  i(* i +  X2 -  x3 -  x4). (4.6)
We shall assume for x an expression of the form

x(%i, %2, §3, Si, S2, S3, Si)  =  N  S  (?1, I 3) T" (si, s2, s3, s4), (4.7)
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with
8  ( |i, |a, la) =  exp [ -  J « t_l (*, -  **)2/(16/$] =

=  exp [ -  S * ., |?/(2/J*)] =  exp [ -  2»-i |f/(20*)] (4.8)
and
£ ( S 1 ,  sa. S3, s4) =  W 2[«(l) |8(2)-«(2) 0(1)].*V2|>(3) /?(4)-«(4) 0(3)]. (4.9)
We shall fix the normalization factor iV by the requirement
Itspin ƒ  |g(Z) z ( | i ,  |2 , |3 , S 1 , S 2 , S 3 , S 4) | 2 dxi dx2 dx3 dx4 =  /|g(Z)|2 dz. (4.10)

Using (4.6), (4.7), (4.8), (4.9) and (4.10), we calculate

Z 'p i n / m i *  Ijfdi, la. U  Si, sa, s3, s4)l2-— — — - d |i  d |8 d |3 dZ =
Ö(|l, ?2, ? 3 , Z)

=  /|g(Z)|® d Z . S ^ . / l  z(5i, 5* 5a, si, sa, s3, s4)|2 22 d | i  d |2 d |3 =
=  ƒ  |g(Z)|2 dZ .N 2pl 7i11 23 (4.11)

or N  =  2~8/* »"•/• /?-*/*. (4.12)
The internal problem of alpha particle formation requires a derivation of

the value of the function g(Z) near the nuclear surface, which can be used
as a boundary condition for a solution of the problem of the external
propagation of the alpha particle. This can be regarded as a problem of
fitting an alpha particle wave function !Fa(Xi, si) (4.4) in a region |Z| >  R
to the shell model wave function Wsfc(x*, s<) (4.3) for the four nucleons in
individual states in the internal region of the nucleus. (As to the value,
which should be chosen for the “nuclear radius” R, some further discussion
is needed, cf. below in this section.) It may seem that there is no need for
any change in the function Wth{xt, si) as an approximate solution in any
region of space, as no exceptional regions are assumed to be present for such
a shell model wave function. However, the wave function ï***(x<, si) does
not describe a possible emission of an alpha particle at all, as all functions
describing the spatial behavior of the nucleons i =  1,2,3,4 are simply
exponentially decreasing for |x$| >  R. We therefore propose the following
wave function ï*(Xi, si) for the system as a whole in an attempt to describe
both the shell model characteristics of the nuclear structure and the feature
of alpha emission

W(Xi, si) =  ¥*(x*. St), if |Z| <  R ,  (a)
V i* . St) -  [1 — 3  ( |i, | 2, |s) Psing] Vsh(xt, st) +  (4.13)

+  Wa{Xi, si), if |Z| >  R ,  (b)
where Wa(Xi, si) (4.4) is fixed in such a way that

<̂)]*1=*2=*3 = *4 = Jl [̂ P«ft(*i, ®i)]*1=*2 = *3=*1 = H- (4-14)
(R may be a vector of any direction, but of magnitude R.) P stng is the
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projection operator which singles out the singlet states for neutrons and
protons

=  (1/16)[1 -  o(l).o(2)][l -  o(3).o(4)]. (4.15)

If we evaluate the right-hand member of (4.14) according to (4.2) and (4.3)
we obtain

[¥Wxi, Si)],1=,J=,3=*1==R =  [A1(R)B2(R) -  A 2(R)Ih(R)] .

. [A 3(R)Bi (R) -  A4(R)53(*)] A si, s2, s3, s4). (4.16)

Hence the condition (4.14) reduces, according to (4.4), (4.7), (4.12) and
(4.16), to

g(Z = R) =  2s/a n u /S’/a .

. [^i(H)Ba(U) -  A 2(R) Bi(R)][As(R) B4(R) -  A4(R)BS(R)], (4.17)

providing a boundary condition for g(Z) at any point (R, ê, <p) of the nuclear
surface. We further require for g(Z) that this function should represent
outgoing alpha particles in its asymptotic behavior for r -*■ oo. In contrast
to the functions y>k{Xi,Si), which behave exponentially for r -s- oo, g(Z)
becomes oscillatory again for r -> oo if alpha emission is possible. Equations
(4.13) . . .  (4.17) were formulated for a spherical nuclear surface; it is quite
easy to reformulate them for a spheroidal nuclear surface: the condition
\Z\ <  R or |Z| >  R should, then be replaced by the conditiorï of. being
interior or exterior to the nuclear surface, etc.

The wave function W(Xf, S{) according to (4.13) is written down on a
somewhat intuitive basis. However, we note the following merits of this
function:

(1) inside the surface |Z| =  R the wave function is simply a shell model
function,

(2) outside the surface \Z\ == R the same holds, unless the four nucleons
are in each others neighborhood (within a sphere of a radius of about /9a)
and the two protons as well as the two neutrons are in singlet states,

(3) if the four nucleons are together in this way for |Z| >  R, they are
travelling together as an alpha particle, with a center-of-mass motion g(Z)
describing the possibility of emission,

(4) according to (4.13) and (4.14) the functions in the regions |Z| <  R and
|Z | >  R  fit continuously in points where not all nucleons are close together,
as well as in the case that all four nucleons are in the same point of the
surface |x| =  R. Also it seems very plausible that the functions fit almost
continuously if the nucleons are close to the same point R  (within a distance
of about /9J, at least if the function in the right-hand member (product
of Ai(R) and Bk{R)) does not vary much over a distance /?a,

(5) in the preceding equations no special parameters are left for fitting
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the derivatives of the wave function at the surface \Z\ =  R. However, one
might expect that the function g(Z) decreases exponentially for increasing
|Z| in a way, which is not too different from the variation of the right-hand
member of (4.17), when calculated for increasing values of | R \. Hence one can
hope that the requirement of fitting the derivatives will change the boundary
condition (4.17) only slightly. Furthermore one should then expect that the
final result is not too sensitive to the place of the surface |Z| =  R, where the
different parts of the wave function are joined.

From the preceding considerations it is seen that the proposed wave
function represents correctly a number of features, which should be ex­
pected for the given physical situation. The result (4.17) for the boundary
condition for g(Z) further has the advantage that it is sufficiently simple,
so that detailed calculations can be carried out and be compared with
experiment. An alternative to (4.17) would be to put (the integration should
be performed over 3 of the 4 space coordinates, and includes also summation
over all spin variables)

g(Z =  R) oc ƒ  i n  (Xu s<) x(Xu S«)]2=R d<S, (4.18)

which leads back to (4.17) if the functions A/c(xt), B/c(Xi) are slowly varying
over a distance /?a, but which becomes different from (4.17) if these functions
vary more rapidly. In general a detailed calculation of (4.18) will be very
difficult (however, it is feasible for harmonic oscillator wave functions,
cf. !6)).

An adequate general framework for formulating the theory of alpha
disintegration is also provided by the A-matrix formalism of W ig n er and
collaborators 34) 35) and was developed to some extent by T h o m as9).
However, it does not eliminate the necessity of making more specific physical
assumptions for the wave function in the way explained above. The results
of such assumptions can of course be described within this general formal
theory.

The boundary condition (4.17) allows the calculation of absolute transition
probabilities for alpha disintegration, as well as of relative transition
probabilities in alpha decay structure *). For a first estimate of the abso­
lute transition probability one may assume that the functions A(x) and
B(x) are constant throughout the nuclear volume (hence have a value of the
order (| nR3)-*). From the absolute value of the boundary condition, obtained
in this way and the experimental data a radius of the nuclear potential
well for alpha particles can be calculated. Using the lifetime and energy of
214Po one finds in this way for the radius at which the nuclear potential has
a depth of 20 MeV the value of (9.4 ±0-1) X 10~13 cm for this nucleus (we

*) The value of g(Z =  R) according to (4.17) has in common with an earlier analysis 13) (for larger
values of Za) that the formation probability of an alpha particle is very small, differing roughly by
a factor (poJR)9 from the old model with one alpha particle in a box.
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calculated this value using methods of calculation of 13) § 6 and assuming the
same value for the surface thickness sp of the potential well as found for
the experimental potential well for alpha particle scattering according to
17) and 18); a value /Sa =  1.6 X 10~13 cm was used 19)). If this radius (at
a depth of 20 MeV) is calculated for the nuclear potential wells found for
alpha particle scattering 17) 18) a value of (9.40 ±  0.05) X 10-13 cm is found
(when the measured data  are extrapolated in a plausible way to 214Po). The
close agreement between both radii supports as well the theoretical analysis
based on the boundary condition (4.17) as the optical model analysis of alpha
particle scattering (if one assumes th a t the real part of the alpha particle
potential well remains about the same for external alpha particle energies
from 5 to  40 MeV).

The preceding proposals (4.13) and (4.14) for the wave function of the
complete system may be changed somewhat so th a t they become more
general and contain more param eters which might be fitted. The wave
function which can be taken as a generalization of (4.13) is

W(xit s*) =  [l -  j?(Z) 8  (§i, | 2, gs) P sing] YshiXi, st) +  ij(Z) Wa(Xi, st). (4.19)

(4.13) can be considered as the special case of (4.19), obtained if r](Z) is the
step function

VW
ƒ0, if |Z| <  R,
\  1, if |Z| >  R.

(4.20)

Other functions might be considered as well for rj(Z), e.g. other monotonous
functions rising from 0 to  1, rounded off step functions etc.. The advantages
of using such functions for rj(Z) could be th a t the transition from shell model
wave function WSh{Xi, s<) to  alpha particle wave function is not located at
a surface |Z| =  R  bu t occurs in a certain transition region, for which a depth
may be chosen corresponding to the mean free path la. In this way (4.19)
might be appropriate to  represent even both extreme cases, taking (4.20)
for rj(Z) in case of small la (-+ 0), and taking a value for rj(0 <  r] <  1) which
is constant throughout all space for large la (-> oo) 13). One would expect
(for la R) th a t the region where both parts of (4.19) m ust be fitted, should
be situated near the most outward (radial) maxima for the nucleon states
of the shell model wave function.

Other possibilities for generalizing (4.13) are: (a) introduction of a
dynamical correlation amongst the nucleons in the shell model wave function
(favoring alpha “clustering”) by writing [1 + a E (% i, %2, %s) P sing] 'Pshi.Xu s<)
instead of S/*ft(x«, sj) (a m ay be taken as a constant); (b) taking the
radius of the alpha particle dependent on the center-of-mass coordinate:

fia  —  P J W -
The various forms which are proposed, can be considered as different

trial functions for the problem of alpha disintegration, which is a complex
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many body problem. Further investigations will also need a better under­
standing of the physical dynamical correlations of nucleons which may be
implicitly contained but not explicitly expressed in the formal shell
model solutions for the nucleus. Much work remains to be done for deciding
which functions provide the best approximate solution of the Hamiltonian
for the many nucleon problem. However, we expect (4.14) to be at least
sufficiently realistic to provide reasonably accurate values for the radius
of the alpha particle potential well.

§ 5. Summary of experimental methods which may serve as a test for the
picture of alpha particle formation. I t is clear from the developments in § 2
and § 4 that the problem of making the picture of alpha disintegration more
precise is a very complex one and one certainly cannot find a solution from
first principles without several approximations. This applies particularly
to the problem of the mean free path of an alpha particle in nuclear matter
and to the problem of joining the exterior alpha particle wave function to
the internal shell model wave function. It would therefore be very valuable
to try to test the picture of alpha emission explained in § 2 and § 4 by means
of experiments. We want to summarize in this section what experimental
data can be used for this purpose:

(a) R e la tiv e  in te n s itie s  in the  a lpha  em ission spec trum  of
sp h erica l nuclei. If one knows the shell model states from which the
alpha particle is formed, the intensities with which alpha particles are emitted
can be calculated starting from a boundary condition on the nuclear surface,
(4.17) or (4.18), derived from the shell model states of the nucleons. For an
experimental test of such calculations, one will consider in particular the
relative intensities of different alpha transitions (to different final states
where the nucleons are in given states of a spherical potential well) and the
relative intensities of the alpha groups with different orbital momenta I.
The absolute transition probability should be considered separately, as it
is very sensitive to the radius and shape of the alpha particle nuclear
potential well (cf. (e)). Interesting calculations on this topic were made by
Mang 16) for 211Po and 212Po with the aid of oscillator wave functions for
the nucleon states, and starting from boundary conditions similar to (4.18).

(b) R e la tiv e  in te n s itie s  in the  a lpha  em ission spec trum  of
sph ero id a lly  deform ed nuclei. Similar calculations as for spherical
nuclei could be made here by starting from a boundary condition (4.17) or
(4.18) . However, one should take here the nucleon states of a spheroidal
potential well 2̂ ) 22) 22). One should keep in mind that more consideration
will be necessary to decide in which states the nucleons are and whether
these states are reasonably pure. The favored transitions to a rotational
band of the daughter nucleus have a particular interest. The theoretical
relative intensities of the transitions to the rotational levels and with
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I — 0,2,4, . . .  can be compared with experiment. The external problem for
deformed nuclei was worked out by From  an 15) and others (cf. also 14)).
It is shown that the boundary condition on the spheroidal nuclear surface
y>o(ê) can be substituted by an effective boundary condition on a sphere

from which one may take the propagation to proceed as from a
spherical nucleus {&: azimuthal angle indicating a point on the nuclear surface,
referred to the symmetry axis of the spheroidal nucleus). yi($) is obtained from
yo($) by multiplication with a factor T(ê) containing a differential barrier
penetrability, decreasing from ê =  0 to & = nj2 for prolate nuclei (cf. II (3.28)).
Several authors have considered the relative intensities of the I =  2,4,6 contri­
butions with respect to /= 0  as they follow from the experiments and have tried
to formulate rules for the variation of c'̂ Cq and c'jc'0 (indicating the intensity
ratios oil =  2 and 4 to I =  0 waves) with the mass number A . Although indica­
tions for a gradual change with A were found, one should be quite careful
in accepting this as a strict law. The theoretical expectation on the basis
of a boundary condition (4.17) would be that the nuclei should show sub­
stantial individual variations according to the (spheroidal) shell model states
occupied by the component nucleons. The substantial probability c’jc'0 for
I =  4 which is obtained from the experiments does not seem surprising in
view of the fact that rpi(d), as a product of two factors (y>o{’&) and T(&))
which may decrease in opposite directions, can easily obtain a rather sharply
peaked behavior. For further work on these relative intensities one should
keep in mind in addition that admixtures to the nucleon states and higher
order deformations of the nuclear surface might have an appreciable
influence on The effective boundary condition.

(c) The a lpha  d irec tio n a l d is tr ib u tio n  of o rien ted  nuclei. In
addition to possible spin and parity assignments in a disintegration scheme
(for which also alpha-gamma directional correlations can be useful), these
directional distributions can give useful information on the 1 =  0 and 1 = 2
interference in ground state to ground state favored alpha transitions of
deformed nuclei. Such observations can therefore form an additional ex­
perimental test for a boundary condition (4.17). This is explained in detail
in chapter II. For spherical nuclei similar information on the interference
of contributions with different 1 to a certain alpha transition, might be
obtained.

(d) H istog ram  of log F-values. The F-values (defined by (2.4))
give a measure for the intrinsic probability of alpha particle emission. One
should expect that the relative F-values for different alpha transitions (and
for different nuclei) reflect the different boundary conditions in different
cases and therefore should show individual variations. These should show
up in a statistical way in a histogram of log F-values (analogous to a histo­
gram of log /f-values in beta decay). In such a histogram one may hope to
recognize the favored alpha transitions as a more or less distinct group.
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Fig. 3 shows such a histogram; the log F-values from —1.5 to 0.5 should
probably be considered as favored alpha transitions. The spread in these
values may reflect the expected individual variations although other causes
of this spread could also be present.

Odd A

Fig. 3. Histogram of log F-values for odd-A nuclei. The favored factor F  gives a kind
of intrinsic formation probability for the alpha particle. The group of alpha transitions
with log F-values between —1.5 and 0.5 can possibly be identified as favored alpha
transitions in the sense of fig. 1. The spread in log F-values for this group might
provide information on alpha particle formation (the data for this histogram were

taken from the tables XII and XIII of 24)).

(e) A bsolu te tra n s itio n  p ro b a b ilitie s  for a lpha  d is in te g ra tio n
and com parison w ith  a lpha  p a rtic le  sca tte rin g . Our consider­
ations of § 2, § 3 and § 4 show that both the absolute transition probability
for alpha disintegration and alpha particle scattering depend sensitively
on the shape and radius of the nuclear potential well for alpha particles. In
view of the possibility that the potential well parameters vary with the
energy, a study of such a possible variation for alpha particle scattering of
different energies would be valuable. In this way one may make a good check
as to whether one really finds the same nuclear potential wells for both
phenomena. In such a check one also needs the absolute value of the bounda­
ry condition (4.17) in order to arrive at a value characterizing the radius
of the nuclear potential well. According to § 4 the present experimental
data give good agreement for this radius from both phenomena. A further
point of considerable interest would be a comparison of the (outer part) of
the alpha particle nuclear potential well with the potential wells for neutrons
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and protons; however, the experimental results are rather inaccurate at the
moment for this comparison.
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Chapter II

DIRECTIONAL DISTRIBUTION OF ALPHA PARTICLES
EMITTED BY ORIENTED NUCLEI

Synopsis
A theoretical investigation is made concerning the information which may be drawn

from experiments on the directional distribution of alpha particles from oriented
nuclei. Formulae are given connecting the directional distribution (for arbitrary nuclei)
with the degree of orientation of the alpha emitting nuclei. The theory of alpha
emission of spheroidally deformed nuclei is explained, especially in view of the ex­
periments on this directional distribution. I t is discussed by which analysis typically
nuclear information can be obtained from this directional distribution, which cannot
be obtained from intensities in alpha fine structure or alpha-gamma directional
correlation. It is shown that simultaneous observation of the directional distribution
of the gamma radiation will be of interest. The nuclear information is connected with
a preferential emission of the alpha particle from the poles or from the equator of the
surface of the spheroidally deformed nucleus, depending on the internal problem of
alpha particle formation from nucleon states. The relation between directional distri­
butions in the laboratory system and the body fixed system can be visualized for the
classical limit by a simple geometrical averaging over the precession of the nucleus.

§ 1. Introduction. During the last few years the available data on alpha
disintegration have accumulated considerably x) 2) 3) 4) 5) 6) 7) (and refer­
ences cited there). It was explained in chapter I that for a long time the
theory was practically confined to the lifetime-energy relation following
from the quantum mechanical Coulomb barrier penetration formula 8) 9) 10)
u) 12) 13) 14). i n the first chapter a number of considerations concerning the
internal problem of the formation of the alpha particle from the nucleons
in the nucleus were given.

We shall study in this chapter the external dynamical problem of alpha
emission from a spheroidally deformed nucleus. Some papers on these problems
have appeared15) 16) 17) 17“) 18) 19) ao). It is furthermore tempting to make
a comparison with the optical model interpretation (in terms of a complex
potential) of scattering of energetic alpha particles by nuclei 21) 22) 23) 24).

This paper is concerned with the information, which may be obtained
from experiments on the directional distribution of alpha particles emitted
by oriented nuclei, in particular for nuclei with spheroidal deformation. As
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was first emphasized by H ill and W heeler 25), the barrier penetrability
will be substantially increased at the poles of a nucleus with prolate spheroi­
dal deformation, so that an increased intensity in the direction of the poles
might be expected for an oriented nucleus of this intrinsic shape. However,
the result could be the opposite if this effect would be overcompensated by
a strong preference (due to the internal nuclear structure) for formation of
alpha particles near the equator of the nucleus. Furthermore one must take
correctly into account how the directional distribution of alpha particles
in the laboratory system is obtained by quantum mechanical averaging
procedures from the alpha particle amplitudes near the surface of the
oriented nucleus. This can be compared with the more intuitive classical
picture of the directional distribution in the laboratory system as a result of
a slow precession of a directional distribution associated with the intrinsic
shape of the nucleus (such a picture would be valid for a very heavy nucleus
with high nuclear spin).

The first positive experimental results showing an anisotropic emission of
alpha particles from oriented nuclei were reported by R o b e r t s  et al. 26) 27).
A concise discussion of some points concerning the directional distribution
of alpha particles from deformed oriented nuclei was given by F r ö man 20).

In § 2 of this paper explicit formulae are given, relating the directional
distribution of alpha particles to the degree of orientation of the parent
nuclei (these formulae do not depend explicitly on a possible deformation
of the nuclei). The dynamics and geometry which are involved in the case
of alpha emission from oriented nuclei, which have an intrinsic deformation,
are explained in § 3. In § 4 it is examined in which way the quantum me­
chanical averaging of the directional distribution is related to the classical
averaging, which would be valid for a very heavy nucleus (in this section the
results of chapter III on the classical limits of Clebsch-Gordan coefficients
and Racah coefficients are used). A discussion of the information which
can be obtained from experiments on oriented alpha emitters is given in § 5.

§ 2. Directional distribution of alpha particles emitted by oriented nuclei. In
this section we want to derive formulae for directional distributions, which
do not yet contain any explicit reference to the internal nuclear structure
(e.g. intrinsic nuclear deformation). In the method of calculation we follow
closely the notations of some earlier papers 29) 30) 31) 32). The calculation
for alpha particles is particularly simple to the extent that alpha particles,
having spin 0, cannot show polarization phenomena. However, one should
note a difference as to the formulation of the starting point with the
emission of beta- and gamma radiation, for which the calculation of the
transition probabilities is always formulated with the aid of perturbation
theory. But alpha emission is a direct consequence of the nuclear forces and
the penetrability of the Coulomb barrier and one does not see that the
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transition probabilities could be obtained by splitting off a part of the
Hamiltonian as a perturbation part.

One may use the following formula as a starting point for calculating the
directional distribution of radiation, in case perturbation theory can be
applied (e.g. beta- and gamma emission),

W(k) oc|</, ft |Hi| »>|2 =  |</|<3f(fe)| i>I2, (2.1)

where 11> and |/> are the initial and final states of the nucleus (stationary
states of the unperturbed Hamiltonian), and Hi is the perturbing part of the
Hamiltonian. |/, fe> represents the final state which can be considered as the
product state of the final state |/> of the nucleus and the state of the emitted
radiation of direction fe. The second and third member of (2.1) show two
equivalent but slightly different notations, which are in use. In the third
member the state of the emitted radiation is multiplied into Hi, which
is not done in the second member.

Without the use of perturbation theory, an equation analogous to (2.1)
can be written down for alpha emission

W(k) oc |</, e* '  | i, a">|2 =  |</| g(h)\i, a">|2, (2.2)

where |/> represents a state of the final nucleus, eik r specifies a plane wave
with wave vector ft for the alpha particle. However, \i, a"> does not represent
the state of the initial nucleus but a state of the final nucleus together with
the emitted radiation, having those geometrical characteristics, which such
a state possesses if it develops from the initial state |i, a'>. This initial state
may be, e.g., a state of the initial nucleus specified by the quantum numbers
I i ,  M i  (for initial nuclear spin and its z-component). The state |i, a"> should
then also be characterized by the quantum numbers I i ,  M i ,  if we
assume invariance of the total Hamiltonian for Lorentz transformations,
hence in particular for spatial rotations. (2.1) and (2.2) can be given in a
very similar form, if we write (2.2) also as a matrix element between states
I», a"> and |/> with an expression <?(fe) in between. Equation (2.2) contains
only the fundamental probability assumption of quantum mechanics.
However, it is sufficient to derive general formulae for directional distribu­
tions (these are mainly geometrical formulae, containing no detailed phys­
ics). Of course (2.2) does not allow to calculate the absolute transition proba­
bility, which is provided by the perturbation theory formula (2.1), when
correctly normalized.

For the actual calculation we write (2.2) in the following more explicit
form

W (ft) oc YiMf | Sitfi i>Mi <I f, Mj | <o(k) \Ii, Mi, o:*>|2. (2.3)

If the initial state of the nucleus is |i, a'> =  bui\Ii, Mi, a'>, then
the state jt, <x"> can be written as \i, a"> =  YaM^m^Ju Mi, For an
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ensemble of oriented nuclei, the state of orientation can be characterized
by the density matrix

PMiMi' =  kwipMi*, (2.4)
where the double bar indicates the ensemble averaging.

As to the formulation of the decaying alpha emitting states, it may be
remarked that one does not obtain strictly stationary states, but solutions
(of the time dependent problem) which have a time dependence contained
in the factor exp [—i(E—ie)tj%] (with e E). The square of the absolute
value of this factor gives

| exp [—i(E—is)tlh] |2 =  exp [—2et/ft] =  exp [—M\, - (2.5)

relating the decay constant A to s. In the following we are only interested
in directional distributions (which we shall normalize such that/W(ê) AÜ =
=  An) and we shall omit the time dependent factor altogether.

The evaluation of directional distributions can proceed from (2.3), if one
can write down an expansion of ê (k) (the formal development starting from
(2.1) is identical if such an expansion can be written down for J f’(ft)) of the
form

**(*) =  Stam- «lm. Tlm(r) Dlmm.(R). (2.6)
R is the rotation that transforms the laboratory system into the coordinate
system where k is directed along the z-axis. The aim. are variables character­
izing the emitted radiation ((2.6) being the expansion for the radiation with
k directed along the z-axis, if R is the identity). The expansion (2.6) can be
written down for an arbitrary radiation; we shall specify later to alpha
emission. For an arbitrary radiation variables specifying the polarization
(e.g, c) may occur, which are here not written explicitly (one should then
write, e.g., S(k, c) and aim(c)). The coefficients Dlmm. (R) are the matrix
elements in the /-representation of the rotation R.

The expression (2.3) for the directional distribution can now be reduced
with the use of Racah algebra 29) 30) 31) 33) 34) 34“)

W(t) =  ^ ( - l ) * C to(/I) Wilfllik; ƒ,/)<!(ƒ«ƒ<)£/>> Dpa(R). (2.7)
The reduced matrix elements

ai =  <If II Tl || ƒ<> (2.8)
are defined by (Wigner-Eckart theorem) *)

(JfMf  17^*| IxMi> =  (-1 )”* <JfMf |7*_J IiM{> =
- H ) ) 7/+M< <Tf  II Tl || 7i> V(Iflil; - M f M i - m ) ,  (2.9)

where the F-coefficient, introduced by Racah 33), is related to our notation

*) This definition of reduced matrix elements is identical with the definition by Racah 8S).
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for the Clebsch-Gordan coefficients according to

CZbJS =  ( - l ) ^  (2c +  1)* V(abc; *0 -  y). (2.10)

The statistical tensor <|(ItI t)kp> for states with a definite I it describing the
initial ensemble of nuclei, has been introduced by F a n o  34) (cf. (2.4))

<\(ItIi)kp> —  Ü M iM i' C f i M i  I i - M i -  (2-11)

The abbreviation Cka(ll) for the radiation is defined by 29) 35)

=  2mm aim* aim( l),-mCffmS». (2-12)

This coefficient can be considered a s -a statistical tensor of the emitted
radiation. The coefficient W(I/lItk; h i)  for the recoupling of angular
momenta is the usual Racah coefficient 33).

We shall now specialize the general formula (2.7) for the case of alpha
radiation. Since we can observe only the direction of motion of the alpha
particle (no polarization) only the xl0 can be different from zero (so Cka(ll) =
=  0 if a 0). The w-dependence of the aim is characteristic of the polariza­
tion properties of the emitted radiation 29) 35). We shall assume further tha t
the ensemble of oriented nuclei has rotational symm etry about the z-axis
of the laboratory coordinate system. This implies th a t only the statistical
tensors <!(ƒ*ƒ$)&0> can be different from zero 34). I t  is then convenient to use
the orientation parameters /*(/«) introduced by T o lh o e k  and Cox 30) 32) 36)

fk(Ii) =  <|[UU) k0> «**(/,) =
/2 A - i  r  (2/< +  k +  1)! “I* ,

- < l ( W 0 > ( 4 )  /■-»[ (2)t + ; (2/<_ )ii)i j  • (2-13)

The expansion (2.6) for the case of alpha radiation is nothing but the
Rayleigh expansion 37) (p. 1466) of a plane wave

e*-r =  Xim {4n(2l +  1)}» ** j t(kr) Y im($r,<Pr) Dlm0(R), (2.14)
with

Dlm0 (R ) =  .{4nl{2l +  1 )}* Y lm*(§, tp). (2.14a)

(The arguments dr, <pr and &, <p of the spherical harmonics represent the
directions of r and k  respectively, measured in the laboratory coordinate
system.) The spherical Bessel function ji(kr) shows the following asymptotic
behavior 37) (p. 622)

ji(kr) =  {nl{2kr)f Ji+i{kr) -> Sm ^ ^  ^  ^  (kr >  I). (2.15)

By comparison of the expansions (2.6) and (2.14) we find

«■im. =  dmo {4n(2l +  l)}4 i l, (2.16)

Tl„(r) =  h(kr) Y lm(#r, <pr). (2.17)
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Thus we conclude from (2.12)

Cka(ll) =  V 44(2/ +  1)(21 +  1 )}i ii+iCjoig. (2.18)

Substitution of (2.8), (2.9), (2.10), (2.13), (2.17) and (2.18) into (2.7) now
yields, use being made of the property

CfoVo =  ® l'~\~ I  H“ k —, odd, (2-19)
that

W(0) =  Zou m *  ilÜ {(21 +  1)(2? +  1)}* CfoVo.
• W (If l l ik ; /i/)/*(/i){wfc(/j)}-1 P*(cos 4

or

=  2lï(7+I-eTen) I cos («, -  cy) ( -  |)<W*/* {(2/  +  1)(2? +  1)}* .
• £fc=even Cm  W (If l l ik ; I tl) ƒ*(/<){re’*(/«)}~1P*(cos&). (2.20)

We take into account that, because of the conservation of parity in alpha
decay, \l — l\ =  even for transitions between states of initial and final
nucleus with definite parities. The phase angles a* are defined by

a i= \a i \e ^ i ,  (2.21)
where the reduced matrix elements at are given by (2.8) and (2.9). (A factor
4n is dropped' durihg the reductions.) Concluding this section we list a
number of special cases of (2.20) in an entirely explicit form, applicable to
most cases of practical interest. In case of I =  0,2 interference, «0  and «2  are
normalized according to

|«o|2 +  \a2\2 =  1. (2.22)

The distribution functions W(ê) are all normalized according to
J  W(&) &Q =  4tc. (2.23)

List of formulae for the directional distribution of alpha particles from
oriented nuclei.
I f  =  1% — 2 ; / =  2
W(6) =  1 -  y  IV2/ 2P 2 (cos &) +  ^  ZV4/4P 4 (cos &), (2.24)
If  =  It — 1; / =  2

W(ê) =  1 +  y  A 2/ 2P 2 (cos &) -  15-2r * ~ 3 A 4 /4 P 4 (cos #), (2.25)
I t +  1

I f  =  / , ; /  =  0,2 *)

WV) =  1 +  [ -  M  l«l cos («0  -  «d }*+

*) The formula (2.26) has been quoted in 38) (p. 300), the factor cos (ao — 0 .2 ) and the absolute
value bars being omitted. This means that it was assumed that for the favored alpha emission the
coefficients (cf. (3.29)) and the coefficients a o  and « 2  are real (cf. (3.59) and (3.60); the value
cos (ao—0C2) &  ±  0.993 for a typical case, being very close to ±  1).
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+  l«2l2
15 (211 — 3) (21 i +  5) ~1 v  l n  t
T  (2/i - l ) ( 2 / i +  3 )J  K 2 h P 2 (C0S #) +

45
+ w W ^W ü + ï)K,hPl

I f  —  Ii  - j-  1 ;  1 = 2

W(ê) =  1 +  -  ^ - i - 6 M 2h  P2 (cos #) -  15 2/<r+  5 M 4/4P 4 (cos #),
Ii

If =  Ii +  2 ; / =  2
W(0) =  1 -  y  M a/aPa (cos#) + f l 4/4P4 (cos#).

(2.26)

(2.27)

(2.28)

V̂fc, Mie and /* are functions of the initial spin 30) 32). The parameters
fk have been defined by (2.13) (for explicit expressions see 30) 32) and for
graphs see 39)).

/< I t3N a =  — -----— and N a ------------------------------------- . (2 301
2 I i~  1 (/* -  l)(2/( -  1)(2/, -  3) l j

^  U , „  I i3
k°= /7+T “ d = 7TTT <Z31)

ƒ .2 7 4
M2 = —— T-----— and Mi   -----------------------------------(2.321

(Ii +  l)(2/« +  3) (7i+l)(/<4-2)(2/j+3)(2/j-(-5)

§ 3. Directional distribution of alpha particles emitted by oriented, spheroi-
dally deformed nuclei. We now want to specialize the general problem
of § 2 to the case of spheroidally deformed nuclei. Our purpose will be to
give a discussion of the information, which can be obtained from experiments
on this directional distribution. We shall explain in this section the theory
of alpha emission from spheroidally deformed nuclei aiming at this purpose.
The development of the theory of alpha decay of deformed nuclei was
started by R asm u ssen 40) 4i), Bohr, F röm an and M o tte lso n 15),
R asm ussen and S e g a ll13), S tru tin sk y  1») and F rö m a n 23), who
mainly concentrated on the intensity ratios in alpha decay fine structure.
We shall indicate the main lines of the theory and refer to these authors
for certain details.

§3.1. The expression for the wave function of the system', spheroidally
deformed nucleus with emitted alpha particle. Let, as in § 2, the initial state
of the nucleus be characterized by Ii and Mi, the nuclear spin and its
projection on the laboratory z-axis respectively and let I f  and Mf  represent
the same quantities for the daughter nucleus. The requirement of conser­
vation of angular momentum during the alpha decay process then determines
the transformation character of the wave function of the system: daughter
nucleus with emitted alpha particle, which we can write as (in this and other
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wave functions below we shall drop the time dependent factor)

®UMi =  S j/ƒ(1 lr) Vll,{r) SmAf; G//M/ Y lm{&, <P) • (3.1)
GifMj represénts the normalized wave function of the daughter nucleus,
transforming under rotations as the wave function of a single particle with
angular momentum If and z-component of the angular momentum Mf. The
angular part of the motion of the alpha particle is given by Yim{&, <p), the
radial part by (1/r) vuf(r). The equation (3.1) holds if the alpha particle is
situated outside the nucleus. Therefore the function <&plMi is defined only
for values of r larger than the nuclear radius. The same restriction holds for
the wave functions (3.3), (3.4), (3.5) and (3.9). The wave function (3.1) is
still quite general, i.e. nothing has been supposed, e.g., about axial symmetry
of the nucleus. However, we shall specialize now to spheroidally deformed
nuclei, expressing that GifM, is the wave function of a rotating spheroidally
deformed nucleus

GifMf =  {(2If  +  1)/(4tc)}* XK/D^^Oi). (3.2)

The normalization factor of D îfKf{0i) has been taken {{21 f -j- 1)/(4jt)}1 as
the position of a symmetric rotator in space is determined by two Eulerian
angles (so the integration/02,r dy> is not to be performed for the normalization,
cf. I l l  (A. 3.8)). Hence the wave function of the daughter nucleus with
emitted alpha particle can be written as 18) 20)

0PiMl =  Hu^lr) vlIf{r) ZniMf {(2/, +  l)/(4*)}* XK, D%fKf{&i).
• C*‘% m Y lm{&, <p). (3.3)

The motion of the daughter nucleus has been split 42) 43) into an intrinsic
part, represented by the normalized wave function XKf depending on the
internal coordinates of the daughter nucleus and into a rotational part repre­
sented by the normalized wave function {{21/ +  \)l{4n)}i Dz£ fKf {&i). The
coefficients Dlmn{&i) of the /-representation of the rotational group are also
eigenfunctions of the symmetric rotator 44). The Eulerian angles &i describe
the position of the daughter nucleus and the angles &, <p represent the
angular coordinates of the alpha particle in the laboratory system. The
quantum number K / represents the projection of the nuclear spin 1/ along
the symmetry axis of the nucleus.

We shall also make use of a body fixed coordinate system, having the
axis of nuclear spheroidal symmetry as z'-axis (the coordinates in this
system will be indicated by a prime). The wave function has to be symme­
trized appropriately 42) 43) to possess a definite parity. However, we shall
not carry out this symmetrization explicitly in our formulae (it is easily
performed and mainly consists of a kind of doubling of the notation; cf.20)
for this complete notation of some of the formulae).

A way, alternative to (3.3), to write down the wave function of the spheroi-
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dally deformed nucleus and emitted alpha particle is

0 (/) =  0 lr) mrn’(r){(2ïf +  1)/(4ji)}* XKr

■ Di ‘„k,+J 0 *) ? ' )  sV f’ Mf ‘ l ’ w ')- (3 -4 )

where the motion of the alpha particle is expressed with the aid of the body
fixed coordinates r, ■&’, tp'. The radial part of the motion of the alpha particle
is described by (1/r) wim. (r). In (3.4) we have left the function g(If, Mf, I, m')
unspecified. In order to determine the wave function of the system we may
use: (a) the requirement of certain geometrical characteristics, e.g. given
by (I i , Mi), as satisfied by (3.3), (b) the requirement of certain boundary
conditions at the nuclear surface; these will be specified in the body fixed
system, so that (3.4) is the natural starting point (e.g., it could be required
that only one value of I and m' in (3.4) contribute).

Furthermore we shall make use of the form (3.3) for deriving the
directional distribution of the alpha particles in the laboratory system from
the wave function. Hence we want to make use of both forms (3.3) and
(3.4) for the wave function of the same system and we investigate under
what conditions both forms are equivalent. We can reduce (3.4) by inserting
Yim W , ?') =  <p) Dlmm.(0i) and by using the expansion of the
product of two Dlmn(<p, ■&, ^-functions and the familiar properties of
Clebsch-Gordan coefficients to

f ' 1 =  2 W W M  »w M {(2/, +  l)/(4„)}> m ,  .

• c' & r )  sib JT,. i, »•) =

-  S w w O W  »<-(«■> c ï :£ +„-,t -_- ( -  •
■ Smitï,{(2ƒ ƒ +  t)H4n)}i XKfD]hlKl {@t)Ci'lMrj mYim(&, <f) g(If, Mf, I, m’) (3.5)

(we have introduced M f = M f  — m). Hence, if we want (3.4) to represent
the same function as (3.3), we find, comparing (3.5) and (3.3),

g(If, Mf, l , m)  —  d j f I t  dj£rM{ h(l, m ). (3-6)

The I, w'-dependent function h(l, m') may be put equal to unity, since it can
be absorbed into wim\r). We then obtain the following relation between
wim\r) and vuf(r) 18) 20)

vll,{r) =  Sm'( 1)7/ I,+m wlm‘{r)> (3-7)
which may be inverted, if necessary

1Vlm’(r) =  S//( 1)7/ I,+m Cj'('s:f+m',l,-m'VlIr{l')- (3.8)

According to (3.6) the wave function equivalent to (3.3), expressing the
alpha particle motion in the body fixed system, is (if we suppose that (3.7),
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(3.8) are satisfied) 18) 20)
tf&r, =  Sfc-O/r) Wtmtf) {(2U +  \)l(4n)}i * * ,D £ U +„,(0,) Y lm. (&', <p'). (3.9)
Because of the symmetrization of the wave function, the summation over
m' in (3.4), (3.5), (3.7) and (3.9) has to be extended over values of m', such
that

m' =  ±  K t -  Kf , (3.10)

where Ki represents the projection of the nuclear spin I* of the parent
nucleus along the symmetry axis (see F rö m an 20) for a detailed discussion
of this point).

§ 3.2. Directional distribution of alpha particles in relation to the asymptotic
expressions for vuf(r) and wim’(r). In order to relate the reduced matrix
elements at, defined by (2.8), to the radial part (1 fr) vuf(r) of the wave func­
tion (3.3), we can substitute (3.3) into (2.9). From (2.8), (2.9), (2.10), (2.17)
and (3.3) we then derive

|7 V l &i%>> =  at V(IfItl; -  MfMi -  m) (3.11)
or

at =  (— {211 +  1 )~k Jr? ji{kr) vUt{r) r dr. (3.12)

We now introduce the abbreviation

A u, =  fi? ji{kr) vUl{r) r dr. (3.13)

Here r =  R' is a sphere (closely) surrounding the nucleus. The integration
in (3.13) has to be extended to a radius Rn  of a large “normalization sphere”,
the same boundary as has been taken for the matrix element in (2.9). We
can not put Rn  =  oo since the integral then diverges. This does not cause
any difficulty as only relative values of the ai and A uf are of importance for
the directional distribution. Since Rn  is supposed to be large the value of
A ut is determined by the contribution of the asymptotic region of ji{kr)vuf(r)
to the integral. Equation (3.3) represents an outgoing alpha particle and the
asymptotic behavior of vuf(r) can be written (assuming that the Coulomb
field is screened for r -s- oo)

viif{r) -> vu/ exp [i(kr — Inf2)\ for r -> oo. (3-14)
From (2.15), (3.13) and (3.14) we deduce

A ut =  Q(k, R', Rn) viif, (3-15)

where the factor Q{k, R’, Rn) does not depend on I and I f ,  hence is a constant
for our purposes. (The dependence of Q on R ’ and Rn is not required in our
formulae and the values chosen for R' and Rn  do not figure in our results.)
Analogously the asymptotic behavior of wim\r) can be written

wimjr) -*■ wim. exp [i{kr — hr/2)] for r -*■ oo, (3.16)
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so that we find, using (3.7), (3.14), (3.15) and (3.16)

All, =  ( - l ) w ‘ Q(k, R', Rn) W - i r '  c % wlm.. (3.17)
The equations (3.12), (3.13) and (3.17) relate the reduced matrix elements
ai to the amplitude and the phase of the wave function of the alpha particle
in the body fixed system (cf. § 4)

al — Q{k> R > Rn) {21 i +  l)- * 2m' ( 1)”* wlm-- (3-18)

§ 3.3. Solution of differential equations for boundary conditions at the
nuclear surface. The wave functions (3.3) and (3.9) represent the system
when an alpha particle is emitted (i.e. an alpha particle being outside the
region of the daughter nucleus). They must satisfy a Schrödinger equation,
with a Hamiltonian, which may be written as

H  =  Hvart -  {h2f(2M)} Ar +  F(r') +  Trot, (3.19)

where Hpart is the Hamiltonian for the internal motion of the nucleons
within the daughter nucleus, M  is the reduced mass of alpha particle and
daughter nucleus, Tro, is the part of the Hamiltonian related to the collective
rotational energy of the daughter nucleus, r  and r ' indicate (as before) the
place of the alpha particle in the laboratory and body fixed coordinate
system respectively. The potential F(r') of the alpha particle in the body
fixed system consists of the Coulomb potential (which may be developed
in a spherically symmetric term, quadrupole term, etc.) and a nuclear
potential, if the alpha particle comes in the nuclear surface region. If we
consider only the first two terms of the Coulomb potential, we can write

F(r') =  Fo(r') +  F 2(r'), (3.20)
with

Fo(r') =  2(Z -  2) e2fr, (3.21)
F2(r') =  {e2Q0fr2}P2{cos &'), (3.22)

where Qo represents the intrinsic quadrupole moment of the nucleus,
defined by

eQo = f p e (r')(3z'2 -  r2) d r' (3.23)
(pe(r') is the nuclear charge distribution).

A spheroidal nuclear surface may be given by the equation
r =  R{ê') =  Ro [1 +  /?P2 (cos #')]. (3.24)

If the charge distribution inside the nuclear surface is uniform, the relation
between Q o and fS is given by

Qo =  (6/5) (Z -  2) R ffl. (3.25)

In order to solve the Schrödinger equation with the Hamiltonian (3.19) by
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an expression (3.3) or (3.9) one needs boundary conditions, for which we
shall take the following conditions: (a) for r -*■ oo (or r' -*■ oo) -  alpha
particle at large distance from the nucleus -  we require that the wave
function represents outgoing alpha particles only, (b) at the nuclear surface
a boundary condition is given, specifying the value of the radial functions
wim.(r) of the alpha particle; a more general boundary condition would be
a relation between these functions and their derivatives. Such a boundary
condition must be derived by joining the wave function for the internal
motion of the nucleons to the wave function representing an alpha particle
leaving the nucleus. We shall try to solve the problem of the external alpha
particle motion for arbitrary boundary conditions (b), prescribing the values
of the functions wim.(r) at the nuclear surface.

Even then the solution of the external problem is difficult because the
Hamiltonian (3.19) contains the terms V (r') and Trot which are diagonal in the
body fixed (in m') and in the laboratory system (in m) respectively, but
which are not both diagonal in one and the same coordinate system. This
implies that the exact treatment of the Schrödinger equation with the
Hamiltonian (3.19) leads to coupled differential equations for the radial part
of the wave function of the alpha particle, wim.(r) or vuf(r). These coupled
differential equations have been treated and integrated numerically for a
few cases by R asm ussen and S e g a ll18). Neglecting Trot in (3-19) altogeth­
er would mean that the nucleus was considered as being at rest. The term
Trot is comparatively unimportant for not too large distances from the
nucleus 18) 20). For larger distances from the nucleus the quadrupole field
becomes negligible and we may consider F(r') as a spherically symmetric
potential. These remarks lead to an attempt to determine an approximate
solution (avoiding the above mentioned numerical integrations at least for
a first analysis) in the following way: we divide the external region (outside
the nucleus) into two parts:

region I: the inner part of the external region (R{&') < r  <  Ri), where
in first approximation the rotational energy Trot of the daughter nucleus
may be neglected,

region II: the outer part of the external region (Ri <  r), where the
deviation of F(r') from spherical symmetry may be neglected.
Assuming that these two regions overlap (for r Ri) it is attractive to use
the body fixed coordinate system in region I, and the laboratory system
in region II, so that the solutions can be joined in their common region.

§ 3.3a. Solution in region I  with the aid of a three-dimensional WKB-
method (Fröman). From  an 20) has applied a three-dimensional extension
(initiated by C h r is ty 45)) of the WKB-method to the problem of propa­
gation of an alpha particle in the inner region I (neglecting the term Trot)■
By means of this method Fröman has derived that in a certain approxi-
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mation the influence of (a) the quadrupole field and (b) the spheroidal shape
of the nuclear surface, can be accounted for by replacing the boundary
condition, giving the alpha particle wave function at the nuclear surface,
by a different one, which will be written down below, and by calculating the
propagation of the alpha particle as if only the spherically symmetric part
of the potential were acting. We introduce an alpha particle wave function
xp =  (1/r) Y lm.{ft',<p') and give the formulae, which express
these statements. Let

K{r') =  {(2Ml%2)[V(r') -  E0]}* =  K 0{r) +  AK{r, ft'), (3.26)

where K 0(r) is the function which we obtain from Kir') by replacing F(r')
by its spherically symmetric part Fo(r'), so that AK(r, ft') is the anisotropic
part of K(r'). M  is the reduced mass of alpha particle and daughter nucleus;
the energy Eo is the sum of the kinetic energy of the alpha particle at large
distance from the nucleus, 4he recoil energy of the daughter nucleus and the
rotational energy of the level of the daughter nucleus we consider (Trot has
only a small influence on the solution in region I). Now let the boundary
condition at the nuclear surface (3.24) be given as

[ v W i  =  Vo(#', <p') (3-27)

and introduce the boundary condition

[xp]r_R =xpi(ft’, <p')=xp0{ft', xp') exp [ - /g fa K ir ')  d r - / £ . AK(r, ft') dr], (3.28)
where rb represents the (outer) turning point of the alpha particle V{rb) -
— E0 =  0. According to F röm an  20) we may now use the boundary condition
(3.28) on the sphere r =  R0 and calculate the propagation as if only the
spherically symmetric part Fo(r') of the potential counted.

Sometimes it is useful to expand the functions in spherical harmonics
rpoift', xp') =  Xim- hm-m  Y tm. {ft', xp') (3.29)

and
xpi(ft', xp') =  b ü a \ Yj* (#', xp') ; (3.30)

then the coefficients and bi~.{1) are connected by a real and symmetric
matrix k~um (ft) ö~.m-, diagonal in m' (cf. F röm an  20))

k-um\P) =  yy Pm  (cos ft') exp [ -  fg fa  K{r') dr -  ƒ £  AK{r, ft') dr].
• Pirn,' (cos ft') sin ft' Aft', (3.31)

where the Pim (cos ft) are associated Legendre functions, normalized
according to f?{Pim (cos ft)}2 sin ft dft =  1. An equivalent formulation of
(3.28) is now

-  S i»  hr'w ft** C -  (3-32)
The propagation of the parts with a definite angular dependence Yim.{ft', xp')
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in a spherically symmetric potential, to which the problem is now reduced,
has been investigated thoroughly (cf. 20) and § 3.3c).

§ 3.3b. Solution in region I  with the aid of ellipsoidal coordinates. We want
to mention an alternative to the method of solution in region I discussed
in § 3.3a. This consists in introducing ellipsoidal coordinates f, rj, q>' in such
a way that the problem is separable in these coordinates. We relate these
coordinates to the cartesian coordinates x', y', z' in the body fixed system
according to (the constant q will be specified later) 37) 46)

x' =  q {(f2 — 1)(1 — jy2)}* cos <p',
y' =  q {(£2 — 1)(1 — »?2)}* sin <p\
z' =  qfr).

(3.33)

(This implies that the surfaces f  =  constant and rj =  constant are prolate
ellipsoids of revolution and two sheeted hyperboloids of revolution, respec­
tively. Comparing with the spherical coordinates r, , <p', one has for the
limit r->  00: q£ r, rj -> cos 95' -> <p'.) The Laplacian is in these coor­
dinates 37) 48)

1 f a r  a n
=  ?2 (| 2 _ J?2) { %  L ( | 2“ a l J  +

a r  a n  £ 2— « 2 a2 1

+  a ^  +  ( f » _ i ) ( i - i ? » ) v «  J '  . 3̂ ' 3 4 ^
If F(r') is given by (3.20), the Schrödinger problem, determined by the
Hamiltonian H =  — (h2l2M)A +  F(r') becomes separable if we put

q2 «  K?o/(^ -  2), (3.35)

so that F(r') can be written as (strictly speaking equations (3.36) and (3.43)
are only correct up to a certain power of q2/r2, neglecting higher powers
of this quantity)

F(r') =  [2(Z -  2)/<?0]t 2(Z -  2) e2̂ 2 -  r,2). (3.36)

Putting the solution y>(r') of the Schödinger problem equal to

xp[r') =  F<1>(!) F™{rf) Fl3)(q>'), (3.37)

we obtain a separation of the Schrödinger equation into the following
three equations

d
di

d F 'in
~dT-J

m'z
¥ =r\

pa) +

2Mq2 T 2(Z -2)e2£ l
+  ——~  E£2 ----- ------- —  P a » =  A Fa \  (3.38)n2 L q J

32



Er)*F<21 =  A F (2>, (3.39)

f f l '2 F ^ 3 ). (3.40)
(I9 /2

The solution of (3.40) is trivial: Fm-<3) =  where m' must be an integer
in order that Fm'<8> be a single-valued function. Equation (3.39) corresponds
for q -*■ 0 to the equation providing associated Legendre polynomials Pim
for eigenvalues A  -> 1(1 1) in the limit of the spherical case. However, for
cases of interest here we have (2Mq2l'h2) E >  1 and equation (3.39) cannot
be treated by perturbation methods (as has been done by S t r u t t  47)). The
solutions F have been discussed in detail by S tr a t to n ,  Morse,
Chu, L i t t l e  and C o rb a tó  48) and F lam m er 49), who give series
expansions of Fm.AiZ)(rj) in terms of Legendre functions Pim(v) and who give
the separation constant A  numerically for a great variety of the parameters.
Finally, we want to find a solution of equation (3.38) for F mMa>(£),
corresponding to the equation for the radial dependence in the spherical
case. We can obtain an approximate solution for Fm.Aa)(i) by applying
a one-dimensional WKB-method to (3.38). This gives, for example, in the
exponential region

=(£/?*)!|({S—1) X (f)r* exp [ ± ^ f { — }‘d { ]  « * « > < ° . ( 3-4 l>

A(£) =  ?2£2 [E—2(Z—2) e2/?£ -ft2ri/(2M?2£2) ] - m '2/(£2- 1). (3.42)

Hence the separation of the problem in the £, rj, 9/  coordinates makes the
use of a three-dimensional WKB-method unnecessary. The boundary
conditions determining the solutions -F(1,(£) are: (a) the condition tha t one
has outgoing waves for r -> 00, (b) the boundary condition at the nuclear
surface.

A complication, which should be noted, is that the nuclear surface is not
a surface |  =  constant. If we have for example a homogeneous charge
distribution within the nuclear surface (3.24) (so that Qo and q are given by
(3.25) and (3.35) respectively), we derive that the nuclear surface is repre­
sented by

In order to use the boundary condition at the nuclear surface for the prob­
lem separated in | ,  rj, <p' coordinates, we must propagate from the nuclear
surface (3.43) to a surface f  =  lo (e.g. £0 =  C^o/?)(l +  P)> if P >  0)- An
approximate WKB-solution for this small distance can easily be given, if
(3.41) is used.

-F„Ma ,(£)

with

£ =  £*«r/ (»?) =  (Rolq)[\ +  (0/5)(6^—1)]. (3.43)
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We shall not a t this place give a detailed comparison of this separation in
ellipsoidal coordinates with the three-dimensional WKB-method, which
is summarized in § 3.3a and which seems to lead to simpler formulae. Such a
comparison could be useful in order to get an idea of the accuracy of both ways
of calculation, which was the reason for mentioning this second method here.

§ 3.3c. Solution with the wave functions of the Coulomb field. In  order to relate
the reduced matrixelements ai to the boundary condition at the nuclear
surface, it  is necessary to  consider the propagation of the alpha particle
from the nuclear surface through the regions I and II  to the asymptotic
region. We shall use the boundary condition (3.28) (or its equivalent formu­
lation (3.32)) so th a t the quadrupole field is accounted for according to
Fröm an’s m ethod and the problem m ay be treated as being spherically
symmetric. For simplicity we shall confine ourselves to  the transitions to
one definite level (K f , If),  which does not mean any loss of generality. The
Coulomb functions Fi(p) and Gi(p), being regular and irregular a t p =  0
respectively and being both real functions, are solutions of the differential
equation 50) 51)

d2/(p)/dp2 +  {1 - 2 tjfp -  1(1 +  1 )lp*}f(p) =  0. (3.44)

This is the radial part of the Schrödinger equation, i.e. the differential
equation vnf(r) has to satisfy in region II, if we put

p =  kr,r] — 1 l{ka), Mk* =  2ME, a =  ^/{2(Z  -  2) Me*), (3.45)
Z  =  charge number of the parent nucleus.

The functions are normalized according to

Gi(p) +  iFi(p) -> exp [i{p — r\ In (2p) — lnf2 +  <Ji{v)}] if p --*■ (3.46)

so th a t the phases are defined by giving

oi{rf) =  arg I \ l  +  1 +  irf). (3.47)

Comparing (3.14) and (3.46), we see th a t vuf(r) can be written in region II  as

vut(r) =  viif[Gi(kr) +  iFi(kr)] exp [—i{oi{rj)— rj In (2kr)}]. (3.48)

The differential equation for Wim-(r) in region I can be brought into the
form (3.44) if the non-diagonal elements of T rot are neglected. However,
the energy which m ust be taken, differs slightly from the energy occurring
for vu f(r) (by an amount of the order of Trot (K f l f ), the rotational
energy of the final state). Since in the barrier region Gi(kr) and Fi(kr) are
exponentially decreasing and increasing functions of r respectively, their
amplitudes being equal a t the (outer) turning point of the alpha particle,
the following inequality holds

Fi(kr) < Gi{kr) (R0 < r <  Ri), (3.49)
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so th a t we have in region I, using boundary condition (3.30)

mm-{r) =  bim'a)Gi{kr)IGi(kR0). (3.50)

Neglecting the just mentioned energy difference, i.e. putting in both
regions I and II

Tfik* =  2M E q,
E q =  sum of the kinetic energy of the alpha particle a t large distance

from the nucleus and the recoil energy of the daughter nucleus,
(3.51)

implies th a t we commit an error equivalent to multiplying Gi(kr) a t r — R i
by a factor close to one, approximately equal to

rGi(kRx)
l_Gi(«?0j-

rG,(«?in
E q I L.GI(kRo) J  E q + T rot(Kflf)

_ [lG i(kRo)]E Q + TroU K fIf ) / [ G l ( k R i ) ] E Q + T rot iK f I f )

[Gi(kR0)]EQ I [Gi{kRi)]EQ
(3.52)

(Trot {Kf I f)  represents the rotational energy of the level I f  of the daughter
nucleus we consider, with respect to  its ground state I  =  Kf) .  As has been
pointed out by F ro m  an  20) (p. 60) the quotient (3.52) is less dependent on
T rot ( K f I f ) « E Q) then might be expected from the energy dependence of the
function Gi(ky). The dependence of (3.52) on I 'rot and R i  was derived by
F ro m  an  with a WKB-method. This dependence can be obtained in a
similar way from the series expansion of Gi(p) determined with the Riccati
method 52) 53). I t  is found th a t the error committed by assuming (3.51)
increases with increasing values of R i. B ut in order to justify neglecting
the quadrupole field in region II  we want to choose R i  as large as possible.
Therefore, one m ust take a compromise between larger and smaller values
for the actual choise of R i. I t  seems reasonable to choose R i  about half-way
through the potential barrier, so tha t, according to (3.52), we commit an
error of about 8% and the quadrupole field has decreased to 1% of its value
a t the nuclear surface (where the field strength of the quadrupole field is
about 15% of the Coulomb field strength). According to (3.7), (3.12), (3.13),
(3.15), (3.48), (3.49) and (3.50) we find, if we take the Coulomb field to be
screened a t some large distance from the nucleus, th a t

az
ai

Hm- hm-a) C1/ ’f ; +m.,,,_ro. ( - I ) ” ' GT(kR0) . exp [i{oi(r})—g>t(»?)}] (3.53)

or, specializing to favored transitions (only m' =  0)

bioa)
h- <1>°10

ai Gï'jcfo Gi(kRp)
ai Gjfê'io Gj(kRo)

. exp [i{<Ti(r]) — oi(rj)}]. (3.54)
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The quotient Gi(kRo)IGi(kRo) is easily calculated with the Riccati method
(kR0 <  2 rj), considered in detail by A b r a m o w i t z  52) (Eq. (4.5) *)) and
F r ö b e r g 53) (Eq. (9.3)). We use (in their notation)

g2 =  — {pi (2?7 — p)}*[(2p2 — 6 rjp +  9t]2)l{\2p(r] — p)}] —

— l{ l+  1) {(2rj — p)/p}*, (3.55)

so that we have, to the first order in {2rj)~1 in the exponent

Gl(kR0)IGï (kRo) =  exp [{/(/ +  1) -  1(1 +  \)}{(2r,)l(kR0) -  l}*/(2y)]. (3.56)

The differences of the Coulomb phases oi(rj), defined by (3.47) can be
approximated for

by
i , l < n (3.57)

oï(v) — al(v) =  arg [T(J +  1 +  irj)/r(l +  1 +  «?)] fa(l — I) nj2 +
+ {1(1 + 1) -  1(1 + \)}l(2rj).

Summarizing we find from (3.54), if (3.57) is satisfied,

bi°{1) _  ai C fê fo  ^ „ , 5 , 8  f  Kl  +  ! )  —  ^  +  ] ) ƒ 2V
F L 2v \kR nbfoa) al Cl'tKrfO

. exp T t-

2r/

1(1 + 1) — + 1)
~2r\ J

(3.58)

- n
(3.59)

The m atrix ktf* (ft), defined by (3.31), is real. Hence the relation (3.59)
can be used to  derive whether the expansion coefficients bio(0) (cf. (3.29))
on the actual nuclear surface have a real or complex ratio, once the relative
values of the ai are obtained from experiments. If the coefficients bio(0) are
real, as might be expected from certain considerations for favored alpha
transitions (cf. chapter I), we find for the factor cos (oco — «2) in the explicit
formula (2.26), using (3.59) and taking rj 25, th a t

cos (ao — 012) cos (nn +  0,12) =  +  0.993 (3.60)

(the integer n depends on the relative sign of &ooa) and ^ o 11’)- This implies
th a t we can take the coefficients ao and real in (2.26) to  a good approxi­
mation and th a t we can omit the factor cos (ao — a2) and the absolute value
bars.

§ 3.3d. Comparison with the solution according to the WKB-method. The same
result (3.59) is obtained if one makes use of the WKB-solution of the
wave function in the Coulomb field, as has been done by F r ö m a n  20).

*) In 52) Eqs. (4.5) and (4.6) the denominator of ga should read 12.0(77 —■ (?) instead of 12tj (rj — q).
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However, since kRo <  2rj in alpha disintegration we can also use the
Riccati method 52) 53), which gives a rapidly converging series expansion
in powers of (2rj)-1. This method has the advantage that it is easier to
determine the error one commits; furthermore the /-dependence of the
transparency of the potential barrier is easily recognized. These features led
us to present this treatment in § 3.3c as an alternative to the WKB-method.
The condition (3.49) corresponds in the WKB-approximation to the neglecting
of one of the two solutions inside the barrier (which is valid at some distance
from the turning point where the solution inside the barrier is connected to
the oscillatory solution outside the barrier); the phase of the oscillatory
solution is provided by (3.47).

However, it should be realized that the use of the Riccati method according
to § 3.3c does not avoid the use of Fröman’s three-dimensional WKB-method
for taking quadrupole field and nuclear deformation into account. Hence
we keep an approximate treatment. For an exact treatment of the problem,
one comes always back to the numerical solution of a system of coupled
differential equations.

§ 4. Relation between the directional distributions in the body fixed system of
the nucleus and the laboratory system for the classical limit of a heavy nucleus.
The understanding of the relation between the descriptions of alpha emission
in the body fixed and laboratory system can be deepened by studying the
classical limit of alpha emission from a nucleus which is considered as
a classical heavy body. Although this limit is not yet attained for actual
nuclei, the study of this limit provides a better insight in the meaning of
geometrical averaging procedures used in connection with the alpha particle
directional distribution.

In order to approach this limit we shall assume the nucleus to be heavy,
so that it will behave as a classical top. We further assume I t to be large,
permitting the use of the asymptotic expressions for Clebsch-Gordan
coefficients etc. for large I{ 28). Finally we suppose that

=  Ki — K f
and that m' =  0 (i.e., 6jm.<0) 0 only for m' =  0; cf. (3.29))

(favored transition from the ground state =  Ki of the parent nucleus to
the ground state If =  Kf of the daughter nucleus).
We now want to consider what may be called the directional distribution
in the body fixed system. For the wave function of the alpha particle in the
body fixed system we should take

y>(r') =  2 i0 / r) wMr) Yw(»', <p’)- (4-2)
The expression (4.2) agrees with the form (3.9), where one may note, however,
that the symmetrization of the wave function does not have a strict classical
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analogue. Using (3.16) we find for the directional distribution in the body
fixed coordinate system

WB{&') =  |S j mo exp [i(kr — Inf 2)] Y m{§', <p')|2 ==
=  Hu l)(2J-f-1)}1 i-i+i !Cf0°fo|2 Pic (cos ■&'). (4.3)

If the nucleus may be considered as a classical body, i.e. a heavy and slowly
rotating top, a directional distribution in the body fixed system can clearly
be defined. The coefficients wio are always defined by (3.16) and one could
define in any case a directional distribution WB{iï’) related to the coefficients
wio, according to equation (4.3). However, this directional distribution
WB(ê’) can be said to represent really the directional distribution in the body
fixed system only in the classical limit (otherwise one cannot measure simul­
taneously all variables specifying the direction of emission of an alpha
particle and the position angles of the nuclear symmetry axis).

We shall now write down the directional distribution (2.20) for an oriented
ensemble of nuclei for which the orientation is specified by the density
matrix

PMi"Mi• = ÖMi’Mi, (4.4)

or alternatively by the orientation parameters

h{h) {M U )}-1 =  <| {hh)k0> =  CfiMtIi_Mi{ - 1 )* -* '.  (4.5)

Substitution of (4.5) into (2.20) yields, if we take into account the assump­
tions (4.1),

WlW  = ai a?  **+* {{21+ \){2l +  1)}* Cf0°y0 .
. W {I ill ik-, I tl ) ( - 1 )* -*  P* (cos &). (4.6)

The axis of rotational symmetry of the nuclei of this ensemble (4.4) will
precess about the z-axis of the laboratory system and it will make an angle
P with this z-axis, ft being determined by

cos p =  Mtfli. (4.7)

If we write down the directional distribution (4.6) for Mi =  /{, the resulting
distribution should coincide in the classical limit with the directional
distribution in the body fixed system of the nucleus (4.3), since then the
z-axis and the z'-axis coincide. The density matrix for this case is

PMt'Mt =  &Mt"It &Mt'It (4-8)
and the angular distribution (4.6) becomes

Wlb{& ) =  ai al* il+l {{21 +  1)(2̂  +  1)}* Cjoiq .
. W{Ullik-, hi) Cfaai_It Pk (cos #"). (4.9)
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We shall prove now for the classical limit (4.1):
(a) that the distributions (4.3) and (4.9) are equivalent in the limit for

large I it
(b) that the distribution (4.6) results if we “smear out” the distribution

(4.9) over the precession of the angular momentum vector It about the
laboratory z-axis.

Proof of statement (a).
We deduce from III  (2.1) *)

CuMUi-M, «  ( - 1 ) " -" *  {{2k +  l)/(2/j +  1)P P*(cos p =  MifU) (4.10)
if

and also

if

h  >  k (.U large)

Ciliho ** 1

Ii >  I (h  large).

(4.10a)

(4.11)

(4.11a)

Using (3.18), (4.1), (4.10), (4.11) and III (3.1), we see that the two distributions
(4.3) and (4.9) are equal in this classical limit. We point out that there is
no summation over m' to be performed in (3.18), since wim. (r) =  0 if
m' ^  0 on or just outside the nuclear surface (cf. (4.1)) implies wim, =  0
if m' #  0 (in the classical limit).

Proof of statement (b).
The distribution function that results from “smearing out” the distribution
(4.9) over the precession of z' about z (cf. (4.7)) is calculated according to
(cf. fig. 1)

W jJfi) =  {2n)~1 f t ” WLB (cos &") d<P, (4.12)
where

cos §"  =  cos p cos & +  sin /? sin & cos 0. (4.13)

We shall use the addition theorem 46) (p. 74) for Legendre polynomials for
a reduction of (4.12)
P*(cos &") =  Pk (cos P) P k (cos &) +

+  2 S* =1 [(A— m) \/{k +  m) \]Pkm (cos P) P km{cos ê) cos (m&). (4.14)
It follows from (4.7) and (4.14) that

(2ti)- i / 02w P a:(cos &") d& =  P fc (cos p =  Mi/It) P fc (cos &). (4.15)

*) Using this equation we can easily write down the classical limit of the orientation parameters
f k [ I i )  for ensembles of nuclei given by (4.4). We derive from (2.13), (4.5) and (4.10), using the Stirling
approximation III (A. 2.4) to reduce the factorials, that

f l c ( I i )  «  (fc!)2{(2£)!}-i 2* P*(cos/5 =  M t / I t )

if I t  1 and the ensemble is given by (4.4).
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Furthermore we derive from (4.10)

CuMat-M, *  (~  CZ,u-u Pic (cos p =  Mtlh) (4.16)
if h ^ >  k (11 large). (4.16a)

Using (4.15) and (4.16), we see that WAv{d), defined by (4.12) and repre­
senting the averaged distribution (4.9), equals Wl(&) defined by (4.6);
hence we have proved statement (b).

Fig. 1. Relation between the laboratory system (x, y, z-axes) and the body fixed
system (z'-axis). The directional distribution in the laboratory system Wl(&) (cf. (4.6))
is obtained (for a heavy nucleus, 1) by averaging the directional distribution
in the body fixed coordinate system Wb(0') (cf. (4.3)) over the precession of the z'-axis

about the z-axis.

This latter statement expresses clearly that the averaging, which is
carried out in (4.6) consists in the classical limit of a smearing out of the
body fixed directional distribution by a precession at the angle /3(cos (3 =
=  Mi/Ii) so that the directional distribution in the laboratory system is
obtained. We may point to the fact that the averaging by the precession of
I i  around the z-axis is still quite general, i.e. not restricted to our special
case of radiation from an ensemble of spheroidally deformed nuclei. This
restriction comes in as soon as we relate (in the classical limit) the direction­
al distribution (4.3) to the distributions (4.6) and (4.9). In order to establish
this relation we made use of equation (3.18) that we derived after introducing
the description of the motion of the alpha particle in the body fixed coordi­
nate system.

§ 5. The analysis of experiments on the directional distribution of alpha
particles from oriented nuclei and the information which it can provide.

§ 5a. The experimental situation. Alignment of alpha emitters was attained
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as well by the magnetic as electric h.f.s. alignment methods 38), i.e. by means
of the interactions of the magnetic dipole moment and of the electric quadru­
p le  moment in crystals at liquid helium temperatures. This means that the
aligned nuclei must be contained in a cryostat, which requires that also the
alpha particle detection must take place within the cryostat. The procedure
which was followed consisted in the use of a scintillator within the cryostat and
a light pipe carrying the light pulse to a photomultiplier outside the cryostat.

The character of the disintegration scheme of a strongly deformed nucleus
emitting alpha particles is shown in fig. 2. One should note that the alpha
transitions show a fine structure due to the existence of the rotational band
for the final nucleus (energy differences of the order of 50 keV at a total
energy of the order of 5 MeV). Between the rotational states gamma
transitions occur with energies of the order of 50 keV. For non-oriented
nuclei one may observe: (a) the intensity ratios of the fine structure compo­
nents, (b) alpha-gamma directional correlations, (c) conversion coefficients
and lifetimes of the gamma transitions. For aligned nuclei one may observe
in addition: (1) the directional distribution of the alpha particles, (2) the
directional distribution of the gammas, (3) the influence of the alignment
on alpha-gamma coincidence measurements.

We want to consider in detail the measurements on the alpha particle
directional distribution and we shall discuss the other possible observations
only in so far as they have a direct bearing on the first topic. We shall give
the discussion for favored alpha emission, for which we assume Ki=Kf, m'=
=  0, so that U = Ki  =  I f  =  Kfiov  the transition to the ground state I f  =

=  Kf  of the rotational band. Furthermore the parity of the nucleus does
not change in these transitions and the alpha particle can only be emitted
with I =  0, 2, 4 , ___ (The discussion for unfavored alpha transitions
would be analogous in many respects).

§ 5b. The directional distributions of the partial transitions. In the analysis
of the experiments on the alpha particle directional distribution, we start
from the formulae (2.26) (2.27) and (2.28), which express the directional
distribution W (#) as a function of the coefficients ao, #2> a \ . .. and the
orientation parameters /2, f t .......The values of the orbital angular momenta
of the alpha particles, which contribute appreciably to the partial transitions,
are indicated in fig. 2 (the I =  4 wave could contribute to ax, a2, «3 in so
far as angular momentum conservation is concerned, but is still very
weak 7) 20)). If only one value of the angular momentum I contributes to a
partial transition, and the initial and final nuclear spins are known, no
nuclear parameters are left undetermined and the directional distribution
is fixed for given orientation parameters. This holds for the partial transitions
«2, «3, a4- However, the partial transition ai is caused in general by inter­
fering I =  0 and I =  2 waves, and the directional distribution W(&) depends
on the typically nuclear parameter a2/«o (see formula (2.26)). Therefore
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experiments on the directional distributions of <X2,1x3,1x4 can only give a check
of the theory (as soon as the spin and parity  assignments in the scheme are
known), bu t the distribution of a i gives really new information. Similarly
it should be noted th a t the directional distributions of a.2, <X3, «4 for oriented
nuclei (being of a geometrical nature) do not provide more information on
the alpha transition than  could also be obtained by observing the alpha-
gamma directional correlation (of non-oriented nuclei) for these partial
alpha transitions with the succeeding gammas. However, no such observa­
tion is possible for «1, as this partial transition is not succeeded by a gamma.

M1+E2

M1+E2,

'M1+E2 ( E 2

Fig. 2. Disintegration scheme for a spheroidally deformed alpha emitting nucleus.
Several states of the rotational band of the final nucleus can be reached. For these
favored transitions it is assumed that I f  —  /<, so that / =  0 transitions are possible

to the ground state.

Thus the directional distribution of a i for oriented nuclei is the thing of
most interest. In  the above mentioned experimental situation it will be
very difficult to measure the distributions of ax, a2, a3, and a4 separately
(because a scintillator cannot distinguish the small energy differences).
However, this is only a small complication for the analysis which can be
carried out in the following way: we shall assume th a t
(a) the orientation parameters /2(h) and fi(U) for the initial nuclei are

known,
(b) the spin assignments in the disingration scheme are known,
(c) the ratios of the partial intensities Pai : P a2 : Pa3 : P „4 for the transi­

tions ai, a2, a3 and a4 are measured for non-oriented nuclei.
The directional distributions for a2, a3 and a4 can then be calculated ac­
cording to  (2.27), (2.28) and (2.20) from the values f2{Ii] and and can
be subtracted (taking the intensity ratios Pai : P „2 : P „3 : P „4 into account)
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from the total observed directional distribution, providing the directional
distribution of ai separately.

Once the directional distribution of ai is obtained separately, one may
proceed in two ways:

I. One may assume (from theoretical arguments (cf. § 3.3c) that the ratio
«2 /^ 0  is real and determine the ratio «2 /^ 0  in sign and magnitude from
using (2.26).

II. If the absolute value of the ratio |«2/«ol can be derived with sufficient
precision from PaJPai and PaJPai according to § 5d, one may check with
the aid of (2.26) whether the ratio «2 /^ 0  determined from W(§) is real and
determine its sign.

When proceeding according to I. one can check whether the value ob­
tained for a^ao from W{d) is in accordance with \az/ao\ determined from
PaJPoci and PaJPai (§5d).

The sign of a /̂ao forms the typically nuclear information which is obtained
from this type of experiment. How this information can be utilized will be
discussed below.

§ 5c. The determination of the orientation parameters fz(Ii) and presents
a certain problem which one may try to solve in both following ways:

I. The hyperfine structure splittings of the aligned nuclei in the crystal (due
to the magnetic moment fi and (or) the electric quadrupole moment Q are
known from other experiments (nuclear resonance or hyperfine structure of
paramagnetic resonance). If these splittings are known and the temperature
can be determined, the orientation parameters fz(Ii) and f\(Ii) can be cal­
culated immediately from the populations according to Boltzmann’s law.
This method requires that either the h.f.s. measurements are performed
with radioactive nuclei or that they are done for stable nuclei and that the
ratios of n and Q for the stable and radioactive nuclei are known as well as
the way in which the hyperfine structure is composed from the electric and
magnetic interactions.

II. A method, which avoids some difficulties of method I. consists in
measuring the directional distribution of the gamma, radiation at the same
time as for the alpha particles for oriented nuclei (at the same time but
without alpha-gamma coincidences). When comparing the different gamma
transitions that occur (cf. fig. 2), the transition ys(If -\- 2 -> If) is most
advantageous for determining the orientation in the following respects:

(1) it has a higher energy (of about 100 keV) than the yz(If-\-2->  / ƒ +  1)
and yi(If +  1 -*> If) transitions (of about 50keV), so that it should give
a better separated photopeak in a scintillation counter and penetrate the
cryostat walls more easily.

From the observed directional distribution of y3 , one can immediately
derive the orientation parameters fz(If") and f i (I/ )  of the second excited
level of the final nucleus (see 30) 3a) for the formulae). However we need the
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orientation parameters fz{Ii) and fi(U) of the initial nuclei. The relation
between ƒ2 and f \ before and after the alpha transition 1x3 can be taken from
the discussion by Cox and T o lh oek  54) (cf. formulae (6), (12), (16) and (17);
the character of the transition a.3 is specified by / =  2) and is expressed by
(in notation of 54) ; cf (2.32))

M k(Ii) fk(It) =  M k(If") fk(If”), (5.1)

or written explicitly for

h(It) =

k - 2,4 if 7 /  =  If +  2 and h  =  If =  I
(I +  \)(I +  2)2 (21 +  3)

72(7 +  3) (21 +  7) m  f  ’’

f ( T) =  (I +  1 ) ( /  +  2 )5 (2 7  +  3 ) ( 2 /  +  5) /  (I ")
U[ i} 14(7 +  3) (7 +  4) (27 +  7) (27 +  9) '4' f  ’’

(5.2a)

(5.2b)

Hence we see that the determination of /2(7«) and fi{h) can be performed
with the aid of the 73 directional distribution avoiding the difficult h.f.s. and
temperature measurements.

§ 5 d. The relation between |« 2/«o | an  ̂ the intensity ratios in the alpha fine
structure. The ratio |a 2/«o| is closely related to the ratio c2'/co' of the (positive)
coefficients c{ , introduced by Bohr, F röm an and M o tte ls o n 15) and
F röm an 20) (Eq. (VIII-19)) and defined by (cf. (3.30))

r  i ( i + i ) \ 2 r, \n
Cl = bwa) exp

L 2  r, |  kR0 J J

so that we find, using (3.59) and (5.3)

|«2/«o|2 =  ICjJ/Iaol2 c2'/co', (5.4)
where we took into account the equality

7< =  Ki  =  If =  Kf, (5.5)
valid for the favored ground state to ground state transition. The coefficients
ci can be determined from the fine structure measurements in alpha decay
by the use of 20) (Eq, (VIII-18))

Fi, SWlC%&ola (5 6)
FI/=Il L 'j  o{ IC fj& o l2

(S' means summation over only even values of I, as we assumed that the
parities of parent and daughter nucleus are the same). The intrinsic transition
probability FIt represents the F-value 5) 7) 15) 20) of the alpha transition
7j If> defined as the quotient of the experimentally observed transition
probability P a and the “smoothed out” transition probability P q(Z, E),
given by the Geiger-Nuttall law. Thus we are able to determine the value
of the ratio cz'/co' from the experimental data, using (5.6). F röm an derived
the coefficients ci from interpolation between the neighboring even-even
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nuclei; then checked the formula (5.6). However, it is then necessary to
assume that the alpha particle wave function on the nuclear surface for
favored odd-,4 alpha decay can be determined by interpolation of the
corresponding wave functions of the neighboring even-even alpha emitters,
which is an additional assumption.

§ 5e. Relation between different quantities, figuring in the analysis. The
relative sign (and phase) of «0 and a2, as could be obtained from experiments
according to the preceding analysis, provides a datum on the boundary
condition for the alpha particle wave function at the nuclear surface.
According to the analysis of § 3 (equations (3.54), (3.56), (3.58), (3.59)) the
quantitative relation between the ratio aj/a* and 6jo<1)/fcio<1) allows to specify
what a result for a2fa0 means for the effective boundary condition y(1»(0)
at the sphere r =  Ro, or through (3.32) also for the boundary condition
at the real nuclear surface (3.24). It should be noted that the phase (up to
a sign) of a2/«0 almost equals the phase of b20a)lb0oa)- It is reasonable to
suppose that the coefficients bioa) can be chosen real for favored alpha
transitions (cf. chapter I). It follows that the coefficients «0 and a2 should
also be (approximately) real (cf. (3.59) and (3.60)).

We note that we have

for all values of I, if we have a ground state to ground state transition (5.5).
It then follows from (3.59) that the relative sign of &oo(1) and b20a) is opposite
to the relative sign of a0 and a2. Hence one sees that the result that a0 has
the opposite (same) sign as a2 determines whether the absolute value of the
function (say y>0,2(1) (#')) obtained from y>(1)(#') by taking only its I =  0 and
I — 2 components, has its maximum at the poles (equator) of the spheroidal-
ly deformed nucleus (i.e. for &' =  0 or =  w/2 respectively). Neglecting in
(2.26) the influence of the term P 4 (cos ê) (which is multiplied by the
orientation parameter ƒ4 which is still small at liquid helium temperatures)
on the position of the maximum of the directional distribution, we see that
the sign of the coefficient P2 (cos &)

determines the position of the maximum and conversely. From (5.8) and the
preceding discussion it is clear that, if the condition

(5.7)

Ii{Ii +  1)
(“0 “ 2 ) 6 A / 5 i  (21 i -  l)(2/j +  3) J

{21 i -  3) [21 j +  5)
+  la2l2l75 (2/ ,  _  l)(2/, +  3)

«o ^  a/5  (27* — 3) (2Ii +  5)
a2 14 {U[Ii  +  l)(2/j -  1){21 i +  3)P

<  — —  •
(5.9)

is satisfied, the following statements are equivalent.
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(1) the directional distribution W{&) has its maximum along the laboratory
z-axis, if f2 >  0,

(2) a0 and « 2  have‘opposite sign,
(3) ioo(1> and &2o(1) have the same sign, so that there is a maximum in

the absolute value of y>0i2a){&') (the I =  0,2 part of y>a)(&')) along the body
fixed z'-axis.

It seems that the inequality (5.9) will be satisfied for practically all
nuclei: the right hand member has a value of at least 3.1 for I t >  § and the
values of \a2lao\ obtained from the c<ï, Co'-values (see (5.4)) (determined by
F r o m  an for a number of nuclei from intensity ratios in the alpha fine
structure) are all smaller than 0.6.

We can furthermore consider a directional distribution WB{&') defined
by (4.3) (and depending on w00 and w20), although only in the classical limit
WB{&') can strictly be considered as the body fixed directional distribution.
According to (3.18) the relative sign of ao and a2 is the same as for woo and
w20, assuming that (5.5) is satisfied so that (5.7) holds. It follows from (4.3)
that a negative sign of w2ol^oo (or of a2/ao) and a maximum of WB(ft')
along the z'-axis, will occur at the same time. Furthermore one sees that
WB(ft') and [y0,2<:l) (&!) I will also have their maxima along the z'-axis
simultaneously, if (5.9) is astisfied.

We have included this discussion of WB(§') merely as an illustration;
it is not necessary for the analysis of the experiments, in which one may pass
directly from ao and a2 to &ooa> and &20*1’- The purpose of the preceding para­
graphs has been to show the relations between the different quantities
figuring in the analysis a0, a2; w0o, w20; WB(&')\ è00(1\  i 2o(1);

y <0)(■&')) and to visualize these relations to some extent, especially
under the conditions of a feasible experiment.

There are very few experimental data 26) 27) available to which this
theory can be applied. An analysis of the data for 237Np cannot be given
because the interpretation of the disintegration scheme is not clear. For
233U one has favored alpha transitions to a rotational band. However, the
orientation parameter f2 was not determined in this experiment. A prelimi­
nary analysis along the lines of this paper, shows that the 233U data 27) could
be fitted with f2 & 0,05 and a2jao on -f- 0,5 (preferential emission from the
equator).

§ 5/. A summary of our investigation of the directional distribution of alpha
particles from oriented nuclei (in favored alpha transitions) can be given in
the following points:

(1) The measurement of this directional distribution provides independent
information which cannot be obtained from other measurements as alpha-
gamma directional correlation (for non-oriented nuclei) or relative intensities
in the alpha fine structure.

(2) A useful method of determining the degree of orientation of the
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initial nuclei consists in the determination of the directional distribution of
the ƒƒ" =  /ƒ +  2 -> If  gamma transition of the final nucleus (simul­
taneously with the alpha measurement, but without alpha-gamma coinci­
dences).

(3) The independent information, which is provided by this type of ex­
periment, can be expressed as the relative sign (and phase) of the amplitudes
0 O and a2 (cf. (2.26)). Except for a sign the theoretical calculation provides
the relative phase, which can therefore be checked. The relative sign is
connected with a preference of emission of the alpha particles from the poles
or from the equator of the spheroidally deformed nucleus. This depends on
the way the alpha particle is formed from shell model states of nucleons in
the parent nucleus ] hence it is seen that information is obtained concerning
the internal problem of alpha particle formation.
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Chapter III

CLASSICAL LIMITS OF CLEBSCH-GORDAN
COEFFICIENTS, RACAH COEFFICIENTS AND

D L  MALFUNCTIONS

Synopsis
The “classical limits’' (asymptotic expressions for large angular momenta) are

investigated for a number of quantities. Some relations for Clebsch-Gordan coefficients
and Racah coefficients for large angular momenta are derived. Classical analogues for
the square of Clebsch-Gordan coefficients and the square of the D̂ m n{0, 0)-functions
are proposed on the basis of their geometrical meaning. WKB-expressions are derived
for D lm n{<p, &, y>) starting from the Schrödinger equation for the symmetric top. These
expressions include WKB-expressions for the spherical harmonics 'p) ■ ft is
shown in which way these W K B-expressions are related to the classical analogues for
the Clebsch-Gordan coefficients and D lm n{<p, &, ^-functions.

§ 1. Introduction. In recent years the vector addition and recoupling of
angular momenta in quantum mechanics has been used in a wide variety
of applications. In the calculations Clebsch-Gordan coefficients 4) 2),
spherical harmonics, Racah coefficients 2) and the Dlmn(q>, d, y)-functions 3)
are constantly used. The study of the behavior of these quantities for high
values of the angular momenta (“classical limit”) is of interest in connection
with certain applications, as well as from the mathematical point of view.

In this paper some new mathematical results are derived for this “classical
limit” ; they are mutually compared and are also discussed in connection
with some older results of this kind.

In § 2 an expression for the Clebsch-Gordan coefficients with one small
and two large Z-values, given before by E d m o n d s 4), is discussed. This
expression is used in § 3 for deriving the asymptotic value of the Racah
coefficient, if certain angular momenta are equal and large. A classical
analogue of (the square of) Clebsch-Gordan coefficients is given in § 4.
WKB-expressions for Dlmn(q>, &, y>) and Y im(ê, (p) are derived in § 5. In § 6
it is shown which correspondences between the results of § 4 and § 5 exist.
The appendices list the conventions used in this paper and contain a number
of formulae and derivations, to which we referred in the main text.
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§ 2. Limit of Clebsch-Gordan coefficients 1) 2) with one small and two large
angular momenta. The following approximate formula relates the behavior
of Clebsch-Gordan coefficients *) with one small and two large angular
momenta to a value of the D*T(<p, ■&, y)-function (cf. (A. 1.3))

C&i-T.m-n ~ ( -  1)K- T d ;t (0, §, 0), (2.1)

¥ * A (2.1a)
cos & =  mjl. (2.1b)

This formula is mentioned by E d m o n d s 4), who also gave an indication for
the proof. We have written down a derivation of (2.1) in Appendix 2 in order
to show the limits of validity of the formula (an assumption m^> 1, given
by Edmonds  for the validity of (2.1) is not necessary for this derivation).

The condition (2.1a) k I implies /a <̂ .1 and t <̂. I.

§3. Expression for the Racah coefficient 2) W (hl'I  ik', Id) in the limiting
case Ii 1 and I', k, I h- For this limiting case the following expression
is valid

W iU l'hk) h i)  *  ( - I ) '  {(2k +  1) (211 +  1)}-* C fe., (3.1)
if

h  1 and V, k ,l  (31a)
If not all three angular momenta I', k and I are integral, both the Racah
coefficient and the Clebsch-Gordan coefficient in (3.1) vanish.

A proof of (3.1) may be given with the aid of (2.1). We derive from the
definition of the Racah coefficient,2) and the symmetry properties of the
Clebsch-Gordan coefficients

Cftota W(hl'Iik) hi) {(21{ +  \)(2l +  1)}* =

{(2k +  1)(21 +  1)}»
2 h +  1

_v r i io
—  Zjq  u  Volta

n k o r'lo  ___
° I i o l i - o  —

i W + f c v  r 'l ta
1) Volta  °  h o lte  °  loho- (3.2)

In the limit 7j^> 1 we write, using (2.1)
V  +-ft p i ta  r lx a  r l t a
Zjo ^ - I x ^  Volta ^ k o lto  °  lolto  ~

«  U f ju — 1(“  l)r+fc+I Dl’0 (0, arc cos (ojh), 0) Dk00 (0, arc cos (a/h), 0) .
. D[0 (0, arc cos (a/h), 0) d(a/h) = {2It/(2k +  1)} C\Polo Cf.°olo. (3.3)

For the derivation of (3.3) we made use of the expansion 3) 4) 5) of the
product of two functions Dlmn(cp, &, xp), (A. 1.7) and the orthogonality
relations of spherical harmonics. Substitution of (3.3) into (3.2) gives the
formula (3.1).

*) C, , denotes the Clebsch-Gordan coefficient for the composition of |ZiWi> and \ l 2 t n 2 )  to
\hriy.
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The result (3.1) is also mentioned by B ied en h a rn  «) but was probably derived by
him in a different way *). Equation (3.1) agrees with another limiting case of the
Racah coefficient, found independently by B i e d e n h a r n 6) and Racah?)  8), namely

W(If l I (k; I tl) «  (—1)*{(2/+1) {21i +  l)}-*P*(cos (I, I t)), (3.4)

if
Ẑ > 1 and I t  1, (3.4a)

where
2lit cos (I, It) =  ƒƒ(// +  1) — Ii{It +  1) — +  !)• (3-5)

Using (2.1) and (A.l.7), one easily checks that (3.1) and (3.4) agree for those values of
If ,  I and V, in which both (3.1) and (3.4) are valid, namely for 1 < /  =  / ' <  It — If .

§ 4. Classical analogues of the Clebsch-Gordan coefficients and the functions
Dlmn(0, #, 0). From the quantum mechanical formula

|LM> =  Cfgto*  I * i * » i >  \l*m*> ( 4 - 1 )

it is seen that the square of a Clebsch-Gordan coefficient
WLM (CLM 12 (4.2)
r r  l V ll*>ll>"V  '  '

can be interpreted as the probability of finding states |/imj> \hm£> for
different values of mi (hence fn% =  M — mi) as components of the state
| LMy for fixed values of h, h, L and M.

We shall now indicate a classical analogue for the square of the Clebsch-
Gordan coefficients: the vector addition of l\ +  1% =  L corresponds in the
classical case (li, h, L large numbers) to a definite triangle formed by the
vectors h, h, L (see fig. 1 and fig. 2). If only the quantum numbers L and M
are specified, the angle of L with the z-axis is fixed and two (classical)
degrees of freedom are left unspecified: (a) L may rotate in a cone about the
z-axis, (b) the plane of the triangle may rotate about L as an axis of rotation.
The orientation of the plane determines the angles of li and h  with the
z-axis (mi and in quantum mechanics). We shall denote by &, fii, P2 the
angles with the z-axis of L, li and I2 respectively. In the classical limit of
quantum mechanics these angles are related to M , mi and m2 according to

cos •& =  M/L, cos /Si =  mifli, cos fa =  mz/li. (4-3)

We may now introduce the classical analogue of (4.2) (see fig. 1 and fig. 2)

WhhLL cos 9 (h cos pi \:h  cos p2) h  d(cos pi) (4.4)

representing, for fixed values of *1 , 12, L  and cos #, the probability of finding
a value for mi such that

Zi cos Pi <  mi <  h  (cos Pi +  d(cos /li)) (4.5)

*) The formula (29) of 6) contains a misprint. The factor (— 1)” should read (— I) '.
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and
l\ cos jöi -f I2 cos fo — L cos &. (4.6)

Let y (0 <  y < n) be the angle between the plane of h, I2 and L and the
plane through L and the z-axis. The classical probability W  follows if we

Fig. 1. Triangle of angular momenta li, I2 and L, which may rotate about the direction
of L. The probability distribution of finding a value m\ for the projection of li on the
z-axis (and hence a value «a — M  — m\ for the projection of f2) can be calculated, if
equal intervals dy  are taken to be equally probable (classical analogue of Clebsch-

Gordan coefficients).

( ■ J--------------

liCoiX

Fig. 2. Triangle of angular momenta li, 1% and L.
&: angle between L  and the z-axis (plane of triangle chosen to be in a special position,

y =  0; cf. Fig. 1).

assume that all intervals dy are equally probable, which is valid for any
orientation of L, if there are no preferred directions in space. This may be
expressed as

WhisLLcos» ih cos Pi) h  cos fa)h |d(cos /Si)I.=  (I/n) dy. (4.7)
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The relation between d(cos /Si) and dy is given by

d(cos jSi) =  — sin & sin % sin y Ay, (4.8)

which follows from
cos /Si =  cos ê  cos x +  sin # sin X cos 7> (4-9)

where % is the angle between h  and L.
Substitution of (4.8) into (4.7) yields, use being made of (4.9)

WhhLLcot» {h cos /Si; h  cos /S2) =  {nh sin & sin y sin y}-1 =
=  (^ i)"1 {(1 — cos2 &) sin2 x — (cos /Si — cos y cos #)2}~* =

=  (jt/i)-1 {(1 — /Mj)(l — vz) — (£ — ^ ïr)2}-*, (4-10)

where we have introduced the abbreviations

p i  -  m ilh  =  cos /Si, r =  cos y =  (/? — /* +  L 2)j(2kL)
and (4.11)

f  =  M/L =  cos &.

In the limit
h  ^  h  and h  <^.L (4-12)

it follows from (4.11) that we have approximately

v pa {L —  lz)ih‘ (4- 13)

Formula (4.10) is symmetric in l\m\ and l2ni2 , as could be expected from
the analogy with the Clebsch-Gordan coefficients. In order to show this
symmetry we write (4.10) as follows

W hhLLeot» (* i c o s  f a  l* c o s  M  =
=  (2L/n) [-{/* +  l\ +  T4} +  +  l\L 2 +  L2Zf} +
+  4{Zi»i2 (—M) +  l\ ( -M )m i +  L2iwi»i2}]- i . (4-14)

(4.14) shows also the complete symmetry in all three angular momenta of
the classical analogue of the Wigner 3-j symbol 4) 9), defined by

( J : i ) = < - <4-,5)
An alternative way for obtaining a classical analogue of the Clebsch-

Gordan coefficients is by considering the inverse formula of (4.1)

\htni> \hm2y =  X LM C ™ hmt |LM>. (4.16)

This suggests as the classical analogue of the square of the Clebsch-Gordan
coefficient the probability of finding a resultant vector of length L  when
composing two vectors of lengths l\ and 1% with projections m\ and m2
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{mi +  m2 =  M) on the z-axis (see fig. 3). Along these lines we again find
the same result (4.10) as before.

A classical analogue of the functions Dlmn((p, &, y>) (which specify the repre­
sentations of the rotational group and also give the wave functions of the
symmetric top) may be given in a quite similar way as for the Clebsch-Gordan
coefficients: In view of the formula

(O  =  Wlm {r)Dlmm. (tp, 0, xp) (4.17)

Fig. 3. Triangle of angular momenta h, h  and L, the positions of h  and Z2 being
specified by the projections on the z-axis, m\ and m* respectively, so that the prob­
ability distribution of finding a length L  for the sumvector h  -)- /2 can be calculated

(classical-analogue of Clebsch-Gordan coefficients).

Fig. 4. A vector I, its position in the primed coordinate frame specified by its projec­
tion n on the z'-axis, so that the probability of finding a projection m on the z-axis
(#: angle between the z-axis and the z'-axis) can be calculated (classical analogue of

Dlmn{0, &, 0)). Notice analogy with Fig. 2.

we may interpret \Dlmn{0, ê, 0)|2 as the probability of finding a projection
m of I on the z-axis if it is known that the projection of I on the z'-axis

54



equals n and if the z-axis and z'-axis make an angle § (see fig. 4). We there­
fore introduce, using the abbreviation fi =  m/l,

W ^ m i d f i  - (4.18)

representing, for given values of I, n and ■& (see fig. 4) the probability of
finding a value for m such that

Ifi <  m <  l(/i -f- d/t). (4.19)

In an analogous way as for the classical analogue of the Clebsch-Gordan
coefficients, one finds

=  (jrf)-i {(1 -  /i2)(l -  v2) -  (Z -  H 2}-‘ (4.20)
(where the abbreviations z =  cos ■&, ju = m/l and v =  njl are introduced)
as a classical analogue of \Dlmn(0, &, 0)|2.

The formula (4.20) is symmetric in m and n, as could be expected from
the analogy with Dlmn(0, &, 0).

§ 5. Asymptotic expression for the function Dlmn(<p, &, y>). The functions
Dlmn(<p, ê, y>) are the eigenfunctions of the symmetric rotator (cf., e.g.,
W igner 3)). Hence a differential equation which they have to satisfy, can
be deduced from the Schrödinger equation for the symmetric rotator, as
has been done by R eiche and R adem acher 10), K ronig and R abi u ),
M anneback12) and Van V leck 18):

d r  d » l  T m2 — 2 mnz +  n21 ^
~dz L(1 “ z2) 1 7 ]  +  L ( +  1} T  =  °’ ( }

if
0 ^ ( 9), &, tp) =  uiz) exp[— i{fnV +  wv)l (5-2)

and
z =  cos $. (5.3)

The differential equation (5.1) is invariant for a) interchange of m and n
(cf. (A. 1.5)), b) simultaneous inversion of sign of m and n (cf. (A. 1.4a)),
c) simultaneous inversion of sign of z and either m or n (cf. (A. 1.6)).

We again introduce the abbreviations
fi =  m/l and v = nfl. (5.4)

Substitution of (5.4) into (5.1) now yields, if 1,

^ - | ”(1 — z2) ^ - 1  + (l+ £)2( i— 22)-1[(l — i“2)(l — »'2) — iz ~ H 2]u =  0- (5-5)dz L dz J
We shall use the WKB-method 14) 15) to solve equation (5.5) for large values
of I. Therefore we put

u(z) =  exp [i(l +  è) (So(z) +  {I +  i) -1 5i(z)}]. (5.6)
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Equating to zero the coefficients of different powers of (I -f- ^)-1, we
obtain for the WKB-solution

exp
u{z)

+ è) ƒ {(1 — /-«2)(1 — r2) —  (x  —  fiv) 2}*

1 —x2
{(1 — /W2)(l — v2) — (z —

(5.7)

The real (imaginary) part of u(z) is

v(z) =  A { } =  A {(1 -  ^)(1 -  v2) - ( z -  H 2}-1 •

• { cos} [(Z +  *) ■/' 0 -  *2)-1 {0 -  <“2)0  -  *2) - ( *  -  H 2}* <H  (5-8)

where we have introduced a normalization constant A. The WKB-solution
(5.8) is the oscillatory solution valid for the region between the classical
turning points (that is the classically allowed region) determined by

(z — fiv)2 <  (1 — fi2)( 1 — v2). (8-9)

Outside this region one might also write down the WKB-solution which then
falls off very rapidly (exponentially) for high I, so that the normalization
integral is only determined by the integral over the oscillatory part of the
solution (in the limit of high I). We may first average v2(z) over a few
periods of the (for large values of I) rapidly oscillating (co)sine. Since the other
factor of v(z) is a slowly varying function, we find

^2(i) =  %A2{(\ -  /i2)( 1 -  v2) — (z -  /iv)2}~*. (5.10)

From the normalization of v we then find

A =  ±{2!{nl)}K (5.11)

From (5.2), (5.7), (5.8) and (5.11) we now derive the expression

Dlnn{ 0, ft, 0) a* {2/(tt/)}* {(1 -  n2)(l -  V2) - ( z -  H 2r *  •

. cos [(/ -f- I) f z (1 — #2)-1 {(1 — i“2)(l — i’2) — (x — fiv)2}* dx], (5.12)
if

I l ,z  =  cos ft, m =  Ifi, n = Iv and {z — fiv)2 <  (1 — ~  v2)- (5.12a)

A special case of (5.12) is the expression for a spherical harmonic. Making
use of (A. 1.7) we derive from (5.12)

Yini[ft> <p) & exP {inup) {l — /i2 — z2}~* .
. cos [(/ +  i )  f $  ( l  —  * 2 ) - i  {l -  fi2 -  X 2}* dx -  (/ +  m)n/2]. (5.13)

In (5.13) we also have specified the phase of the WKB-solution to express
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the symmetry character of the spherical harmonics for the transformation
§ n — & (cf. (A. 1.6)) and to have the correct sign for z =  0 (cf. (A. 1.3)).
Since there is no such symmetry for the functions 0 ^ (0 , 0) (except
if m — 0 or n =  0), we did not specify the lower boundary of the integral
in (5.12). If m =  0 we may reduce (5.13) even further to obtain an expression
for the Legendre polynomials (cf.16) p. 92)

Pi (cos &) =  D U 0, d, 0) m {2f{nl sin #)}* cos [(I +  £)# -  »/4]. (5.14)

§ 6. Comparison of the results of § 4 and § 5. The comparison of certain
results of § 4 and § 5 throws some more light on the classical behavior of the
Clebsch-Gordan coefficients and D-functions.

(a) The square of the function Dlmn(0, §, 0) has a rapidly oscillating
behavior as a function of & (for high I) (cf. (5.12)). Averaging the square of
Dlm„(0, ê, 0) over a few periods one obtains the value of the classical analogue
(4.20).

(b) In § 4 we constructed a classical analogue of the square of Clebsch-
Gordan coefficients. However, we did not give any rigorous mathematical
derivation that the asymptotic value of the quantum-mechanical ex­
pression !) 2) for the Clebsch-Gordan coefficients reduces to the classical
analogue in the limit of high I.

By comparing (2.1) and the WKB-expression (5.12) for Dlmn(0, &, 0) one
obtains an expression derived from quantum mechanics which shows the
meaning of the classical analogue: The Clebsch-Gordan coefficient
(for the case h  h, L) shows a rapidly oscillating character as a function
of MIL. Averaging the square of the Clebsch-Gordan coefficient over a few
oscillations one obtains the value of the classical analogue (4.10), taking
into account (4.13).

(c) The foregoing remark does not yet provide a reduction of the quantum
mechanical expressions C f^llim2 to its classical analogue for the limit of
high I, except for the case h  <  h, L. Because of the similarity between the
derivations of (4.10) and (4.20) one might conjecture that a formula analogous
to (2.1) might be valid for arbitrary values of l\, h, L ; such a formula should
then have the form

° ’ °h  (6-!)
where o> is a phase factor, |a>| =* 1,

«1 =  h  cos % =  {l\ — l\ +  L2)/(2L),

ê  -  arc cos (M/L).
(6 .2)

However, we did not succeed in establishing a relation of this form. We
may indicate two difficulties, which exist in the extension of (2.1) to a
formula of the type (6.1) and which make this extension non-trivial if not
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impossible: (1) the value which (h — n{) should have according to (6.2) is
in general not an integer (if h  <^l2, L , m  & L — l2), while the ordinary
definition of Dlmn is only given for integer values of (I — «); (2) it may
be that l\ h, L is an exceptional case, as substitution of (5.12) into (6.1)
leads to an oscillatory behavior of as a function of M  analogous
to (co)sin {hMjL). It is only in the special case h  <  h, L  that this (co)sine
varies smoothly as a function of M, so that there may be an essential
difference between this special case and the general case.

(d) For the purpose of indicating the meaning of the classical analogue of
the Clebsch-Gordan coefficients in the general case, one may try to follow
in detail the transition from quantum mechanics to the classical limit.
Let <PjlfBl, #z2m2 be the wave functions of the component systems with the
indicated values for the quantum numbers, and similarly Olm the wave
function of the resultant system

@hm2 (6.3)
The classical concept of a system with a definite I determined in magnitude
and direction can be introduced in quantum mechanics only in the sense of
a system with a definite I and a direction of the angular momentum confined
to a certain small solid angle around a direction in space (as its x, y, z
components do not commute), which we shall represent (for the component
systems) as

®( l̂) ~  Snij aml =  2ms bm2 @l2m2- (6-4)
The ami and bmt are amplitudes chosen in such a way that the angular
momenta have “roughly” some direction. For large I they differ from zero
appreciably only in some interval Anti or Am2 around the value m\ or m2,
corresponding to this approximate definition of the direction.

We shall now specify a probability P(L) in two ways:
I. establishing a simple “geometrical” calculation,
II. performing a quantum mechanical averaging procedure.
The comparison of I and II relates the classical analogue to the square

of the quantum mechanical Clebsch-Gordan coefficients.
I. If we fix lx, l2, l\z (=  nti) and l2z (=  m2), then the remaining variables

(azimuthal angles) to be specified in the classical picture may be denoted
as 931, <p2. Alternatively L, <p may be given

L  =  L(<pi, <p2), tp — <p(<pi, <p2). (6.5)

The probability distribution in L  and q> is now determined by
P(L) dL  d<p'= C d^i d9?2. (6.6)

(6.6) expresses that all intervals d<pi and d ^  are equally probable. Now
introduce P(L)

P ( L ) d L = / v P(L)dLd(p (6.7)
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and normalize
Jl P(L) dL =  1. ( 6 .8)

This P(L) is exactly the classical limit we discussed in § 4.
II. Quantum mechanically the probability that the resultant state

0(h) 0(h)  coincides with a state 0(L) is given by

\<0(L) \0(h)0(h)>\2. (6.9)

We now want to perform the averaging process over <pi, 932 in (6.6) according
to quantum mechanics, This means that the orientations of h  and h  are
given by ensembles (mixed states, no pure states), characterized by density
matrices pa) and p(2), obtained by performing an additional ensemble
average (cf., e.g., T o lm a n 20)). p(1> and p(2> are diagonal in m\ and m2
because of the rotational symmetry about the z-axis.

■l  r *  ___ ( 2)
m2' P rn2m2'

o(1) <5

„ ( 2)  s
rrw 2wi2 W r n 2 m 2 *

(6 . 10)

where pm\mi =  0 (or Pm{m2 =  0) if mi (or « 2) is not in the interval Am\ (or
dm2) which was introduced in (6.4). We may write

0(ll)0(h)  —  am1 bm2 0 l1m ^ltmi —  am1 bm2 (6. 11)

so that the density matrix characterizing the resultant state (after the
averaging procedure (6.10)) can be written as

(.LM |p| L M  > — (6-12)
or

<LM |p| L'M ’y
S r a p B j  Pm1ml  P m 2m2 ^ ^  Jit M '

if M  is in the interval corresponding to Ami and dm2,
=  0 otherwise. (6.13)

From (6.13) we deduce that the probability to find the resultant system in a
state L is given by

P(L) =  S at SnqTOj pim1m1 Pm2m2 I (6-14)

A summation over M  should be carried out over an interval AM  correspond­
ing to dmi and dm2 in order to cover the full width of the “wave packet”
for the final state as a function of ■&.

The comparison of the expressions under I  (equations (6.6), (6.7), (6.8)) and
under I I  (equation (6.14)) shows that the classical analogue P(L) must be
asymptotically equal (for large h, h, L) to an average of the square of the
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Clebsch-Gordan coefficients over small intervals of mi and mz (summation over
all possible values of M).

For the coefficient Cj 0 Racah 2) has given a closed expression without summations.
If one calculates, using the Stirling approximation (A.2.4), the limit for large values of
h, I2 and L, one finds

CfSit0 =  Q if h  + It -  X -  odd, (6.15a)

C fa j, = V 2  < -  l)" '^ --1 »'2 {2L/n}i .

• { -  {h* +  h* +  L4) +  2(h*h* +  122L2 +  if h  +  h  -  L  =  even. (6.15b)

We note that these limiting values are consistent with the classical analogue (4.14),
although the fact that only the value for m\ =  « 2  — M  =  0 is given does not allow a
real check of (6.14).

(e) We may specialize the formulae (5.12) and (5.13) to the case of Legendre
functions, using (A. 1.7). If the argument z =  cos ê  satisfies (cf. (5.9))

— (1 — f.i2)- <  z <  +  (1 — («2)-, (6.16)

we have a rapidly oscillating function; if (6.16) is not satisfied, we have an
exponential behavior. This is illustrated for the two cases m =  0 and m 0
in the figures 5 and 6.

Fig. 5. Oscillatory behavior of the Legendre polynomial Pi(z) in the interval
— 1 <  z  <  1 for large values of I; cf. formulae (5.13) and (5.14).

This behavior may be illustrated also by fig. 7, which represents the orbit
of a particle having a total angular momentum I with projection m on the
z-axis. Since only the projection m is specified, the angular momentum
vector may “precess” about the z-axis, and it is seen that the exponential
region of Pim(cos ■&) is the region where the particle can not come according
to the classical picture.
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Fig. 6. Oscillatory behavior of the associated Legendre polynomial PimW in the
interval — (1 — p2)i <  z  <  (1 — p2)i and exponential behavior for (1 — p2)$ <  |*| <  1

as obtained for large I; cf. formula (5.13); p =  mil.

EXPONENTIAL
\  BEHAVIOR

,» » -•  —  —  ~

[OSCILLATORY
I I BEHAVIOR

EXPONENTIAL
BEHAVIOR

Fig. 7. The orbit of a particle specified by the quantum numbers I and m  may "precess”
about the z-axis. According to this picture the particle will move in the "classically
allowed” region (oscillatory behavior) and will stay out of the region where Pim(z)

behaves exponentially.

Appendix  I

Definition of Euler angles and rotations. The representation of the ro­
tational group is defined by 3) 4) 5)

Vim- (r') =  R n»(r) =  »W(r) Dlmm.(R), (A. 1.1)

where R represents a rotation of the coordinate frame, r  are the coordinates
in the original frame, r ' in the rotated frame. We use a right-handed frame
of axes. A positive rotation about an axis is the rotation of a right-handed

61



screw moving in the positive direction along that axis. A rotation R is said
to be represented by the Euler angles <p, ft, ip if the rotation R of the coordi­
nate frame is effected by, successively
a) a rotation q> about the original z-axis,
b) a rotation ft about the new y-axis,
c) a rotation ip about the z-axis of the coordinate frame that results after

the rotation b).
We shall make the following choice of phases in connection with the

angular momentum operator J  (Condon and S h o r tle y 1)).

J ± XP)m — (Jx i  i jy) 'Pjtn =  +  %{{] T  m)(] 1)}* ^y,m±l • (A. 1.2)

With these definitions of the Euler angles, of the meaning of the rotation R
to be represented by the coefficients Dlmn(<p, ft, ip) and with the phase
choice (A. 1.2), the phases of the Dlmn(<p, ft, ip) are determined. The coef­
ficients Dlmn((p, ft, ip) are 4) *)

Dlmn( <p, ft, ip) =  e~inup [(/ + m)\ (I — m)\ (I +  n)\ (I — n) !]* .

I)*-*
{cos (J#)}2z+tti+n {sin (±ft)}2l-m-n-2e

z\(l — tn — z) ! (z tn +  n) ! (I — n — z) !
( A -  1 - 3 )

From (A. 1.3) one easily derives

Dmn{<P, V>) =  (— I)”1"” Dl_m_n{(p, ft, ip) (A. 1.4)
or

Dlmn{0, ft, 0) =  ( -  1)»-» Dl_m_n(0, ft, 0), (A. 1,4a)

Dlmn(0, ft, 0) =  ( -  I)*»-» Dlnm(0, ft, 0), (A. 1.5)

Dlmn(0, ft, 0) =  ( -  1)*-» Dl_mn (0, 7 t - f t , 0 )  =

=  ( -  l)i+mDlm_n ( 0 , j i - f t ,0 ) .  (A. 1.6)

The spherical harmonics are defined by (corresponding to Condon and
S h o rtley  4))

Di:.(<P, V, V) =  {4^ /(2/ +  1)}* Y lm(ft, <p) =

=  {(/ -  m) 1/(1 + tn) !}* Pim{cos ft) eimf. (A. 1.7)

In (A. 1.7) we have chosen the phase of the associated Lengendre poly­
nomials Pim (cos ft) such that their sign equals that of the functions &(lm)
of Condon and S h o r tle y 1). Our conventions are all in accordance with
E d m o n d s4), except for Pim( cos ft).

*) This formula, as given by Edmonds, differs from the form given by several other authors in
the phase of D lmn(0, ft, 0) and/or in complex conjugation of e ~ ^ <P and e~in*/*.
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Appendix II

Clebsch-Gordan coefficients for large angular momenta. The proof of the
asymptotic equality (2.1) has to be given separately for the two cases

a) \m\ ^  I, (A- 2.1a)
b) \m\ s= I. (A. 2.1b)

We first treat the case a). From the general expression J) 2) for the
Clebsch-Gordan coefficients we derive

f 21 +  1 I*r lm _v  (__i w  _____'______ > .
V ' [21 +  1 +  K — rj

{(<C — t) ! (k +  t) ! (k ft) \(k — fi) !}*
z \(k — [i — z) ! (t +  n -f- z) ! (k — t — z) !

[(2/ — k — t) ! (I +  m  — r  — /*)!(/ — m — r  +  p )\(l-\-m )\(l — m) !|* ^ ^
' \  (21 -f- k — r ) ! {(/ +  m — t — fi — z) ! (/ — m — k +  fi +  z) !}2 J

Since we supposed \m\ ^  I, we can, by choosing I large enough, satisfy

M >  1, (A. 2.3)

so that we are able to approximate the last factor of (A. 2.2) by using the
Stirling formula 16) (p. 5)

x\ =  (2tt)* exp \[x -f I) In x — x  +  0/(12x)] (0 <  0  <  1). (A. 2.4)

From (2.1b) we derive

cos (|$) =  {(/ +  m)/(2l)}k and sin (%&) - {(/ — m)/(2l)}i. (A. 2.5)

Using (A. 2.4) and (A. 2.5) we find for the last factor of (A. 2.2)

{(/ +  m)l(l -  w)}*+(T+0/2 {(/ -  m)l(2l)}K =

=  {cos (P)}2a+'t+T {sin (P)}2* - ^ -2*. (A. 2.6)

Substituting (A. 2.6) into (A. 2.7), we find, using (A. 1.3)

CZa-r. m-M ~  ( -  1)K“T {(* -  r ) ! (* +  tJ! (k + » ! (k -  p) !}* .

{cos(P)}2a+̂ T{sin m r - ^ T- 2z _
* z\ (k — /i — z) ! (z +  (i -f- t) ! (k — t — z) !

=  ( -  1) *-T 0 ^ (0 , ê, 0). (A. 2.7)

In case b) we must-proye (we give the proof for m — +  I; the proof for
the case m =  — I is entirely analogous)

c^ -,.,-„ -» (-tr’D (̂o.o,o) = G i r ' v  (A-2-8>
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From the general expression for the Clebsch-Gordan coefficients we derive

™  +  1 \ »J  ( * - t)! (* +  /*)! j*
1,1,1 T, (I ft) I 21 +  1 +  K — T J 1 {[I — t) ! (k +  t) ! (k  —  n) ! J

}____ (2/) \ (71 jj, t) ! 1*
' 1 {21 +  K -  t) 1 {71 -  T -  k) ! j ' ' ' • j

Using Stirling’s approximation (A. 2.4) we deduce

r « t  _ , i  ( k - t ) 1 ( i c + » 1  1 T
f t)  ! ( / /  —  T )  1 ( «  +  T ) ! ( k  —  / < ) !  J  1 2 /  +  1 J  [\/2l  J (A. 2.10)

Since r  we m ay conclude from (A. 2.10) for large values of I after
interchange of indices of the Clebsch-Gordan coefficient tha t

r . i - p ~ ( -  l)*"r V  (A. 2.11)

(A. 2.7) and (A. 2.11) together are equivalent to (2.1).

Appendix  I II

Comparison of some expressions for Dlmn(<p, ft, %p). We want to compare
some expressions of the form (5.2) for the coefficients of the representation
of the rotational group. We introduce 10)

If we put

| m +  n\,

d =  \m — n\, p =  I —
d -j- s

u(t) =  w{t) (1 —  t)*/2

(A. 3.1)

(A. 3.2)

then, as has been shown by R a d e m a c h e r 10), the differential equation
(5.1) is reduced to  Gauss’ differential equation for the hypergeometric
series. Thus we find

u(t) =  W 2 (1 — t)*'2 F (— p, d +  s +  p  +  1; d +  1; f). (A. 3.3)

The term inating hypergeometric series in (A. 3.3) is a Jacobi polynomial.
For convenience we also give the notations by C o u ra n t  and H i l b e r t 17)
and S zeg ö  18)

F[— p ,d  +  s +  p +  \ \ d +  1; t)

= { pJp dy ip *''){zi = xy(p

Gp(d +  s +  1, d -f- 1; t) =
(d +  s +  p -f- r) ! d !

r /  [d +  s +  p )! {d -f- r) !

(d +  p)\
f  d \v

t~a (1 —/)-»  i — J [t*+v (1 — t)*+P], (A. 3.4)
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We now write
Dlm„(% #, V) =  Nu(t) (A. 3.5)

If we use the value given by J a c o b i10) 19) for fo{u(t)}2 dt, we find for N,
if we want the expression (A. 3.5) to be equal to (A. 1.3)

( -  1)* r (<* + s + fl! (<* + £)! 1*
d\ L p\ (s +  £)! J (A. 3.6)

The sign of (A. 3.6) holds for the case

m -T n >  0 and m — n >  0. (A.3.7)

If the conditions (A. 3.7) are violated, we may use the relations (A. 1,4a) and
(A. 1.5) to determine the value of Dlmn(<p, &, ip). The normalization (A. 3.6)
implies that

Qj i%
I t *  d y / o "  d y j ” M  sin ê  D l*n(<p, ■&, ip) D lmn{<p, ■&, ip) =  —y y  (A. 3.8)

and implies normahzation of the Y im (ê ,  <p) according to

S i f t  Y*m (■&, <p) Y lm(ê, <p) sin & d& dtp =  1, (A. 3.9)

if the relation (A. 1.7) is assumed.
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SAMENVATTING

Het probleem van de alfadesintegratie kan gesplitst worden in twee
gedeelten:
(1) het inwendige probleem betreffende de vorming van het alfadeeltje

uit de nucleonen van de kern,
(2) het uitwendige probleem van de voortplanting van het alfadeeltje nadat

het de kern heeft verlaten.
In hoofdstuk I van dit proefschrift wordt het inwendige probleem be­

handeld. De vorming (dissociatie) van alfadeeltjes uit (in) nucleonen is
nauw verwant met de gemiddelde vrije weglengte van alfadeeltjes in kern-
materie. In geval van een korte vrije weglengte kan de vorming van alfa­
deeltjes bij benadering gekarakteriseerd worden door een randvoorwaarde
op het kernoppervlak. Deze randvoorwaarde bepaalt vervolgens de voort­
planting van het alfadeeltje in het gebied buiten de kern. Tevens wordt in
hoofdstuk I een golffunctie voorgesteld die een kern (met schillenstructuur)
representeert die een alfadeeltje uitzendt. Hiermee wordt de bovengenoemde
randvoorwaarde afgeleid voor de berekening van absolute en relatieve
overgangswaarschijnlijkheden in alfa-emissie. De waarde voor de straal
van de potentiaalput voor het alfadeeltje, die zo verkregen wordt uit de
levensduur van alfaradioactieve kernen, is in goede overeenstemming met
de waarde die volgt uit de verstrooiing van alfadeeltjes door kernen. Het
eerste hoofdstuk wordt besloten met een résumé van de experimentele
informatie die van belang kan zijn voor verder onderzoek van het gegeven
beeld van de vorming van alfadeeltjes.

In hoofdstuk II wordt het uitwendige probleem beschouwd en wel in
het bijzonder de hoekverdeling van alfastraling van gerichte kernen. Er
worden formules gegeven voor deze hoekverdeling (voor willekeurige
kernen) in afhankelijkheid van de mate van gerichtheid van de emitterende
kernen. Vervolgens wordt tot het speciale geval van sferoidaal gedeformeerde
kernen overgegaan, vooral met het oog op experimenten betreffende de
hoekverdeling van alfastraling en de nucleaire gegevens die hieruit kunnen
worden verkregen en die niet volgen uit de intensiteiten in de fijnstructuur
van alfastraling of uit de alfa-gamma-hoekcorrelaties. Het blijkt dat gelijk­
tijdige waarneming (echter zonder alfa-gamma-coincidentiemetingen) van
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de hoekverdeling van de gammastraling van belang is. Met de verkregen
nucleaire gegevens kan bepaald worden of de emissie van het alfadeeltje bij
voorkeur geschiedt van een van de polen of van de equator van het opper­
vlak van de sferoidaal gedeformeerde kern; dit betreft dus direct het in­
wendige probleem van de vorming van alfadeeltjes uit de nucleonen in de
kern. De relatie tussen de hoekverdeling in het laboratoriumcoordinaten-
systeem en die in het eigen coördinatensysteem van de kern, kan in de klas­
sieke limiet duidelijk gemaakt worden door eenvoudige geometrische
middeling over de precessie van de kern. Hierbij wordt gebruik gemaakt
van enkele resultaten van hoofdstuk III. Tot slot wordt in het tweede
hoofdstuk een analyse gegeven van experimenten over de hoekverdeling
van alfastraling van gerichte kernen.

In hoofdstuk III worden de klassieke limieten (asymptotische uitdruk­
kingen voor grote impulsmomenten) van Clebsch-Gordancoefficienten,
Racahcoefficienten en de functies Dlmn(<p, &, y>) van de matrixrepresentatie
van de rotatiegroep onderzocht. Klassieke analoga voor het kwadraat van
Clebsch-Gordancoefficienten en het kwadraat van de Dlmn(0, ê, 0)-functies
worden voorgesteld op grond van hun geometrische betekenis. Uit de
Schrödingervergelijking voor de symmetrische rotator worden WKB-
uitdrukkingen afgeleid voor de Dlmn(<p, &, y>)-functies en voor de bolfuncties
Yim(&, <p). Aangetoond wordt hoe deze WKB-uitdrukkingen samenhan­
gen met de klassieke analoga voor de Clebsch-Gordancoefficienten en
Dlmn{(p, &, y)-functies.
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