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Photograph of the 3-dimensional P T X  diagram of sHe-4He mixtures.
Pressure range: 21 <  P  <  34 atm; temperature range: 0 <  T <  2.0°K.

Inhomogeneous regions between equilibrium lines are indicated by hatched areas.
The A-transition is indicated by dashed lines.



INTRODUCTION

Helium -  3He, 4He as well as their mixtures -  is the only substance that
remains liquid down to absolute zero of temperature. This has been ascribed
to the small attractive forces between the atoms together with the large
zero point energy, which acts as an extra repulsive force. To solidify the
substance, an external pressure has to be applied, amounting to 25 to
30 atm at 0°K. Fluid mixtures are unstable at low temperatures. They
separate into two phases, one with a low and one with a high concentration
in 3He. The same happens in solid mixtures. To explain these phenomena
a cell model, involving the difference in zero point energy originating from
the mass difference between the 3He and the 4He atoms, has been suc­
cessful. Explanations using the statistical mechanics of a mixture of
Fermions and Bosons have been given also. Both 3He and 4He are known
in three solid forms, body centered cubic, hexagonal close-packed and face
centered cubic.

3He shows no sign of any superfluidity at T >  0.01 °K, whereas super­
fluidity is still found in mixtures containing about 64% 3He. Furthermore
3He is known to have a minimum in its melting curve, which was unique at
the time we started our investigations.

This thesis deals with some properties of helium at pressures higher than
the saturated vapour pressure. In part I A we describe a number of ex­
periments on solidification and melting of mixtures and of 4He. In this part
also measurements of the 2-transition of fluid mixtures are presented. The
freezing and melting lines of the mixtures have minima in the PP-plane,
similar to 3He. If the freezing pressure is written P  =  XP% +  (1 — X)P\  +
+  PE(T, X), the excess term PE(T, X) is negative and may reach a value of
—9 atm. X  denotes the molar fraction 3He, P® the freezing pressure of pure
3He and P\  the freezing pressure of pure 4He. We ascribe these properties to
the degeneration of the entropy of mixing, which sets in at higher temper­
atures in the fluid than it does in the solid. The degeneration of the entropy
of mixing is an outstanding example of the validity of Nemst’s heat theorem.
With the aid of the results obtained by us and several other workers, we



constructed a phase diagram, which is presented in part IB . Because of the
m any phases involved it is rather complicated. One of the most striking
properties shown in the diagram is the existence of a closed solid region a t pres­
sures where neither 3He nor 4He can be solidified. The A-phenomenon does
not complicate the picture very much, as it does not contribute a new phase
to the system. He I and He II  have the same space configuration, as was
known before. At the junction of the A-line with a first order transition line,
a kink occurs in the latter. In  general the concentrations of the fluid and the
solid phases in equilibrium are different. Under certain conditions they can
be the same; in th a t case the sample is called azeotropic.

The energy related to the fluid-solid transition of helium was discussed by
London. In  part I I  we reanalysed London’s considerations. Therefore we
used a “random close-packed” geometrical model of the fluid. The random
close-packing of hard spheres is being studied by various investigators.
The results fit within the experimental accuracy to the known structural
data  obtained from X-ray and neutron diffraction of liquids of simple sub­
stances. I t  seems th a t the stability of the fluid phase a t low temperatures
m ust be attribu ted  to a difference in zero point energy between fluid and
solid, which was absent in London’s theory. In  this section we present also
experimental evidence for the existence of a melting pressure minimum of
4He. The occurrence of this poorly pronounced minimum is due to the pho­
non energy spectrum of the 4He fluid. In  the solid the number of degrees of
freedom of wave propagation exceeds th a t of the fluid. Therefore, provided
the sound velocity in the solid is not much larger than  tha t of the fluid, the
entropy difference between fluid and solid m ay become negative.
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Part I

THE PHASE DIAGRAM OF 3He-4He MIXTURES AT
PRESSURES LARGER THAN THE SATURATED VAPOUR

PRESSURE

Synopsis
Part A. A full report is given of measurements of the onset of solidification, the

onset of melting and the A-transition of mixtures of 3He and 4He at pressures larger
than the saturated vapour pressure. The measurements cover the complete concen­
tration range: 0%; 0.99%; 2.77%; 8.9%; 22.8%; 50.5%; 64.5% and 80.1%
3He. The apparatus and measuring techniques are described. The temperature range
is 0.5-2.17°K. The pressure range is 0-48.4 atm. At low temperatures the freezing
pressure of the mixtures is much lower than the weighted average of the freezing
pressures of the pure substances. The difference can be as much as 9 atm. By entropy
considerations this can qualitatively be explained. The freezing lines of the mixtures
show steep minima, which can be understood by the same considerations. Some
preliminary results of the temperature at which the volume minimum exists are given.
Solidification is detected either by the blocked capillary technique, by observing kinks
in pressure-temperature diagrams of constant amounts of fluid, or by watching the
pressure as a function of temperature of a solidifying mixture in a flexible "Bourdon"
vessel. The melting curves are detected by a special technique, which enables us to
follow the solidification of a mixture at constant temperature.

Part B. From the measurements reported in the previous part a set o i T X  diagrams
of 3He—4He mixtures at constant pressure have been constructed. Peculiar properties
such as: Azeotropy, phase stratification of the fluid and the solid, a polymorph phase
transition in the solid and the A-transition have been taken into account. One, or
perhaps two closed solid regions exist a t pressures below 25 atm. The results are
compared with those of several authors.

A. PRESSURE-TEMPERATURE MEASUREMENTS INCLUDING FREEZING
AND MELTING.

1. Introduction. Helium is the only substance that remains liquid, when
cooled under its own vapour pressure down to 0°K. It solidifies only when a
rather large external pressure is exerted (large, in comparison with the
saturated vapour pressure). This peculiar property can be ascribed to small
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attractive forces between the helium atoms and the influence of the large
quantum mechanical zero point energy*).

A lot of work on the isotopic mixtures of 3He and 4He has been carried
out. The number of publications on 3He and 3He-4He mixtures increases,
steeply. It amounted to about 190 last year. For a survey of this literature,
the reader is referred to the review article by Taconis and De B ruyn
O uboter, which appeared in 19641). The majority of the available data
are related to properties in the saturated vapour pressure region. This
paper confines itself to properties at higher pressures of which little is
known still. There are for instance no volumetric data and only very few

TABLE I

A survey of the literature of 8H e-4He mixtures at pressures higher than the saturated
vapour pressure

property author
specific Heat solid, Edwards, McWilliams, Daunt 2) exp. T  =  0.06-1,0°K

Ct Zimmerman 3) exp. at several pressures

heat of mixing Edwards, McWilliams, Daunt 2) calculations from specific
solid, H E heat experiment

Klemens, De Bruyn Ouboter, Le Pair 4) theor. model, agreement
with Edwards e.a.

volume of con- Klemens, Maradudin 5), theor.
traction F E Klemens, De Bruyn Ouboter, Le Pair 4) theor.

phase separation
fluid

Zinov'eva 6) exp.

phase separation Edwards, Me Williams, Daunt 2) exp. ,
solid Klemens, De Bruyn Ouboter, Le Pair 4) - theor.

velocity of sound Vignos, Fairbank 7) exp.

freezing curve Esel’son, Lazarev 8) exp. T  =  1.4—4.2°K
Le Pair, Taconis, De Bruyn Ouboter, exp. T  =  0.45—2.2°K

Das») 10) “ ) P  <  48 atm
Le Pair, Taconis, De Bruyn Ouboter, De

Jong, P it 12)
exp.

Weinstock, Lipschultz, Kellers, Lee 1S) exp. T  =  0.3—1.3°K
Lee, Lipschultz, Tedrow 14) exp.
Tedrow, Lee 16) 16) exp.
Lipschultz, Tedrow, Lee 17) exp.
Berezniak, Bogoyavlenskii exp.
Esel’son 18) 1#) 20) exp.
Zinov'eva 6) exp.
Lifshitz, Sanikidze 21) theor.
Vignos, Fairbank 7) exp.

*) A detailed discussion on the solidification of the pure isotopes in connection with fluid and
solid structure will be given in Part II.
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TABLE I (icontinued)

property author
melting curve Lifschitz, Sanikidze 21) theor.

Berezniak, Bogoyavlerskii, Esel’son 19) exp. T  =  1.4-4.2°K
Le Pair, Taconis, De Bruyn Ouboter, De T  =  0 .5 — 1.3 °K

Jong, P i t 12)
Zimmerman 22) exp.
Tedrow, Lee 1#) exp.

heat conductivity Walker, Fairbank 28) exp. X  =  0.0138
solid m ixtures Sheard, Ziman 24) theor.

Klemens, Maradudin 5) theor.
Callaway 25) theor.
Bertm an, W hite, Fairbank 26) exp.
Berman, Rogers 27) exp.

hcp-bcc transition Vignos, Fairbank 7) exp.
Berman, Rogers 27) exp.
Berezniak, Bogoyavlenskii, Esel’son19) 20) exp.

nuclear relaxation G a r w in , Reich 28) exp. dilute solutions

A-lines Le Pair, Taconis, De B ruyn Ouboter,
Das • )“ ) »») exp.

phase-diagrams Lifshitz, Sanikidze 21) theor.
Le Pair, Taconis, Das, De Bruyn

Ouboter «)»») exp.
Zinov'eva •) exp.
Berezniak, Bogoyavlenskii, Esel’son19) 20) exp. T  =  1.4-4.2°K
Tedrow, Lee 15) 16) exp.
Lipschultz, Tedrow, Lee 17) exp.
Le Pair, Taconis, De B ruyn Ouboter, De exp.

Jong, P i t 12)

heat data available. In table I we have summed up all present literature in
the field as far as it is known to us. The present theoretical considerations
deal mainly with properties at saturated vapour pressure. Helium is a
highly compressible fluid, its molar volume (saturated vapour pressure)
m 27.4 cm3 mol-1 against 23.25 at 25 atm*), the work done on the fluid by
external pressure becomes of the same order of magnitude as the thermal
energy thus providing appreciable changes in the chemical potentials etc.
This puts serious limitations to the possibility of extrapolation of the known
low pressure data. Theoretical considerations on mixtures of hard spheres
by Lebow itz and R ow linson29) predict a negative excess volume of
mixing. This is expected also by P rigogine c.s. for 3He-4He mixtures74).
This has been observed at saturated vapour pressure by K e rr30)31) and
remains true probably at higher pressures.

When we started the experiments reported in this paper we did not know

*) 8He and m ixtures are even more compressible than  4He.
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whether our earlier observations at saturated vapour pressure on the
vanishing entropy of mixing32) would remain valid at higher pressures or
not. If so it should cause an interesting behaviour of the solidification
properties as will be shown.

Both pure 4He and pure 3He show a minimum in their melting curves.
In the case of 4He this is caused by the peculiar energy spectrum of the
fluid, with phonons as the only excitations in the low temperature region.
For 3He, where the minimum is much deeper, it is caused by the spin
contribution to the entropy (see first note, page 2).

The earliest measurements on the solidification of 3He—4He mixtures
were published in 1954 by Es el’s on and L asa rev 8). They were carried
out at temperatures above 1.4°K and performed by so-called blocked
capillary measurements. Doing so freezing lines had been measured in a
temperature region where no striking peculiarities happen. We extended
this work down to lower temperatures. Therefore we had to develop some
experimental equipment, which will be described here.

2. Apparatus. In order to carry out experiments to get the desired
information about the fluid-solid equilibrium of both pure components and
mixtures of 3He—4He, we built a number of apparatus. In the construction
of these, two main difficulties had to be overcome:

1. The scarcity and the price of 3He forced us to build a foolproof closed
circuit in which the sample can be pressurized and from which it can be
removed, all without losses.

2. The apparatus ought to have the possibility of pressure-measurement
on the spot, i.e. in the low temperature region itself.

The need for an apparatus with this property was pointed out by
S y d o riak 33) criticising the freezing point measurements of 3He. The core
of the problem consists of the following: When retrograde melting occurs,
that is when the melting curve of a substance in the PT  diagram shows a
minimum at some temperature T m, then no pressure, higher than this
minimum pressure, can be measured if the sample under consideration and
the manometer are on both sides of the temperature of the minimum on
the temperature scale; because in that case a blockage in the connecting
tubes prevents pressure readings. We shall discuss this in more detail when
we describe the measuring techniques.

Without the pretention to be complete, we shall sum up briefly the
different kinds of apparatus which have been used by various experimen­
talists in order to overcome this problem and which are important in relation
to the helium case:

1. The spring loaded bellows, used by Grilly, Sydoriak  and M ills39).
With this apparatus very accurate volumetric experiments have been

4



carried out on the pure components. It permits volume changes of the
sample and so has one degree of freedom more than type 2.

2. The thin-walled cylinder provided with a strain gauge. This type is
used by Edw ards, Baum, Brew er and D a u n t40) and many other groups.

3. The wide capillary. In this type the tubing is so wide that although
solid blocks are formed, the pressure can still be transmitted. Solid helium
has a rather loose structure, it can be deformed easily. So one can pressurize
through the minimum pressure region at least to some extent. This type is
used for instance in connection with sound measurements by Vignos and
F a irb a n k 41) and by Z inov 'ev a29) who looked into the sample vessel.

4. The Bourdon tube used by us, which also permits a volume change
at low temperatures and which will be described below.

E x p erim en ta l equipm ent. To pressurize the fluid samples we use
a stainless steel "toepler” system as drawn in figure 1.

Fig. 1. High pressure toepler system. Explanation in the text.

The sample is introduced into the evacuated left steel vessel via valve D,
when the mercury level is at the bottom of the container. With compressed
air introduced via the air admittance valve system A, the mercury in the
cylinder on the right can be put under pressure. Manometer C indicates
the pressure of the sample. Its value is corrected for the height of the
mercury which can be “seen” with aid of a y-ray “telescope ’. K  is a Geiger-
Miiller counter tube behind a diaphragm and H  is a lead chamber containing
a piece of radioactive cobalt. E is a valve with a dead-volume less than
3 mm3. F  is the capillary leading to the apparatus in the cryostat (inner
diameter 0.18 mm). Manometer C represents a Heise manometer. Its
Bourdon tube is filled with mercury. Pressures can be measured from 0 till
242 atm. The accuracy is about 0.2 atm. This manometer, calibrated by
the manufacturer, is used as a standard throughout the measurements.
Some times it was replaced by another one with a pressure range: 0—40 atm
giving a higher accuracy especially for the measurements on the melting
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lines. Top and bottom of the cylinders as well as all other connections were
sealed with 0-rings. Valve B proved to be very effective to apply slight
pressure variations*).

In the cryostat we used four different apparatus. The first two differ only
slightly. The first one can be cooled by a 4He-bath only. No experiments
below 1°K were done with it. Results of measurements with this apparatus
were published in 19629). To extend the measurements to lower tempera­
tures, the second apparatus was built. It is equiped with a 3He cryostat,
which permits so-called blocked capillary measurements below 1°K.

---- E

---- H

Fig. 2. Second apparatus for the measurement of freezing and A-curves of 3H e-4He
mixtures.

BT  -  Bourdon tube F  — bearings
B — pumping line to H G — mirror
C -  capillary H  -  vacuum jacket
D  -  leverage I  -  3He cryostat
E  -  glass rod K  -  carbon resistor

Results with this apparatus were described at the 8th Conference on Low
Temperature Physics (LT8) in 196210). The apparatus is shown in figure 2.
The lowest temperature obtained with this equipment was about 0.45°K.
The 3He is pumped by a small double stage rotary pump (Balzer type
DUO 1, ~16 //min) into a 3He gas container of a volume of about 1 I.

*)  Finally we used a still more accurate Heise manometer, which permits readings ±0.01 atm.
The pressure range is 0-50 atm. The accuracy is necessary to investigate the fluid-solid equilibrium
of mixtures with low concentrations of 3He and to check the measurements on the melting curve
minimum of 4He.
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Connections are made with a flexible stainless steel tube, Edwards 0-ring
connections and Edwards-Saunders valves of £ size. The 3He container
is mounted on the pump. The equipment is very simple to replace and to use
in other experiments. Connecting it and setting it into operation takes one
or two minutes. In figure 2 the most important part is the Bourdon tube.
BT. It is an ordinary Bourdon tube taken from a commercial manometer
(0-30 atm). It is made from a Cu-Ni-Zn alloy*). The volume of BT  is
about 900 mm3. BT  is soldered to a fixed supporting stainless steel tube B.
This tube serves also as a pumping line to evacuate the vacuum jacket H.
The free end of the Bourdon tube carries a leverage D to which a glass rod E
is fixed. The glass rod ends in the top of the cryostat, where it is drawn into
a fine needle point, thus producing a low friction bearing F. The capillary C
connects this apparatus with the gas handling system (fig. 1). When the
Bourdon tube is pressurized, the free end of the tube translates and rotates
a little. The t r a n s la tion does not influence the readings because of the large
difference in distance between bearings and mirror G on one hand and
bearings and Bourdon on the other. The rotation can be read by means of the
mirror. In this way the accuracy of the pressure detection is about 0.05 atm.
The sample is introduced into the Bourdon by means of capillary C, which
before entering into the Bourdon tube, is led into a vacuum jacket and wound
tightly around the copper vessel I, of the 3He cryostat. The screwthread in
the outer wall of this vessel provides a good thermal contact. Around this a
resistance wire is wound which can be used eventually as a heater. Lock-tite
is used as a glue and in order to increase the heat conductivity. A “De
Vroomen” type thermometer K  is fixed to the 3He vessel. Lock-tite seems
to serve very well as a heat conductor. The thermal contact between the
heater and the thermometer via lock-tite and copper vessel turns out to be
greater by an order of magnitude than the contact between the 3He liquid
in the vessel and the thermometer. The whole apparatus is immersed in a
4He bath, which can be cooled down to 1°K. As we knew before10) this
apparatus did not permit us to measure a possible minimum in the freezing
curves below 1°K.

In order to do this, we modified the second apparatus in such a way that
the BT  itself can be cooled also by the 3He cryostat. This arrangement is
pictured in figure 3 and called third apparatus. The BT  is soldered onto the
3jje vessel. No mirror is used for detection. Instead a piece of ferroxcube F
is attached to a "pointer” P  fixed to the free end of the BT. The position of
this piece of ferroxcube is measured within a superconducting coil L. The
inductance of the coil L is measured with an Anderson A. C. bridge34)35),
figure 4, operated at 331 Hz. The advantages of this bridge method have
been described by various authors (e.g. ref. 36) and can be summarized as

*) See appendix.
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Fig. 3. Third apparatus for the measurement of freezing curves and A-curves of 4He
and of 3He-4He mixtures at temperatures below 1°K and below the temperature at
which a minimum in the freezing curve occurs. The picture shows only the part of the

apparatus inside the vacuum jacket.
B T  — Bourdon tube L  -  coil

F  — piece of ferroxcube P - pointer
T  — carbon resistor C — capillary

Fig. 4. Anderson A.C. bridge

follows:
1. Application of a constant capacitor, which provides:
2. A high degree of reproducibility.
3. Only one resistance R5 needs to be read in order to calculate the self­

inductance L of the coil, although a second one R\ has to be adjusted at
the same time to compensate the small effect caused by the hysteresis of
the ferroxcube core and of course for the small variation of the resistance
of the leads to the coil in the cryostat.

The detection D consists of a selective amplifier together with a Philips
oscilloscope. On the horizontal declination of this instrument the same
signal is put as on the A.C. bridge. In this way a quick registration of the
pressure inside the Bourdon tube is possible. The inductance of the coil
without core amounts to ca 17 mH. It is wound in five sections in order to
decrease its capacity. In operation, with the core situated within the coil,
the self-inductance at low temperatures is of the order of 45 mH. At low
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temperatures the Bourdon tube is used up to 48 atm. This causes a dis­
placement of the core of about 6 mm. Pressures can be read with an accuracy
of 0.003 atm. The magnetic permeability of ferroxcube seems to vary
linearly with T  at these low temperatures. When the experiment is performed
at different temperatures a correction for this effect has to be applied. As the
magnitude of this correction itself is dependent on the position of the core
within the coil, this cannot be done with very high precision and in the most
extreme case we lose a factor 10 in accuracy.

Measurements of the melting line of 3He-4He mixtures have been done
in the fourth apparatus, which permits us to change the volume of the
sample. The apparatus is shown in figure 5. Only the part within the
vacuum jacket is drawn. The Bourdon tube BT  here, is no longer a com-

Fig. 5. Fourth apparatus for the measurement of melting lines of 3H e-4He mixtures
Ci — capillary for sample supply L — coil
C2 — capillary to pressure chamber F  — core (ferroxcube)

B T  — Bourdon tube T — carbon resistor

mercial one. It is made in the laboratory from a stainless steel tube, 2.67 mm
i.d., which is machined on a lathe to a wall thickness of about 25 p. After­
wards it is flattened by hammering it, until the two flat walls touch. Then
it is wound up until it has the required shape. At room temperature the
volume of this Bourdon tube increased about thirty percent, when the
pressure was changed from 0-30 atm. When during the experiment the Bour­
don was filled with fluid helium at freezing pressure, we could introduce 4He
in the surrounding high-pressure chamber and in this way decrease the
volume of the Bourdon tube. In this way an isothermal isobaric phase
transition of the sample under consideration can be produced. The volume
of the Bourdon tube at 30 atm at low temperature is about 30 mm3.
Pressure measurements now require two readings: The reading of the
position of the ferroxcube core, which gives the pressure exerted on the
sample by the walls of the Bourdon tube, and the pressure of the surrounding
4He which must be added to the latter to obtain the effective pressure on
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the sample. Of course here the same difficulties arise as are described in
connection with the third apparatus. In the actual apparatus the free space
in the high pressure chamber is reduced as much as possible in order to
avoid large mass transports of 4He if a volume change is wanted. Such a
mass transport should involve a large heat supply which had to be avoided
as our helium-three cryostat operating with about 1 cm3 liquid 3He was not
able to extract large quantities of heat.

T em p era tu re  m easu rem en t and u n its . For measurement and
control of temperature we used a De Vroomen-type carbon resistor. It is
calibrated each time during each measuring day against the vapour pressure
of 3He (1962 scale) and 4He (1958 scale). The resistance is measured with
a Wheatstone D.C. bridge. The temperature of the 4He bath is stabilised
using a Philips PR 2210 A 21 “recorder” as a zero current indicator. The
recorder operates a switch which closes a heating current circuit, if the temper­
ature of the bath becomes too low. The stabilisation thus obtained is better
than AT =  0.002°K, dependent on the temperature. The temperature of
the 3He bath is monitored by hand, changing the pumping speed of the 3He
pump through a lab-made needle valve. The zero current meter of the
3He-thermometer-circuit is a Philips D.C. voltmeter: G.M. 6010 (AT «a
«a 0.002°K). For the interpolation of the R *->T calibration the formula
of C lem en t and Q u in n e ll37)

ioiog R =  A y/  ( 1°— +  B

for carbon resistors proved to be very helpful, although for these thermo­
meters "«log R versus the square root” curves are not exact straight lines.

Throughout this paper we use the physical atmosphere (atm) as a pressure
unit, in contrast to earlier publications in which we used the kg cm-2, the
latter being a unit which is about 1.033 times smaller than the present one.
In calculations we replace [atm] by 0.1013 [Joule cm-3]. In this work X
denotes the molar fraction 3He: « 3 /(« 3  +  «4)-

3. Freezing pressures. E x p e r im e n ta l procedure. The easiest method
to measure freezing pressures is the so-called “blocked capillary method”
of K am erlin gh  O nnes and Van G u lik 38). In this method two mano­
meters are connected with each other by means of a narrow capillary C. See
figure 6. The lower part of the capillary is immersed in a thermostated cooling
liquid. Through the needle valve the gas is slowly admitted into the mano­
meter system and the two manometers indicate the same increasing pressure.
At a certain moment the freezing pressure is reached. A solid block is formed
in the capillary. M \ stops. It indicates the freezing pressure, while M 2
remains indicating a steadily increasing pressure. This method is used by
many experimentalists. It is usually referred to as Keesom s method.
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Kees om applied it, when doing the first experiments on the solidification
of helium.

The apparatus described in the preceding section give the opportunity
to practise the blocked capillary method. Results, obtained in this way
are listed in table II. They are in good agreement with measurements
reported by other authors.

Fig. 6. a. Principle of the blocked capillary method by K am erlingh  Onnes and
V an Gulik.

M i and M% -  manometers S -  storage cylinder with
C — capillary compressed gas sample
D  -  dewar vessel with V — needle valve,

cryogenic liquid
b. Impracticability of the blocked capillary method when the freezing curve has a

minimum; pressure-temperature diagram.

A serious disadvantage of the blocked capillary technique was mentioned
before. If the freezing curve of a certain substance shows a minimum in the
P(T) graph, the blocked capillary method does not give correct results
below the temperature Tm at which the minimum occurs. Imagine one has
a freezing curve as drawn in figure 6b. The capillary is kept at constant
temperature Tb somewhere below room-temperature. As the capillary itself
has a finite heat conductivity the temperature of the capillary changes
continuously from room-temperature to Tx,. Somewhere the temperature
of the capillary will be T m- If one carries out the blocked capillary process,
the capillary will block at P =  P m- This will not take place down in the
capillary, but somewhere above the level of the cooling liquid. For the
observer the outcome is the same. Hence for T  <  P m one will find P m

11



instead of Pi. With flexible vessels in which the pressure can be measured
at low temperatures, this difficulty can be overcome.

Initially there existed no knowledge about the hardness of solid mixtures
of 3He-4He. I.e. it was not certain whether the blocked capillary technique
should give reliable results or not. The manometer at the low temperature
spot enables us to detect onset of freezing in a different way. The pressure
is followed, when a constant amount of fluid is cooling. Consider a homo­
geneous fluid of a pure substance. If this fluid has a zero expansion coefficient
and we start from an initial pressure and temperature indicated by i, the
cooling curve is a straight isobaric line (fig. 7a). When freezing sets in, the
pressure decreases, as the volume of the solid is smaller than the liquid
volume. The cooling curve coincides with the freezing curve. At the lowest
point the freezing stops and melting begins until all solid has disappeared.
Then the cooling line continues at constant pressure till the final temperature
/  is reached. If this process is carried out with a mixture of two components,
in general the cooling curve will not coincide with the freezing curve (fig. 7 b)

p

T

Fig. 7. Pressure-temperature diagrams. Solid lines represent various cooling curves.
Thin lines represent real freezing curves of the sample.

as the concentrations of the solid and the liquid in equilibrium will differ
and after some solid has been formed the concentration of the liquid has
been changed. If not too much solid is formed this change is of little impor­
tance. The kink in the diagram, however, indicates sharply the onset of
freezing. We never succeeded in obtaining a temperature low enough to
leave the solid region. As a consequence we find fig. 7c. This is due to the
non-zero expansion coefficient of our samples. In fact when the temperature
is below the 7-temperature of the mixtures the expansion coefficient has a
large negative value causing a cooling curve as indicated in figure 7d. The
slope of the curve in the homogeneous fluid region is equal to xp/fa, being
the expansion coefficient and fir the compressibility of the fluid. Here we
neglect the volume change of the Bourdon tube and the influence of the

12



dead volume in the capillary and the valve (fig. 1, E) outside the cryostat.
In figure 7d the dotted line indicates the probable cooling curve if no solid
were formed. From this picture it is immediately clear why we never
succeeded in getting a homogeneous fluid again at low temperatures. When
the mixture has a high concentration of 3He and one starts at a high initial
pressure, say 45 atm, the cooling curve has the shape of fig. 7e. A kink
indicates onset of freezing i.e. a point of the freezing curve of this mixture.
In the ideal case a second kink would indicate the termination of freezing,
giving a point of the melting line or solidus. Unfortunately the second kink
is smeared out and the uncertainty in the determination of the solidus in
this way amounts to about 0.15°K. For low concentrations, for instance a
8.9% mixture, the difference between fluid and solid is small. As a conse­
quence we did not see a difference between the actual cooling curve and the
freezing curve (fig. 7/). In fig* 8 we have shown a few typical runs from our

X= 0 .5 0 5atm

X = O

1.0 °Katm  29

Fig. 8. Typical runs for the determination of the freezing points of 3H e-4He mixtures.
a. blocked capillary measurement; mirror readings versus outside pressure.
b. cooling curves at high pressures of 50.5% and 8.9% mixture, thin lines indicate

the freezing and A-lines.
c. cooling curves at lower pressures of 50.5% mixtures at different initial pressures.

The thin line indicates the freezing line.
A -  A-line; P.S. -  phase-separation of the fluid.

set of freezing line determinations. Figure 8a represents the measurement
of a freezing point by means of the blocked capillary method. This particular
measurement was carried out with the second apparatus (fig. 2), at T =
— 1.357°K and X  — 0. As can be seen, 1 atm corresponds to 1.5 cm on the
scale. At 25.45 atm the capillary is blocked; a further increase of the pressure
outside the cryostat does not affect the pressure within the bourdon tube.
In figure 8b two cooling curves are given. One of a fluid mixture with initial
pressure 45 atm and initial molar fraction 3He X  =  0.505. The other has
an initial pressure of 39 atm and a molar fraction of 3He equal to 0.089.
Obviously the cooling curves cannot be called isopycnes (p — constant) as
the volume of the Bourdon depends upon the pressure. At high concentrations
a large difference exists between freezing and melting. This causes a large

13



0.801 /0.645/.505/ >.069/ O.

Fig. 9. Freezing- and A-lines of 3He, mixtures of 3He-4He and of 4He.
O denote freezing pressures
A denote A-pressures
A denote A-temperatures at saturated vapour pressure from R o b erts  and

S y d o riak  4S)
— • — • — three phase equilibrium between two fluids and the solid
----------- probable curve at lower temperatures (see for instance L ee16)17)).
The drawn line for 3He is taken from the measurements of G rilly , M ills and
S y d o r ia k 44)45), extrapolated according to G o ld s te in 46).

change of the concentration of the fluid when some solid has been formed.
At low concentrations the difference is much smaller and the cooling curve
coincides nearly with the freezing curve. Figure 8c shows cooling curves
at low pressures. No appreciable difference has been found here between
the cooling curves as can be seen from the two cooling curves starting from
different initial pressures. This is due partly to the fact that only a little
solid is formed which causes only a slight change in the fluid concentration.
The second reason is that the freezing curves for different concentrations do
not differ too much here, which means that slight variations of the con­
centration do not give very different results.
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R esults. A part of the results has been published already. See table I,
in which the literature has been reviewed. The measurements are performed
with mixtures of the following compositions X =  0; X  =  0.0099; X =
=  0.0277; X  =  0.089; X  =  0.228; X  =  0.505; X  =  0.645; X  =  0.801,
X  denoting the molar fraction 3He*). In figure 9 an overall picture is given
of the freezing lines of 3He-4He mixtures. Not all data are plotted. At higher
pressures only a random sample is represented. We omitted the measurements
in the region of overlap for reasons of clarity. These are given in figure 10,
showing a more detailed picture of the region where the minima occur. A
comparison with the measurements of other authors will be given in connec­
tion with the discussion of the phase diagrams of these mixtures, see part B.
In figure 10 the results have been plotted in the following way: The 0-points
indicate results found with the blocked capillary technique. Cooling curves
are represented by thin dashed lines, the points of these lines are all related
to one pressure calibration of the ferroxcube manometer against the ex­
ternal Heise manometer. Of course not all points of these curves have been
detected. Nevertheless we think this way of presenting results more satis­
factory than that of giving single points, of which some are related and some
are not. In table II the measured points are listed. In the table a distinction
is made between blocked capillary measurements, kinks in cooling curves
and cooling curves. The lower concentrations show an impressive minimum
in their freezing curves. The lowest freezing points of the mixtures are much
lower than a linear interpolation between the pressures of the transitions of
the pure components. At the junction of the A-line and the freezing curve a
kink occurs in the latter. At higher temperatures the freezing curves become
nearly straight lines. In that region they appear to be linearly dependent
on the molar fractions.

D iscussion. Lower freezing  pressures. The lower freezing
pressures can qualitatively be understood from entropy considerations.

*) The mixtures have been prepared starting from pure sHe except for the 50.5% mixture. The
concentration of this mixture has been determined with a beam of thermal neutrons at the Reactor
Centrum Nederland (Petten, N.H.). The absorption of thérmal neutrons is a very good indication
of the 3He content of a vessel. The absorption has been compared to the absorption of pure sHe,
pure 4He and incidentally also by the absorption of the known mixtures. This proved to be a very
easy and accurate method for the determination of the composition. A report of this work will
appear before long.

Fig. 10. Freezing curves of 3He—4He mixtures, detail.
O denote blocked capillary measurements
A measurements with the more accurate Heise manometer
□ terminations of several cooling curves

-----(thin) indicates cooling curves
---- (solid) indicates extrapolation to lower temperatures

_____(solid) onset of phase stratification according to Z enov 'eva ®).
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TABLE II

The measured values of the freezing pressure
type 0 blocked capillary measurements type II  kinks in cooling curves
type I cooling curves } belonging to one calibration

r ^ K ) P(atm ) T(°K) P(atm ) r(°K ) P(atm ) T(°K) P(atm )
0% 3He 1.089 25.2 type II 1.200 24.95

1.080 25.1 1.905 34.6 1.100 24.81
type 0 1.053 25.2 1.845 33.4 1.023 24.77

2.155 43.2 1.045 25.1 1.772 30.2 0.900 24.74
2.135 42.4 0.958 25.1 1.765 29.9 0.800 24.76
2.109 41.5 0.859 25.1 1.750 29.4 0.700 24.85
2.088 40.7 0.752 25.1 1.747 27.8 0.600 24.95
2.047 39.2 0.650 25.1 1.717 28.8 0.500 25.11
2.042 39.1 0.559 25.1 1.646 27.6 1.100 24.85
2.000 37.6 1.000 24.97t 1.532 26.7 0.800 24.80
1.961 36.2 0.850 24.96t 1.515 25.7 0.700 24.87
1.957 36.2 0.700 24.96t 0.600 24.98
1.931 35.3 0.500 25.16
1.905 34.5 type I u.yyy0 »we

1.883 33.8 2.040 37.4 ' type 0 8.9% sHe
1.855 32.9 1.998 37.0 1.265 25.26
1.810 31.4 1.988 36.8 1.172 25.10 type 0
1.788 30.8 1.978 36.5 1.087 24.99 2.145 45.5
1.766 30.1 1.970 36.2 1.000 24.94 2.142 46.3
1.705 28.5 1.959 36.0 0.900 24.93 2.124 44.9
1.702 28.8 1.950 35.6 2.117 44.7
1.647 27.6 1.941 35.4 type I 2.094 44.2
1.607 27.2 1.892 34.1 1.000 24.96 2.061 42.5
1.593 27.0 1.885 33.8 0.900 24.92 2.052 42.9
1.545 26.5 1.815 31.9 0.792 24.91 2.035 41.9
1.523 26.5 1.805 31.7 0.700 24.93 2.017 41.4
1.500 26.47t 1.810 31.4 0.600 24.95 2.004 40.8
1.500 26.2 1.815 31.7 0.536 24.98 1.994 41.0
1.455 26.0 1.805 31.3 0.980 24.96 1.965 39.5
1.448 26.0 1.803 31.2 0.900 24.93 1.959 39.4
1.413 25.8 1.798 31.0 0.792 24.90 1.948 38.9
1.400 25.9 1.792 30.9 0.998 24.93' 1.906 37.7
1.381 25.7 1.788 30.8 0.901 24.93 1.896 37.4
1.357 25.45t 1.783 30.7 0.792 24.92 1.892 37.3
1.354 25.6 1.779 30.6 0.700 24.93 1.891 37.2
1.350 25.76t 1.774 30.5 0.600 24.95 1.846 35.2
1.320 25.2 1.770 30.4 0.535 25.00 1.831 35.1
1.302 25.7 1.766 30.3 1.828 35.1
1.302 25.5 1.762 30.2 2.77% 3He 1.800 33.9
1.296 25.4 1.755 29.8 1.797 33.9
1.266 25.4 1.750 29.6 type 0 1.771 33.0
1.258 25.2 1.744 29.4 1.284 25.23 1.761 32.9
1.246 25.3 1.736 29.3 1.150 24.88 1.755 32.4
1.200 25.35t 1.755 29.8 1.017 24.73 1.717 31.3
1.197 25.3 1.760 29.8 0.900 24.73 1.714 3Ó.9
1.170 25.2 1.765 30.0 1.704 30.8
1.155 25.3 . 1.768 30.2 type I 1.698 30.8
1.155 25.2 1.772 30.3 1.350 25.44 1 1.695 30.3
1.115 25.2 1.762 29.9 1.300 25.23 | 1.689 30.2

I measured with the more accurate gauge
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TABLE II  (continued)

T(°K) P(atm ) j T(°K) P(atm ) T(°K) P(atm ) T(°K) P(atm )

1.677 29.8 1.027 23.7 0.913 23.7 1.536 29.8
1.675 29.7 1.021 24.0 0.792 23.8 1.427 28.2
1.667 29.7 1.005 24.1 0.688 23.9 1.416 27.0
1.667 29.6 0.991 24.0 0.603 24.2 1.350 25.9
1.656 29.2 1.325 25.4 0.530 24.8 1.291 25.2 •
1.646 29.0 1.248 24.9 0.981 23.9 1.237 24.9
1.638 28.6 1.182 24.6 0.849 23.8 1.188 24.4
1.637 29.2 1.121 24.3 0.738 23.9 1.102 23.9
1.628 28.6 1.066 24.1 0.643 24.1 1.037 23.5
1.618 28.3 0.992 23.8 0.603 24.2 1.370 26.5
1.617 28.3 1.325 25.2 0.623 24.2 1.285 25.6
1.611 28.4 1.248 24.7 0.643 24.1 1.212 24.9
1.607 28.0 1.121 24.3 0.849 23.8 1.147 24.4
1.566 27.5 1.220 24.5 0.913 23.8 1.088 24.1
1.564 27.6 1.136 24.3 0.947 23.8 1.010 23.7
1.559 27.3 1.055 24.1 0.981 23.8 1.295 25.4
1.554 27.8 0.981 24.0 1.017 23.9 1.215 24.8
1.518 26.8 0.912 24.0 1.115 24.1
1.517 26.9 1.179 24.4 type II 1.010 23.5
1.498 26.7 1.136 24.2 2.205 48.7 0.925 23.1
1.494 26.2 1.055 24.1 2.140 45.7 0.832 23.0
1.482 26.3 0.981 24.0 2.082 43.7 1.000 23.4
1.472 26.2 1.121 24.3 2.063 43.3 0.943 23.3
1.438 26.1 1.066 24.2 1.965 39.5 0.980 23.2
1.430 25.8 0.992 24.0 1.930 38.5
1.429 25.8 0.932 23.9 1.928 38.7
1.411 25.5 1.066 24.2 1.860 36.6
1.390 25.6 1.015 24.2 1.830 35.4 1.007 23.3
1.387 25.5 0.950 24.1 1.785 33.5 0.990 23.2
1.369 25.6 0.892 24.0 1.761 33.1 0.973 23.2
1.341 25.2 0.975 24.1 1.760 33.3 0.905 23.0
1.329 25.3 0.912 24.0 1.697 31.0 0.786 23.0
1.315 24.8 0.950 24.2 1.675 30.0 0.686 23.1
1.307 25.2 0.892 24.1 1.645 28.8 0.686 23.1
1.296 25.0 0.811 24.1 1.630 28.9 0.602 23.5
1.282 24.9 1.601 28.4 0.565 23.7
1.273 25.0 1.518 26.9 0.530 23.8
1.255 24.6 1.466 26.2 0.498 24.0
1.253 24.6 1.312 25.3 1.443 26.0 0.547 23.9
1.252 24.9 1.266 25.0 0.530 23.9
1.250 24.7 1.241 24.8 22.8% 3He 0.565 23.7
1.223 24.5 1.165 24.4 0.574 23.7
1.214 24.5 1.055 24.2 type 0 0.558 23.8
1.181 24.4 0.981 24.1 2.026 47.0 0.547 23.8
1.177 24.2 0.913 24.1 1.997 45.4 0.513 24.0 J
1.155 24.5 0.849 24.1 1.970 44.9 0.923 23.0
1.150 24.3 0.792 24.1 1.933 43.9 0.905 22.9
1.135 24.1 0.738 24.2 1.911 43.0 0.843 22.9
1.117 24.2 0.643 24.4 1.873 41.8 0.735 23.0
1.096 24.0 0.565 24.8 1.823 40.0 0.643 23.2
1.089 24.2 0.495 25.1 1.769 37.7 0.603 23.2
1.065 24.3 1.241 24.5 1.703 35.0 0.602 23.5
1.061 23.8 1.178 24.1 1.644 33.2 0.565 23.7

1.053 24.0 1.055 23.9 1.588 31.5 0.530 23.9

18



TABLE II  (continued)

r(°K ) P(atm ) T(°K) P(atm ) T{° K). P(atm )
50.5% 3He 1.051 24.2 1.687 43.6

1.051 24.1 1.668 44.8
type 0 1.021 23.7 1.651 44.7

1.763 46.9 1.013 23.7 1.580 40.3
1.752 46.8 0.962 23.6 1.575 38.6
1.731 46.2 1.282 30.3 1.495 35.7
1.724 45.5 1.226 29.5 1.419 33.4
1.701 44.6 1.210 29.0 1.294 31.0
1.700 44.8 1.149 26.9 1.271 28.7
1.687 43.8 1.092 25.2
1.685 44.4 1.181 27.5
1.670 43.7 1.118 25.3 64.5% 3He
1.643 42.8 1.063 24.6
1.630 42.3 0.990 23.7 type u

1.610 41.3 0.928 23.7 1.645 47.6
1.606 41.1 1.610 46.4
1.505 41.2 type I 1.580 45.1
1.571 39.8 1.000 24.0' 1.550 43.8
1.546 38.2 0.950 23.6 1.520 42.8
1.522 37.9 0.850 23.1 1.488 41.8
1.521 37.8 0.747 22.8 1.421 39.5
1.509 37.6 0.650* 23.0 1.361 37.5
1.475 36.4 0.550* 23.9 1.308 35.5
1.472 35.5 0.500* 24.6 1.255 33.9
1.445 35.5 0.600* 23.2 1.212 32.3
1.432 34.8 0.800 22.9 1.167 31.0
1.405 33.8 1.100 25.1 1.091 28.5
1.405 35.1 1.075 24.8 1.026 27.0
1.390 33.7 1.000 24.1 1.284 35.3
1.378 32.1 0.800 22.9 1.210 32.8
1.353 32.3 0.700 22.8 1.145 31.5
1.344 31.8 0.600* 23.2 1.087 29.2
1.318 31.4 0.500* 24.2 0.988 26.5
1.318 31.2 0.900 23.2 0.988 26.8
1.318 30.9 0.850 23.1 1.115 30.4
1.286 30.0 0.600* 23.2 1.011 26.9
1.283 30.1 0.550* 23.6 0.947 24.5
1.261 29.2 0.500* 23.8 0.947 24.7
1.251 29.1 0.460* 24.4 0.842 23.4
1.241 28.7 0.800 22.8 0.967 24.2
1.235 28.4 0.750 22.8 0.947 24.1
1.221 28.3 0.650* 22.9 0.858 23.4
1.211 28.1 0.550* 23.3
1.192 27.4 0.460* 24.0
1.189 27.0 0.800 23.1 type I

1.165 26.6 0.750 22.9 0.850 23.41
1.147 25.7 0.650* 23.0 0.800 23.0
1.123 25.5 0.500* 23.9 0.700* 22.8
1.123 24.8 0.650* 22.9 .
1.108 25.1 type II 0.600* 23.1
1.086 24.6 1.869 50.9 0.550* 23.6
1.072 24.4 1.772 46.8 0.500* 24.0

r(°K ) P (a tn

0.750 22.8
0.650* 22.9
0.550* 23.6

80.1% •He

type 0

1.272 40.4
1.238 39.0
1.206 37.8
1.174 36.5
1.144 35.8
1.086 34.0
1.035 32.8
0.987 31.5
0.925 30.4
0.925 30.6
0.869 28.1
0.822 26.9
0.764 25.5
0.702 24.4
0.648 24.2
0.598 23.8
0.522* 23.9
0.987 31.6
0.925 29.9
0.702 24.4
0.598 23.7

type I

0.750 25.4
0.700 25.2
0.605 24.8
0.600 24.5
0.550* 24.2
0.500* 24.2
0.460* 25.0
0.600 24.0
0.500* 24.3
0.650 24.4
0.600 24.4
0i550* 24.3
0.600 24.2
0.550* 24.0
0.500* 24.1
0.450* 24.7
0.600 24.1
0.550* 24.1
0.500* 24.1

* three-phase equilibrium

19



Consider an amount of pure 4He at T =  0.7°K at the fluid-solid equilibrium.
The Clausius-Clapeyron equation:

dP/dT =  AS/AV
l l

holds. dP/dT is the slope of the equilibrium curve. dS =  Sn — Ssoi,
x

AV  =  Vti — Fsoi- At this temperature dP/dT <*n 0;AV  ^  0. Hence ZlS na 0.
1 1 i
If one introduces a certain amount of 3He into the fluid and the solid, for low
concentrations a qualitative picture of the new equilibrium conditions can
be obtained from the change of the Gibbs function. From the heat capacity
measurements on liquid mixtures32) we know that the entropy of mixing
is not ideal. At T — 0.7°K a negative excess entropy, SE =  —0.0775 Joule
mol-1 °K-1 (% 3He)-1 occurs. This is in agreement with Nemst’s heat
theorem, which states that at absolute zero of temperature the entropy
should be zero. In classical thermodynamics this is not the case for a mixture,
as the ideal entropy of mixing: —I?{XlnX +  (l — X) In (1 — X)}, a
positive quantity, is independent of temperature. In quantum statistics
this difficulty does not arise, as here this term goes to zero with decreasing
temperature (because of the degeneracy). This was recognised by Keesom
as early as 19 1 347), when he treated the mixing of ideal gases at low
temperatures, using the results of the early quantum mechanics by P lanck
etc. More recently H eer and D a u n t73) have discussed this phenomenon
with respect to the mixtures with which we are dealing here. Obviously when
one tries to describe the properties in classical terms with a constant ideal
entropy of mixing one will find a negative excess entropy. In the solid the
same should happen. Measurements of the specific heat of solid mixtures
3He-4He however show that degeneration takes place at lower tempera­
tures2). The entropy of mixing of the solid at 0.7°K is still ideal. Thus the
entropy of the fluid decreases more rapidly than the entropy of the solid
when some 3He is added. In comparison with the Gibbs function of pure 4He
the equilibrium pressure may decrease in such a way th a t:

AP-V ns 7SE

yielding: AP — —0.05 atm (% 3He)-1. This is roughly in agreement with
our results. A more rigorous treatment cannot be given at this moment
because the necessary data for the calculation of the partial thermodynamic
potentials (/x<) are still lacking. More accurate estimations can possibly be
made from these measurements if combined with the measurements on the
melting curves. We have not yet carried out these calculations.

Minima. The same kind of reasoning can be held about the temperature
dependency of the freezing curves. This yields a gradual increase of the
entropy term TS of the Gibbs function, which implies the negative slope
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of the freezing curves. In both considerations the differences between
solidification of pure substances and mixtures have been overlooked. The
slope of the freezing curve of a mixture is determined by :

/  d-P  \  _  * s o i ( S 3,f i  — S3, sol) +  (1 — * s o i)  (-S4.fi — -$4, sol)

'  d T  /  I n  X s o l ( F 3 ( fl —  V 3 t sol) +  (1 —  X a0l ) ( F 4>fl —  F 4 >s0l)

Si denoting the partial molar entropy; Vi denoting the partial molar volume.
Thus the behaviour of the slope of the freezing curve is not as simply
dependent of the total entropy as in a one-component system. But it is
not so much different that an explanation of the minima is likely to be
from other origins than from entropy degeneration.

K inks. The slope of the freezing curve of a pure substance is determined
by the Clausius-Clapeyron equation. As De B ruyn O uboter and Been­
akker pointed out48), in mixtures a kink exists in the first order phase
transition line at the junction with a second order transition line. Let us
consider first the case of pure 4He: AS and AV, being the differences in

1 1
entropy and volume at both sides of the first order transition line, vary
continuously, as the A-transition is a phase transition of the second order i.e.

d(dP/dr)freezlng =  0.
2

A means the difference of a quantity between both sides of a second order
2
transition line. The second derivatives of the Gibbs free energy however do
not change continuously. This gives rise to an abrupt change of the curvature
of the freezing line:

A
2 \  dP2 /fr

xp =  the isobaric expansion coefficient; fa  =  the isothermal compressibility.
In binary mixtures the situation is different because d(dP/dP)fr does not

2
vanish. As De B ruyn O uboter and B eenakker showed:

/ d P \  ACp.ti

A ( — \  -  V n \ d r ) ^ aA T 'tPT ~  T (  dP \
2 \  dP ) x n,ti AV . . \  dAfi / a

_  v J — )-mt
dXn AX  V dX„ A  2

1
fl denotes the fluid phase and fr the freezing curve. Cpt n is the specific heat

dS j /  AS \ 2

- 2 - T i r V - A x p + - l - - A C p -  ( —-  ) •V-Afa
AV 2 P 2 V A V )  2
1______________________ x 1 ' ________

AV
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at constant pressure of the fluid phase. The discontinuity is due to the fact
that AX  ^  0 at the fluid-solid transition. If the 1-surface should join in

l
some point the azeotropic line (i.e. the line through the azeotropic points) the
discontinuity would vanish. However, as far as our measurements indicate,
the 1-line and the azeotropic line do not coincide.

S tra ig h t lines. In the case of an assembly of hard spheres, according
to U h lenbeck49) one could expect a linear dependence of the transition
pressure on T. Unfortunately helium certainly does not consist of a number
of hard spheres (see Part II). Such a simple explanation cannot be given
therefore. As the molecules of both isotopes differ only energetically as to
their zero point energies, which add up to the kinetic energy, one may expect
a kind of linear interpolation between the curves of the pure isotopes,
because this extra zero point “kinetic energy” enlarges the classical kinetic
energy linearly with the molar fraction 3He.

4. Melting curves. E x p e rim en ta l procedure. Measurements are
performed with the fourth apparatus (fig. 5). The mixture is compressed
to its freezing pressure or to the minimum freezing pressure where the capilla­
ry is blocked, when the temperature of the Bourdon tube is below T m- Then
we increase the pressure in the vessel around the Bourdon tube by admitting
4He gas to this space. In doing so the Bourdon tube alters its shape just as
if the pressure within decreases. Actually a Bourdon-manometer indicates
only the pressure difference between the pressure inside and outside the
Bourdon. If the fluid within the Bourdon is a pure substance, then we see
that at first the rise of the outside pressure equals the fall of the “Bourdon”
pressure. As the total pressure on the sample is equal to the sum of the
pressure of the walls of the Bourdon tube and the outside pressure, this
involves the pressure of the sample to remain constant. A solidification at
constant pressure and temperature takes place until the solidification is
complete. Of course the heat of melting has to be extracted by the 3He
cryostat. From that moment a further increase of the outside pressure
causes an increase of the pressure of the sample, because of the small
compressibility of the solid. If instead of a pure substance a mixture of 3He-
4He is investigated, in general the process differs a little from the one
described here. When some solid has been formed, the concentration of the
fluid has been changed. The freezing pressure of the remaining fluid is
somewhat higher than the freezing pressure of the initial mixture. During the
proces of solidification we notice a pressure increase. When all fluid has
disappeared the increase becomes steeper. This change of slope in the graph
of total pressure versus outside pressure is rather sharp and indicates the
termination of freezing called the melting point. Sometimes there is no
difference in concentration between fluid and solid in equilibrium. A mixture
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under these specific T P X  conditions is called azeotropic. If an azeotropic
mixture solidifies, the behaviour is essentially the same as that of a pure
substance. In figure 11 two typical runs are shown. Part a) shows the solidifi­
cation of a mixture containing 8.9% 3He. The solidification is azeotropic.

o S IO 15 20

Fig. 11. Solidification of two mixtures at constant temperature by volume decrease.
The pressure of the sample P g plotted against the external 4He-pressure Pe of the
chamber around the Bourdon. The volume of the Bourdon is a continuous monotonous

function of P s — Pe■ M  indicates the melting point.
a. solidification of a 8.9% mixture under azeotropic conditions.
b. solidification of a 50.5% mixture.

From the diagram of the freezing curves at different concentrations, it is
already obvious that azeotropy would occur. We shall return to this at the
discussion of the phase diagram. In figure 11 b the solidification of a 50.5%
mixture is shown. The molar fraction of 3He in the fluid changes during the
process of solidification. The equilibrium pressure at constant temperature
increases, indicating this change.

R esults. Measurements have been done on mixtures of the following
composition: X  =  0.089, X  =  0.228, X  =  0.351, X  =  0.505, X  =  0.645,
X  — 0.801. The results of the measurements which have been presented
to the Ninth Conference on Low Temperature Physics12) are listed in table
III and shown in figure 12. The measurements show a larger error than the
freezing point measurements. This is due to the obstruction against free
movements of the Bourdon tube caused by the pieces of solid inside.
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Fig. 12. Mplting lines of 3He-4He mixtures. The arrow indicates the azetropic point.
O points obtained with the fourth apparatus
O points from cooling curves
© etc. points that overlap.

Another source of errors in this experiment is caused by the readings of
the manometer indicating the outside pressure on the Bourbon-tube, which
suffered some hysteresis being not as reliable as we hoped.

It is clear from the results that the azeotropic point, which only occurs at
lower concentrations, shifts to the low temperature side, when the molar
fraction of 3He increases. At some composition it will coincide with the onset
of phase separation of the fluid. A 50.5% mixture does not show azeotropy
any longer. This has important consequences for the phase diagram as will
be shown later.

5. X-lines and minima of molar volumes. The A-transition of pure 4He
shifts towards lower temperatures if the pressure increases. The same
happens if the concentration of 3He increases (e.g. ref. 1). Some evidence
on this shift of mixtures at higher pressures has been obtained b y F a irb a n k
and E llio t in 195850). They used the second sound velocity for the A-point
detection.

The early diagram of state of helium published by Keesom and Miss

X . 0.351X -O .2 28X . 0 .0  89

X , 0 .801X . 0 .5 0 5 X - 0 .6 4 5
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TABLE  I I I

Measured values of the melting pressures of mixtures of 3He-4He
T(°K) f  (atm)

X  = 0.089

1.225 24.73
0.700 24.71
0.600 25.13
1.000 24.25
1.280 25.10
0.900 24.29
1.280 25.38
1.100 24.59
1.100 24.40
1.100 24.40
0.800 24.93

X — 0.228

1.115 25.34
1.115 25.36
0.800 23.48
1.000 23.62
1.000 23.66
1.060 24.13
1.060 24.06
1.060 24.06

T(°K) P(atm) T(°K) P(atm)
0.700
0.700
0,900
0.900
0.700
0.900
0.600
0.587
0.950
0.850
0.850
0.700
0.700
0.700
0.900
0.700

X  --

1.000
0.900
0.800
0.700
0.600

23.88
23.93
22.99
22.99
23.45
23.04
23.85
24.13
23.38
23.85
23.86
23.26
23.26
23.16
23.04
23.85

0.351
24.02
23.54
22.79
23.16
23.52

1.100
0.850
0.650

1.000
1.025
0.800
0.720
1.090*
1.300*
1.103
1.103
0.900
0.900
0.850
0.850
0.925
0.950
0.875
0.875

24.40
23.14
23.19

0.505

29.53
30.24
28.12
27.87
31.75
34.85
31.36
31.32
27.14
27.06
27.82
27.98
29.38
30.59
28.90
29.04

T(°K) P( atm)
X  = 0.645

0.900 31.18
0.700 28.53
0.800 28.48
0.800 28.29
1.000 33.98
0.850 31.37
0.650 27.57
0.750 29.91
0.600 28.48
0.800 30.06

X  = 0.801

0.600 28.46
0.600 27.98
0.700 28.66
0.800 29.62
0.900 32.48
1.000 33.11
0.505 28.66

* from cooling curves with the second apparatus

Keesom, e.g. ref. 51, is known to be too simple in the vicinity of the A-point.
From the work of L ounasm aa e.a.52)53)54)55), of A tk ins and of Ed­
w ards56), reviewed by B uckingham  and F a irb a n k 57), we know that
in the neighbourhood of the A-transition some thermodynamic variables
show a logarithmic behaviour. The molar volume of liquid helium for instance
shows a minimum at about 0.006°K above the A-temperature Tx- At lower
temperatures the volume increases. Very close to T  x, (dV/dT)p changes
rapidly and probably has a discontinuity at Tx• The singularity is logarithmic
as to the specific heat and (8PldT)v. Recently G o ld ste in 58) pointed out that
a real logarithmic singularity cannot exist. Temperature differences become
meaningless if they are of the order of thermal fluctuations. Obviously this
is so if | T — Tx| «=« 10~12°K. In any case the change of pressure with
temperature in the vicinity of the A-point is sharp. From Lounasmaa s
measurements it can be seen that the singularity is limited within 10 6 K
around the A-transition. In the present experiment we watch the pressure
in the Bourdon tube. The accuracy of our temperature measurement is
about 10-3°K. Thus we cannot get detailed information about the nature
of the transition itself. A singularity at the transition however can easily
be determined.
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E x p e rim en ta l procedure. In our determinations of the 2-points a
constant amount of fluid is cooled, while the pressure is recorded. If the
Bourdon tube has a constant volume, the slope of the cooling curve should be

SPIdT  =  ccp/Pt -

otp is the isobaric expansion coefficient (1/F) (dVl8T)p; fir is the isothermal
compressibility —(1 /F)(0F/3P)t- As the volume is not constant but a
continuous function of pressure, this has to be transformed into:

dP <xp

ST Pt  +  (1 / F) (d F/dP) B ourdon

The derivative of the Bourdon volume with respect to P is also a continuous
function of P, while no singularities of @t  in the homogeneous helium I or
II regions are likely. Therefore kinks in SP/dT curves occur only at that
temperature where txp shows a kink. And also dP/dT =  0 when xp =  0.
In figure 13 two typical runs are shown. One represents a measurement at
about 24 atm on a 22.8% mixture, the other at about 9 atm on a 64.5%
mixture. From these measurements it is obvious that the negative slope
of the dP/dT curve exists already above Tx. This is in agreement with the
results of others on pure 4He quoted in the preceding section, and of K err
on mixtures at saturated vapour pressure30)31).

1.2 1.3 1.4 1.5 1.6 1.7

a t m X= 0 . 2 2 8

X = 0 .6 4 5

Fig. 13. Typical runs of A-point determinations
X  — 0.228 with mirror detection
X  =  0.645 with ferroxcube apparatus.

R esults. Measurements have been done on mixtures of the following
compositions: X  =  0; X  =  0.089; X  =  0.228; X  — 0.505; X  =  0.645. The
results are listed in table IV. The values at saturated vapour pressure are
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those given by R oberts  and S y d o riak 43). The measurements have
been plotted in figure 9 already. The only discrepancy, which is somewhat
outside the error region, is the result at the 50.5% mixture. We have no
explanation for that.

TABLE IV

A-points of m ix tu res of 3H e -4H e a t  severa l m olar frac tions of ®He-4H e. T he values a t  s a tu ra te d
v apour pressure are tak en  from  ref. 43

X =  0 X  = 0.089 *  = 0.228 X  = 0.505 X  = 0.645
P (a tm ) T(°K) P (a tm ) T(°K) P (a tm ) X(°K) P (a tm ) T(°  K) P (a tm ) T(°K)

SV P 2.1735 SV P 2.046 SV P 1.827 SV P 1.286 SV P 9.41
8.85 2.070 11.50 1.907 4.69 1.762 4.65 1.325 9.78 1.000

13.99 2.008 15.92 1.848 9.60 1.715 7.73 1.306 17.80 0.942
18.91 1.944 21.12 1.780 16.35 1.625 10.46 1.285 18.75 0.943
23.57 1.866 26.79 1.681 20.23 1.577 . 13.34 1.265

23.86 1.517 16.26 1.227
27.14 1.473 19.07 1.200

21.16 1.224
21.35 1.175

In figure 14 series of cooling curves are plotted of a 8.9% mixture. The
difference between the temperature Tm at which the molar volume minimum
exists and T* increases with increasing pressure in accordance with the
results of Lounasm aa. The very accurate volumetric experiments of
K e rr31) prove that T m — T* increases also with increasing concentration.
This effect is confirmed by us. Experiments are now in progress to obtain
more detailed data concerning the A-transition in mixtures.

2 7 .0

atm

Fig. 14. Cooling curves of a fluid mixture at different pressures. Molar fraction
3He is 0.089.
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B.  T H E  PHA SE DIAGRAM OF 3H e -4He M IX TURES.

I. Elements. S tra t if ic a tio n  of th e  fluid. A fluid mixture of 3He
and 4He separates into two phases below a certain temperature. This has
been confirmed by many investigators for the liquid state1) and by Fair-
bank  and E l l io t50) and by Z inov’ev a6) at higher densities. The phase
separation is consistent with the observed positive heat of mixing HB of
these mixtures32). The attractive forces between the helium atoms are of
the London-Van der Waals type, resulting in a Cjr6 attraction, (r is the
distance between the centres). In general this kind of force results in a phase
separation of mixtures of different molecules (e.g. ref. 59). Here we are
dealing, however, with substances of which the electronic wave functions
and thus the polarizability of the atoms are equal. The phase separation is
generally believed to originate from other sources, such as the difference in
statistics or the difference in zero point energy. The first has been treated
for instance by Cohen and Van Leeuw en76), the second by Prigogine,
B ingen, B ellem ans and S im on74).

Z inov 'eva detected the onset of phase stratification for different con­
centrations as a function of pressure by visual observation. We interpolated
her results for the concentrations which we used in our experiments. In
figure 15 the thus obtained values of the onset temperature are plotted

Fig. 15. The onset of phase stratification  of fluid 3H e-4He m ixtures as a function
of pressure. In terpola ted  from d a ta  of Z e n o v 'e v a  *).

against pressure. As in the case of the liquid at saturated vapour pressure,
the phase stratification in the fluid is not symmetrical. The maximum of
the onset temperatures occurs at about X =  0.64.

The phase s tra tif ic a tio n  in the  solid. Specific heat measurements
of solid 3He-4He mixtures show a strong extra contribution to the normal
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heat capacity below a certain temperature2). This has been ascribed by the
investigators to the occurrence of phase stratification in the solid. Just as in
the fluid a positive heat of mixing HE causes the separation into two phases
at a temperature below a certain critical value, where the TS term of the
Gibbs free energy becomes too small to be able to make the mixed state
the most favourable one. Edwards, M cW illiam s and D aunt concluded
from their measurements that the solid mixtures behave completely
regularly i.e. the heat of mixing can be written as

HE -  X(I -  X) E m

where Em/R =  0.76°K. Recently K lem ens and two of us estimated this
result from a more general point of view4). Following the original assumption
of K lem ens and M aradudin5) about the lattice distortion around isotopic
impurities, we supposed that the energy of solid helium is composed ad-
ditively of the energies of individual atomic cells, and that the latter consists
of a zero point energy, a lattice potential and a pressure term. The distortions
of the lattices were expressed in terms of the difference in atomic volume
of the two pure components and of their elastic constants assuming that the
zeropoint energy varies inversely as the mass of the atom. In the same way
the heat of mixing has been calculated. £ m/R was found to be 0.75°K. The
mixture should be regular. The experiments of Edwards, M cW illiam s
and D aunt were carried out at various pressures. They did not see any
pressure dependency of the measured effect. We on the contrary expected
a 10% decrease of the heat of mixing due to the pressure increase of 5 atm.
as has been performed by them. The change may be smaller than the one
predicted by us as a consequence of the change of the elastic constants of
the lattices with pressure.

As we know, the repulsive properties of helium atoms must be ascribed
to tl.v zero point energy and the normal repulsion of the non penetrability
of the electron cloud. At short distances the latter becomes much more
important than the former, nonetheless this one remains present. So even at
very high pressures there still exists a difference between the molar volumes
of 3He and 4He e.g. ref. 44. Hence it is likely that even at very high pressures
a positive value for Em can be found which implies the occurrence of
stratification at sufficiently low temperatures.

The A-transition. Some remarks about the nature of the A-transition
have been made already in connection to the measurements reported above.
The A-transition does not involve an prdering in space. The configuration
of the fluid remains unchanged as has been shown in various experiments
with X rays and neutron beams60) 61)62). The logarithmic singularity of
properties like the specific heat and the expansion coëfficiënt in the vicinity
of the A-point are consistent with a treatment of the A-phenomenon in terms
of a second order transition. De Bruyn O uboter and B eenakker48)
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investigated the thermodynamic consequences of coincidences of this kind
of transitions with first order phase transformations. We did mention before
the kinks in the first order transition lines at the junctions with this kind of
transition. Because of the lack of change of configuration, these kinds of
transitions are not the phase transitions with which the Gibbs phase rule
deals*). In that sense the A-transition does not affect the phase diagram**).

The polym orph phase tra n s itio n . Three solid phases of both 3He
and 4He are known to-day. At very high pressures the isotopes crystallise
in a cubic closed packed lattice. At pressures lower than ~1500 atm the
structure of the solids is hexagonal close-packed (hep). At about 140 atm 3He
crystallises in a body centered cubic (bcc) structure. 4He exists also as a bcc
solid (Vignos and F a irb an k ; G rilly  and Mills), but only in a small
pressure-temperature region along the melting line at temperatures T :
1.45 <  T <  1.8. We shall discuss the properties of the pure substances in
greater detail in a later part, but we should like to mention here already
that the t r ansition  between hep and bcc solid is possibly related to a change
of the sign of tf>hCp — #bcc being the classical potential energies of the
lattices. We calculated these energies in the conventional way, using the
Yntema-Schneider potential63) and found a lower potential energy of the
bcc structure at volumes greater than ~20 cm3 mole-1.

Unfortunately only very little is known about the behaviour of this
transition in mixtures. Vignos and F a irb a n k 7) studied the velocity of
sound in solid mixtures of 5%, 75% and 98% 3He. From these measurements
it seems that a 5% mixture just as 4He has an upper and a lower triple
point where hep, bcc and fluid coexist in equilibrium. 3He and the higher
concentrations probably only have an upper triple point t).

B erezn iak  e.a.19) also studied the variation of the upper triple point
with concentration. Their measurements together with those of Vignos
and F a irb a n k  indicate that the projection on the PT-plane of the line
connecting the upper triple points is very nearly a straight line from the
upper triple point of 4He to the triple point of 3He. Although nothing is
known about the dimensions of the inhomogeneous region between the
homogeneous hep and bcc phases, we have to assume such a region to exist.
Thus in the phase diagrams we have drawn two lines indicating the transition.

S o lid ification . The solidification of the mixtures as well as the soli-

*) Apart from this, the considerations of G o ld ste in  about the difficulties related to the logarith­
mic singularity, might mean that iD this special case of the A-transition in helium, no sharp transition
line exists. Following these arguments one should think about a very narrow A-region.

**) There is tor instance never an inhomogeneous region, associated with the A-transition, where
phases of different composition coexist in equilibrium.

t) R eich  ®4) once mentioned that 3He should have a lower triple point also. This however, has
never been confirmed.
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dification of the pure components takes place only at pressures greater than
the saturated vapour pressure. The minimum freezing pressure of an
extensive concentration region is lower than the freezing pressures of the
pure components. Together with the existing minima in the PT  diagram
of the freezing curves of the pure components, the solidification gives rise
to a peculiar type of TX  phase diagram, involving a solid region surrounded
completely by fluid. As we pointed out before, the minima in the freezing
pressures arise from different origins as to 3He, 4He and mixtures. L ifsh itz
and S an ik idze21) applied the theory of dilute mixtures to a solution of
4He in 3He. They showed that the Pomeranchuk effect in 3He should cause
minima to occur in dilute solutions of 4He in 3He. The TX  diagram at the
pressure of the minimum in the melting line of a pure component near the
temperature at which this minimum occurs, consists of a liquidus and a
solidus touching at T =  Tm, with the shape of a parabola determined by

x  = ____ % AT*
11 x -  1 1 2£ T m  J  T m  +  a t

X  1 J C«,f l - C ^ BOl} AT*
801 x -  1 I 2&rM J t m +  a t

Cp.soi and Cp,A being the specific heat of solid and fluid of the pure solvent
respectively, X\ being the molar fractions of the solute, AT — T — Tm,

/  y>n{Pyi, T m) — Vsoi^ m» T m) \
* "  6XP { ------------------- k f ---------------- )

y>i characterises the atoms of the solute in the solvent surrounding. For
pressures greater than P m, the parabolae intersect at X  =  0. At smaller
pressures they have no common point. The vertices of the parabolae are
located at T =  Tm at

-Xfluid

X soi

X — 1

x — 1

VI -  v°B
k T j i

V I - V I
kTyi

F® being the molar volume of the solvent; AP =  P  —  P m-
An analogous reasoning can be held for 4He, as also this component has

a minimum of its own. There is however an important quantitative
difference between the two parts of the TX  diagram. The mixtures show
a freezing pressure minimum of their own, determined by the degeneration
of the entropy ol mixing. The magnitude of the minimum differs very much
between 3He and 4He. Therefore the validity of the calculations of Lifshitz
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and Sanik idze will hold at the 3He side in a much greater pressure-
concentration region than at the 4He side. The contribution to the entropy
of mixing caused by 1% 3He is about 0.37 Joule mol-1 °K-1. De B ruyn
O u b o te r32) showed that a dilute liquid mixture at 0.6°K suffers a de­
generation of about 1/3. The negative entropy of melting is estimated to
be about 0.01 Joule mol-1 “K"1 for pure 4He in this temperature region.
Therefore the degeneracy of the entropy of mixing exceeds the minimum
effect in pure 4He already by a factor 10, when only 1% of 3He is involved.
Hence anomalies can be expected at concentrations lower than 1%. In our
opinion the peculiar properties of the phase diagram near pure 4He must be
ascribed to this phenomenon.

A zeotropy. Under certain conditions the mixtures are azeotropic. This
has been mentioned before in connection with the results of the melting
measurements. From the freezing curves it is already obvious that azeotropy
should occur. In figure 9 one can see that the mixture containing 8.9% 3He
freezes in a certain pressure interval at a higher temperature than mixtures
of lower or higher concentration. Intersection of freezing lines in a PT-
diagram implies that at some temperature and concentration:

(0Pfr/3Xii)r =  0.

p tT =  the freezing pressure, Xn — the molar fraction 3He in the fluid phase.
The freezing pressure of a mixture is a function of temperature and molar
fraction only, hence:

(8 P l t \  /  8Xn \  f  8T \
V 8Xn J t  \  8T M r  \  dPtT ƒ

From this relation and the measurements it follows that

(dT/dXtijp.ti =  0

under certain conditions. The TX  diagram of a freezing curve at constant
pressure therefore shows a maximum at that point. Apart from critical

P m  constant

O X .  I

Fig. 16. T X  diagram at constant pressure in the region P  ~  25 atm. Drawn line:
freezing curve; dashed line: melting curve.
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effects, which are irrelevant in connection to the phenomena under con­
sideration, it is impossible to enter the solid region from the fluid region
without passing the freezing line. Therefore the melting curve must be
somewhere below this line. However, at each temperature where fluid
freezes there must be a solid in equilibrium with it. This requires the melting
line to coincide with the freezing curve in its maximum. Here the difference
in concentration between solid and fluid AX  vanishes. From the formulae

l
for the slopes of the first order phase transitions in binary mixtures, given
by De B ruyn O uboter and B eenakker:

( J T \
\dXiA.Jp,a XfB AHi X]b A Hj

1 i

( & G X \
(  dp  \  \ 8 X \ j i Xi
\ d X i A / Tf& Xfö AVi  +  XjB AVj

l  l

( £ )\  d i /XiK.e.

with T  =  temperature, P  =  pressure, X-i =  the molar fraction of the
component, G =  the molar Gibbs function, A — the difference between

l
two quantities in the two phases in equilibrium, Hj =  the partial molar
enthalpy of the zth component, Vi — the partial molar volume of the zth
component, S =  the molar entropy.
The subscripts A and B denote the two phases in equilibrium, a and b
denote the border lines of the two phases respectively.

It follows that when AXi =  0 the slope of the melting lines in the TX-
l

and in the PX- diagram are zero. Hence the melting curves and the freezing
curves are tangent to each other in the azeotropic point. In the PT  diagram
the solidus and liquidus are also tangent but here they need not be hori­
zontal.

If the mixture is azeotropic, solidification takes place at constant pressure
and temperature if the heat of melting is extracted and the volume change
compensated. Such is the case in figure 11 a. Azeotropic points have been
found by measurements of the melting lines for 8.9%, 22.8% and 35.1%
mixtures. Mixtures of higher concentrations which we used in our experiments
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do not show azeotropy, because here phase stratification of the fluid occurs
before the solidus and the liquidus touch.

The m inim a of th e  freezing  pressures. In the diagrams at con­
stant pressure the minima of the freezing pressure of some mixture corre­
spond to the point where

(8Tl8Xn)p =  oo,
except for the special point where both

(8Pttl8X)T =  0 and (8PtTl8T)x  =  0.
At this point, being the absolute minimum of the freezing surface, (if this
exists in this form) (8Tl8Xn)p is completely undetermined as here it is both
zero (the azeotropic point) and infinite (one solid point). As it is likely from
the known data that the absolute minimum of the freezing surface occurs
at a common point of the freezing surface and the phase stratification
surface of the fluid, both conditions have not necessarily to be fulfilled, at
the absolute minimum. In that case the line connecting the azeotropic points
finishes at the stratification curve at the absolute minimum.

2. The phase diagram. Several authors have proposed a phase diagram
of the mixtures of the helium isotopes. See table I. The present one differs
from all foregoing in some major and several minor aspects. As the phase
diagram is very complicated we have not tried to proj ect the three dimensional
P T X  diagram onto a plane surface. Instead we drew a series of T X  diagrams
at constant pressure and present them as a strip together with the discussion.
In the various researches mixtures of different composition were used. The
results of the different groups can therefore be compared in TX diagrams.
As can be seen no large differences exist between the various results. The
discrepancy between our earlier measurements and those of others, as
mentioned by Z inov 'ev a6) does not exist, if the differences, between the
various pressure units are taken into account*). The plotted data are taken
from the smoothed lines through the direct measured values.

The phase review  strip . In the figures we used the following symbols:
o freezing points by Le P a ir  e.a.; this paper
•  melting points by Le P a ir  e.a.; this paper
3  lambda points by Le P a ir  e.a.; this paper
© three phase equilibria by Le P a ir e.a.; this paper
a freezing points by Lee, W einstock, T ed row andL ipschu ltz13)14)18)

*) See part A: Temperature measurements and units.
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A three phase equilibria, idem16)17)
v freezing points by Z inov’ev a 6)
y phase stratification in the fluid, idem6)
a freezing points by Berezniak, B ogoy a v len sk ii and E sel’son 19)20)
■ melting points by B o g oyav len sk ii e.a.20)
H triple points, idem20)
x freezing points b y E se l’son 8)
? phase stratification in the solid by Edwards, M cW illiams and

D a u n t2)
melting point, idem2)

© freezing points by V ignos and F a irb ank 7)
® polymorph phase transition in the solid by V ignos and F a irb an k 7)
0 freezing points by G rilly  and M ills44)39)65)
0  polymorph phase transition by G rilly  and M ills44)65)
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Figure 17. At 150 atm one freezing point of mixtures is known from
Es el’s on; it is situated on a straight line between the freezing points of the
pure components. This should be expected according to the relatively
small differences between the isotopes at high pressures. Nothing is known
about the width of the solid-fluid inhomogeneous region. It should be small
however according to the same argument and according to extrapolations

1 5 0  o t m
fluid

1 2 0  a t m
fluid

Fig. 17
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from known lower pressure regions. It is known from X-ray dif­
fraction60) 67)68) 69) that the pure solids have a hexagonal dose-packed
structure. A difference between the molar volumes and the internal energies
of the isotopes exists. As this difference is basic in our considerations on
lattice distortion and heat of mixing, we must suppose that phase separation
of the solid occurs. However, in this pressure range it takes place at lower
temperatures than measured by E d w ard s e.a. At 120 atm more information
is available. B erezn ia k ’s data convince one of the correctness of the linear
interpolation between 3He and 4He. The polymorph phase transition between
bcc and hep crystals complicates the picture. The triple point of 3He is at
136.1 atm 44). Consequently at 120 atm a bcc region exists. B erezn ia k
concludes from his experiments and those of V ign os and F a ir b a n k 7) that
an almost linear projection on the PT  plane of the line connecting the upper
triple points of bcc-hcp-fluid exists. From this the position of the three
phase equilibrium at 120 atm can be estimated to occur at X & 0.9. Proba­
bly the phase separation of the solid has a higher critical temperature than
at 150 atm.

fluid
IQS a t m

Fig . 18

Figure 18. At 105 atm the extrapolation of the hcp-bcc transition of
solid 3He intersects the T =  0 axis. It has been suggested by R e ic h 64) that
this should not take place. We do not consider his NMR measurements
accurate enough to justify this assumption. Until more accurate data
become available, we consider the situation as presented here to be correct.
Moreover at lower pressures there are some indications that the hep region
contracts at the 4He side of the diagram. We enlarged a part of the diagram
to illustrate the transition from the 120 atm picture to the 105 atm one.
The two inhomogeneous regions should come into touch at a slightly higher
pressure, giving rise to two three phase equilibria. The lower one, bcc—hepi—
hcp2 vanishes. At this pressure one melting point has been measured by
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B erezniak, providing some reality for the width of the drawn inhomo­
geneous region between fluid and solid.

7 5  a t m

fluid

65  a  t m

fluid

Fig. 19

Figure 19. At 75 atm more freezing points have been measured. Un­
certainty arises as to the shape of the hcp-bcc transition. The sound velocity
measurements of Vignos and F a irb a n k  can be extrapolated to lower
temperatures, giving a point of the transition at about 0.4°K. Hence some
evidence about the transition at lower temperatures exists. Nevertheless a
switch over to the 4He side of the diagram is likely to behave as is drawn
with a dashed line at 65 atm. If the evaluation were as has been drawn with
solid lines, we should have the situation of a 4-phase equilibrium point on
the top of the phase separation curve: hcpi-hcp2-bcci—bcc2 which would
be very peculiar. A behaviour as indicated by the dashed lines is therefore
more likely, but as we have no data to confirm the correctness of this
picture, we must leave the answer to this question open.

50 atm 31 a t m

f l u i d

Fig. 20
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Figure 20. At 50 atm. extrapolations from our freezing lines can be plotted
They are in good agreement with the existing data. The same uncertainty
remains with respect to the hcp-bcc transition at its connection with the
low temperature solid phase separation. We have assumed a three -phase
equilibrium of hcp-bcci-bcc2. A small deviation from a straight line between
3He and 4He freezing can be seen here. At 31 atm still more data can be
given. Our measurements of the melting lines of the 50.5, 64.5 and 80.1%
mixtures give some information about the shape of the solidus. Vignos
and F a irb a n k  detected the hcp-bcc transition of a 5% mixture, which
together with further information at lower pressures gives some justification
to the assumption that this transition has been shifted now completely to
the low concentration region. Details about the two indicated regions are
given in figure 21. In this pressure region we have the first experimental
evidence about the existence of a phase separation of the solid. The specific
heat measurements of E dw ards e.a. were carried out at about 35.8, 30.0
and 27 atm. They indicated a symmetrical phase separation to occur. We
shall return to this experiment in connection with figure 22.

2 9 .5  otm 31 —>29.5 a tm

fluid

0 . 0 8 0 . 0 8

31 atm 31 atm

He I.

0 . 0 8 0 .9 5

Fig. 21

Figure 21. At 31 atm 4He still has a hep structure; hence at some con­
centration region close to X  =  0 the three phase equilibrium between hcp-
bcc and fluid still exists. The melting pressure of 3He at absolute zero of
temperature is about 33 atm. See figure 21 b. So 3He is in its fluid phase
at T =  0°K at 31 atm. This gives rise to a small fluid region at low temper­
atures. The melting point of pure 3He at 31 atm has been taken from an
article of G o ld ste in 46) in which he reports the work of Zeigler and
P er ego about the analytical least square fits to the results of several in­
vestigators. The fluid region gives rise to a new three phase equilibrium,
where hcp-bcc2 and fluid exist at the same time. At 29.5 atm 4He is known
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to have a bcc solid structure between 1.7 and 1.8°K. The transition from a
diagram as given before (fig. 21a) to this one is not known. The measurement,
showing the very narrow inhomogeneous regions, suggest a kind of tran­
sition as drawn in the figure 21 d. This is however very unlikely. Usually
changes like this pass through the situation as shown in fig. 21c, where one
more three phase equilibrium is introduced. It is not known if this is the
case at exactly 29.5 atm, it may be that the transition takes place in a
pressure interval slightly higher. In that case the two inhomogeneous
regions may not even touch each other any more.

f l u i d

f l u i d

He I

Fig. 22

Figure 22. A part of the diagram at 29.5 atm has been discussed already
in connection with the details in figure 21. We should like to draw attention
now to the three phase equilibrium at about 0.14°K. When cooling a 17.6%
mixture at about 30 atm E dw ards e.a. observed an increase of the
specific heat which they ascribed to melting of the high concentration part
of the solid. This corresponds to the hep—bcc2-fluid three phase equilibrium.
If the experiment had been done under isobaric conditions the transition
would have involved an infinite value of the specific heat. This is not the
case. Instead the formation of the fluid increases the pressure of the sample,
which causes a decrease of the three phase equilibrium temperature. Thus
melting is extended over about 0.1 °K. At lower temperature a two-phase
equilibrium remains between fluid (alsmost pure 3He) and solid hep (almost
pure 4He). A further decrease of the temperature might as well involve a
continuation on a smaller scale of the melting process as a resolidification.
This depends on the slopes of the low temperature liquidus and solidus
curves. A symmetrical picture should involve a slight increase of the fluid
fraction. It has been remarked by Edwards  e.a. that no indication is
found about the hcp-bcci-bcc2 three phase equilibrium. According to
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G rilly  and Mills the hcp-bcc transition of pure 4He involves about
AS =  0.12 Joule mol-1 °K_1, which implies a contribution to the internal
energy at 0.1 °K of about 0.012 Joule mol-1. As this is about 4% of the
measured value of the specific heat here, one can imagine that this small
contribution over a limited temperature interval could not be seen. At 28.91
atm, where 3He has its minimum melting pressure, the two fluid regions
come into touch. The solidus and the liquidus according to L ifsh itz  and
Sanik idze are tangent to each other and to the X  =  1 axis. At low 3He
concentration a detail of the picture is given in the next figure.

2 7  o t  m28.91 o t m
HcH

f luidf luid

0 . 0 8

Fig. 23

2 7  o t m

V He I

fluid

Figure 23. At 28.91 atm the 2-transition separates the fluid phase into
two parts as is drawn here. The first order transition lines should show an
abrupt change of slope at the point of intersection. The bcc region now
extends uninterrupted until the X  =  0 axis.

At 27 atm the situation in this region does not change qualitatively. The
three phase equilibrium hcp-bcc2-fluid here is shifted to a higher temper­
ature and coincides with the hep—bcci—bcc2 equilibrium, thus giving rise
to a quadruple point. The existence of this point however is not absolutely
certain. E dw ards reports a point of the phase separation curve of the solid
at 0.12°K, which is in disagreement with the diagram. As the pressure
measurement in the specific heat experiment is not reliable, this could be
the cause of this discrepancy. We were not able to detect a melting point of
the 80.1% mixture, which indicates that the shape of the solidus of the
bcc-fluid equilibrium is about as pictured here.

Figure 24. At still lower pressures (26.5 atm) the width of the solid-fluid
equilibrium increases further. The 64.5% mixture probably does not exist
as a homogeneous bcc solid any more.The three phase equilibria have changed
now to bcci-bcc2-fluid and hcp-bcci-fluid respectively. The situation corres-
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Fig. 24

ponds to the existence of a quadruple point as mentioned before. In the
second part of this figure we have drawn the proj ection onaPI-plane of the
three phase equilibria. This is qualitatively the situation as supposed by Lee
e.a.16). We should like to stress that too little is known about the occurrence of
the quadruple point to be definite on this point. The critical phase separation
of the solid intersecting the bcci-bcc2-fluid equilibrium here at about 26.4
atm could as well terminate the bcci—bcc2-hcp equilibrium at a slightly
higher pressure as has been drawn in the third part of this figure. This
should cause the hcp-bcc inhomogeneous region to grow at low temperatures
to meet the solidus before a quadruple point appears. The accuracy of the
data now available is too small to make a definite choice between these two
possibilities. The only reason why we have drawn the diagrams as has been
done is that we do not know anything about the necessary increase of the

26.2  o t m

f lu id

2 5 .94  a t m

flu id

Fig. 25
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hcp-bcc equilibrium region, whereas we know from the measurements of
the melting lines that the bcc-fluid inhomogeneous region does increase.

Figure 25. At 26.2 atm the phase separation of the solid has dissappeared
completely. Both possibilities mentioned before should give rise to a
situation as pictured, although some quantitative differences may exist as
to the concentration at which the solidus and the hcp-bcc transition meet.
At lower pressures two peculiarities occur at about the same pressure. Our
freezing point measurements, measurements of Lee e.a. and observations
of Zino v’ e va, mentioned in a note at the end of her article, show that a fluid
region originates at the low concentration side. We have identified this with
a He II fluid. This gives rise to the creation of three three phase equilibria:
hcp-He II-bcc; He II-bcc-He I and hcp-He II-He I. It may be that the
extrapolation of the melting point measurements of the 50.5% mixture
cannot be justified. Therefore we did not pay too much attention to this
extrapolation.

25.6  o tm25.6 a tm

He nflu id

He II

0 . 0 4

Fig. 26

2 5 . 9 4  otm
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Figure 26. The lower triple point in 4He at which two solids are in
equilibrium with the fluid occurs at 25.94 atm according to G rilly  and
Mills*). The common behaviour should be the reverse of what has been
drawn in figure 21 part three. In this special case however some evidence
exists of the fact that (8T\8X)Ptt and )8T/öA)Pmell are both equal to zero
at this special point, which means that this point is also the beginning of
the azeotropic line whose existence becomes more obvious at lower pressures.
This implies that in this indeed very special case a situation as drawn in
part one could occur. This coincidence is not imperative however for what
will happen next. It could simply be that a three phase equilibrium should

*) The data of G rilly  and Mills differ slightly from those of Vignos and Fairbank . We took
the data of Grilly and Mills because of the particular care they paid to the pressure measurements.
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come into existence at a pressure where still no azeotropy exists. At 25.6 atm
the He II region has increased, whereas a t very low concentrations and
about 1.31°K a three phase equilibrium exists. I t  is not sure if the azeotropic
point a t 0.2% as has been drawn in part three really exists. At lower
pressures however it m ust be present, therefore we drew it here. Hence
in this diagram two azeotropic points ex ist: one at about 0.2% and one at
about 5%.

2 4 . 9 6  a tm25.1 a tmHe I

He HHe n

He nHe n

Fig. 27

Figure 27. At 25.1 atm  we give only a part of the T X  diagram showing
the increase of the H e ll  region and the decrease of the tem perature region
at which the two solid configurations exist in equilibrium. At 24.96 atm
the two three phase equilibria between hcp-H e II and bcc coincide. This
pressure value is taken to be the melting pressure of pure 4He at absolute
zero of tem perature. A detail of this diagram is given in the next picture.

2 4 .9 5 5  a t m

He n
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0.10

0 . 0 5
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Fig. 28
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Figure 28. As 4He is known to have a minimum in its melting pressure
also70)66)71)72) there is some pressure which we assumed to be 24.96 atm
at which 4He is still completely in the solid phase at low temperatures. At a
pressure P  <  24.96 atm this is not the case. In part two the probable
situation at 24.955 atm is shown. This situation results from a transition
as has been drawn in the last two parts of the figure. A He II region comes
into existence at low temperatures. The two inhomogeneous regions,
between He II and hep on one hand and He II and He I on the other hand,
initially remain in contact, giving rise to two three phase equilibria (the
lower diagram of the third part). At a smaller pressure these two three
phase equilibria coincide at the pressure at which both He II regions touch
(the upper diagram of the third part). At 24.955 atm the two solids do not
coexist in equilibrium any more. Thus two separate solid regions have been
formed. Two azeotropic points should exist according to similar considera­
tions about the 4He melting pressure minimum in the case of dilute solutions,
as have been held by Lif sh itz  and Sanik idze in the case of dilute solutions
of 4He in 3He. The main difference is the magnitude of the effect which is
much smaller here than in the case of 3He. Unfortunately the accuracy
of the measurements of the low concentration freezing pressures is not high
enough to be definite in the statement, that the 0.99% mixture should form
a part of the hep-fluid equilibrium, whereas the 2.77% mixture belongs to
the bcc-fluid equilibrium. The uncertainty is such, that it could be, that
considering the maximal error, also the 0.99% mixture could belong to the
bcc-fluid equilibrium. Nevèrtheless a region as pictured in part two should
exist, although possibly at lower concentrations.

He I f lu id 2 3 . 2 0  a tm

2 4 .8 5  a tm

He n He II

bcc  _

0 . 0 80 . 0 8

Fig. 29

Figure 29. As the minimum in the melting pressure of 4He is estimated to
be about 0.01 atm, in a very small pressure interval the 4He solid disappears
completely. The accuracy does not permit us to conclude in which way the
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hep region will disappear. As we have pictured here, the hep region might
even become a free region not connected to the X  =  0 axis. This is the more
general case. It might be however that the region would contract at T =
=  0.76°K being the temperature at which the minimum of the melting
curve of pure 4He occurs.

At 24.85 atm the hep region has disappeared completely and only a bcc
solid continues to exist. At 23.20 atm a complete T X  diagram is given
with the well known fluid-solid equilibrium as a closed region surrounded
by the fluid, either He I or He II. At low temperatures the two fluid in­
homogeneous region is marked by the interpolation of the Zinov’eva data.

2 0  o tm

He n He I

2 2 .8 0  a tm

He n

Fig. 30

Figure 30. At 22.80 atm the freezing surface of these mixtures will
probably have its absolute minimum. Whether or not a kind of absolute
minimum with both (dP/cLX)t =  0 and (dP/dTjx =  0 exists is not known.
The accuracy of the measurements is not enough on this point. From the
melting point measurements we can draw the conclusion that a 50.5%
mixture has no azeotropic point whereas a 35.1 % mixture is azeotropic at a
pressure slightly higher than the temperature at which this mixture has
its freezing curve minimum. Interpolation of these results suggests that the
azeotropic line terminates somewhere on the phase separation surface at
45%. As azeotropy necessarily occurs at the same moment at which solid is
formed, and a smooth shape of the projection on a T X  plane of the azeotropic
line is likely, one can be rather definite in predicting the minimum to be
situated at 45% .Whether or not this solid region is connected to the phase
separation surface of the fluid cannot be concluded from the known data.

At 20 atm the system is in the fluid state throughout the diagram. At
lower pressures the diagram does not change qualitatively any more.
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In conclusion we may remark that the most simple substance demon­
strates a most complex phase diagram. We believe that several character­
istics in the diagram, for instance the closed solid regions, are unique. Some
parts of the diagram are somewhat dubious. To clarify these points would
require a very accurate and difficult research. Apart from those details we
may say that the phase diagram of helium is known in this pressure range.

APPENDIX

The Bourdon tube. We used a tube, made of about 56% Cu, 26% Ni,
18% Zn*), taken from a commercial manometer. The properties of this
instrument at low temperatures were not known. We investigated them very
carefully for hysteresis. Pressure changes >  5 atm caused a hysteresis
exceeding 0.01 atm. (0.01 atm is the accuracy of the standard manometer).

Fig. 31. The Bourdon tube. Fat lines indicate the state at zero pressure, fat dashed
lines, at higher pressures.

With smaller changes we could not find any in the pressure range 0 < P <
<  30 atm. At room temperature the tube is designed for pressures below
30 atm. The tube does not recover completely, when this limit is exceeded.
At helium temperatures, the limiting value is about 50 atm. The applied
tube, see figure 31, is flat-oval, with thin walls. We suppose that the de­
formations are elastic. Except for the final points of the tube, deformations,
tensions and curvatures will be uniform. The length of the core does not
change due to the relatively small pressures, which are involved. So roy>o —
=  ^lVi and Ar/ro =  —Arp/ipo (Ar — r\ — ro, Ay) =  y>i — y>o). In the ex­
periment with the mirror only the angle y> is of interest. With the ferroxcube
the displacement AX  is of interest. AX  =  AX' -(- AX" =  S cos y +  L(—Arp).

*)  We are indebted to Mr. L. v. d. Meer, at the “Laboratorium voor Metaalkunde” at the
Technological University of Delft, for the analysis.
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Because y 0, AX  «a S +  L • (—zly). W u est75) calculated the properties
of a Bourdon tube of this type and compared his results with experiment,
finding very good agreement. He derived:

5 =  V[1 +  (2/v'o)(1 — yo sin y0 — cos y0)] yô o (—-dy/y0).

In our apparatus yo fo =  17 mm; L 50 mm. The relative change
of y can be expressed in terms of the geometric parameters of the tube, the
Poisson’s ratio, [i and the Young’s modulus E

-d y /y o  =  (1 -  /i2) /a(«, A) a^Pjbh^E,

with P  is the pressure; a, b and h see figure 31; a =  è/a and A =  a2/Ar0. The
function / 3 is calculated by W uest. For our Bourdon tube its value is about
0.11. As AX  can be written as: AX  =  [A -j- Lo)(—dy)/yo, it is obvious that
both calibrations of manometer, in the case of the mirror indication and in
the case of the ferroxcube indication, are almost linear with pressure.
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P art II

SOME COMMENTS ON THE FLUID STATE AND THE

SOLIDIFICATION OF 3He AND 4He AND AN EXPERIMENT

ON THE MINIMUM IN THE MELTING CURVE OF 4He

Synopsis
The fluid and the solid state are qualitatively discussed in terms of a random close­

packing and a regular close-packing of spheres. The model is used to obtain values
for the potential energies of fluid and solid. The calculation shows that the stability
of the fluid phase at low temperatures cannot be ascribed, in the way L on d on  did,
to the potential energies of the two phases. Experiments are reported on the melting
line of 4He. A minimum is found at T »  0.75°K and a pressure of about 0.008 atm
below the melting pressure at T  =  0°K. The results are compared with those of several
authors.

1. The fluid state. At present, there does not exist a satisfactory model
for the liquid condition in general; this is in contrast to gases and solids.
There is also some confusion about the meaning of the word “liquid” . We
prefer to use it only in connection with the situation at saturated vapour
pressure. At temperatures and pressures different from the equilibrium
line we shall use the word fluid. So we reserve the word liquid for that
typical condition where a fluid does not occupy the containing vessel with
uniform density. (We neglect external forces such as gravity).

The interaction of simple molecules like those of the inert gases can be
described with a spherical symmetric potential. At short distances a strong
repulsive force protects against mutual penetration, whereas at greater
distances the virtual dipole-dipole interaction results in a mutual attraction.
If the interaction potential is known, for instance from collision experiments,
or from measurements of the second virial coefficient, the potential energy
of an assembly of molecules can be calculated, provided: a the space
configuration is known and b the forces between the molecules can simply
be added (see the next section). The interaction potential between two
atoms is shown in figure 1. For helium: e/k ph 10.2°K and a pa 2.6 A.

It is not possible to draw a picture as fig. 1 for a fluid as a whole, with for
instance the molar volume V as an independent variable. The potential
energy depends on both the interatomic distances and the space-configur-
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ation. When a fluid is compressed, the molecules need not necessarily come
closer, they may also slip in between each other. Hence the potential energy
does not change in an uniquely determined way when the volume decreases.
Only when the configuration remains unchanged in some process, we can
describe the phenomena with a kind of mean atomic potential.

<p (r)

O

Fig. 1. Potential energy of two helium atoms: <p'(r) as a function of the distance of
the centers r.

The flu id  s tru c tu re . Keesom and De S m ed t1) reported about the
possibility of X-ray analysis of fluids in 1922. Since that time many in­
vestigations have been performed. Keesom and Taconis made the first
analysis of the structure of liquid helium2), from which data about the
radial distribution could be derived. More recent experiments done by
Reekie, H u tch inson  and B eau m o n t3) provide us with some more
reliable results. From these measurements it is found that the shortest
distance between two helium atoms in the liquid is about 2.3 A. Similar
experiments can be done with neutron beams. H enshaw 4) reports a
shortest separation of the atoms of 2.35 A-2.40 A. The number of nearest
neighbours is somewhere between 8.5-9.8 atoms.

An interesting model of the liquid configuration was introduced by
B ernal in 19595). He stressed the importance of a geometrical model. If
a number of hard spheres is packed in a regular simple cubic way, the
density of the array is equal to 0.507. The density is defined as the sum of
the volumes of all spheres, divided by the volume of the enveloping body.
If the spheres are ordered in a hexagonal close-packing (hep), the density
is equal to 0.741. If we try to describe a fluid-solid transition by a change
from a simple cubic “lattice” to a hep lattice, the relative volume change
AV/Vhcp would be equal to 0.412. This is much larger than the values
A V /Fsoiid observed for simple substances. B ernal suggested that a random

a

r
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packing of spheres could be an adequate description of the fluid. A lot of
interesting experiments on the random close-packing of spheres have been
done since by B ernal and coworkers6). Another investigator, Scott,
performed an experiment in which he used thousands of steel balls7).
Density measurements were done, in which the influence of the walls have
been eliminated. After thoroughly shaking, the density of the random close-
packed (rep) balls converges to 0.637. In later experiments, after shaking,
the balls were fixed with paraffin. Subsequently they were removed one

TABLE I

The num ber of nearest neighbours in various
liquids and hard sphere configurations

substance num ber of nearest neighbours
He fluid 8.5 4 9.7
Ne fluid 8.8
Ar fluid 8.0 4 8.5
rep 9.3 ±  0.8
hep 12
bcc 8

TABLE II

The position of maxim a of the radial distribution function,
relative to the position of the first maximum of several

liquids and of hard  sphere configurations
substance second third fourth
Liquid He 1.87 2.66 3.58
Liquid Ne 1.85 2.77 3.57
Liquid Ar 1.81 2.64 3.44
rep 1.83 2.64 3.45
hep 1.412 1.632 1.731
bcc 1.155 1.633 1.915

TABLE II I

The relative volume decrease of the fluid-solid transition
of some substances a t their triple points, and of helium at

several pressures, and of a  rep-hep  transition of hard
spheres

A V  ■
substance pressure — —  m %

V  sol
Ne fluid-solid triple point 15.8
Ar , ,  ,, 15.2
Kr „ „  „ 15.8
Xe , ,  ,, 14.8
He „ 30 atm 8.2
He 50 „ 6.5
He „ 100 „ 6.0
He 1000 „ 5.1
He „ 3500 „ 4.4
rep—hep 15.5
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by one, after their position in space had been measured by means of an
optical comparator. The data were supplied to a computer and the radial
and angular distributions were calculated. S co tt compared his results
with known data for He, Ne, Ar, Kr and Xe. We have listed them in table
I, II and III, if necessary completed with more data for helium. From these
tables we see that although at low pressures the fluid structure of helium
has much in common with that of other simple substances and that of the
rep structure of hard spheres, the fluid-solid transition is different. This
difference increases with increasing pressure and we shall come back to
this later.

The characteristic difference between fluids and solids is the lack of
resistance to shearing stress in the fluid. In a fluid a particle can move
“freely” without causing large scale distortions. This is not the case in
a solid. In figure 2 a two-dimensional close-packed lattice is shown. If

Fig. 2. Two dimensional close-packed lattice.

the elements are hard spheres, it is obvious that a displacement of molecule
A involves a long range distortion of this lattice. Hence deformations are
opposed by large energy barriers. If the molecules were hard spheres with
soft skins (hsss) distortions are possible, although a certain energy gap has
to be overcome. The rep configuration shows a remarkably low resistance
to shearing stress8). Therefore it is tempting to associate the rep configu­
ration with the dense fluid state. Another remarkable property of the rep
configuration is its stability. Even when some external pressure is exerted,
shaking does not cause a denser packing. Thus “solidification” has not
been obtained. There are three important differences between the steelball
model and real molecules. 1 Friction, 2 absence of real random motion like
temperature movements, 3 hard spheres. Real molecules are not hard
spheres. A hsss model would probably be more appropriate. The hard sphere
model does not tolerate any degree of freedom in many configurations which
are not close-packed. We constructed a number of such configurations with
small numbers of “molecules” . In all those cases the hsss model would
have permitted a change to an energetically more favourable situation.
Although this seems to be the microscopic origin of the sharply defined rep
arrangement and the cause of the impossibility of configuration change when
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external pressure is exerted, we did not succeed in generalising these
considerations to  systems with a greater number of molecules.

2. Properties of the rep fluid of “hsss" molecules. As the configuration
of the fluid is rather stable against volume changes, which is confirmed
by X-ray experiments, we m ay describe the potential energy of the fluid
with a molar potential of the same shape as figure 1, with the molar volume
V  as independent variable. The pressure of the system depends on: 1 the
kinetic energy, 2 the number of particles per cm3 and 3 on (—d(?>/dF).
0  being the molar potential energy. For the hsss model, (—d0/dV) is not
infinite. I t  increases rapidly with decreasing volume. Hence the pressure P
increases steeply with decreasing volume. W ithin the rep configuration
small microscopic clusters of orderly close-packed molecules exist. The
volumes of these clusters are smaller than  the mean volume of th a t number
of molecules. Therefore a molecule leaving such a cluster generally involves
crossing an energy barrier proportional to  P. This barrier might be the core
of the fluid-solid condensation problem, which we could not solve.

One of the consequences of this reasoning is the absence of an argument
for a critical point term inating the fluid-solid transition line. Solidification
of a liquid by cooling and the liquid vapour equilibrium itself cannot be
understood from the hsss model. Here the well in the potential energy is
essential. Starting from the compressed situation a volume increase causes
a  sharp pressure decrease. Now we have to  distinguish between T  >  Tc
and T  <  T c (T  is the tem perature of our sample and T c the critical temper­
ature). In  the classical case if the configuration remains rep, T c fa %0o/R,
0o being the depth of the potential well. For helium this is disturbed by
the influence of the zero point energy. (For 4He: 0o exp. «a 60 Joule mole-1,
\R T C fa 65 Joule mole-1, for 3He these values are 21 and 41.5, respectively).
Let us first consider T  <  T c. A certain expansion would involve an increase
of the potential energy of the system larger than  the kinetic energy available,
if the density was to  remain uniform. This cannot be realised. Only a part of the
molecules can escape due to configuration and energy fluctuations. This
fraction depends only on T  and is proportional to  the volume available for the
escaping atoms. A further volume increase causes an evaporation at constant
tem perature. I t  is obvious th a t energy has to be supplied to keep the tem pera­
ture constant, because evaporation means an escape from the bound state.
During this process the pressure remains constant. I t  is less clear th a t the same
should occur a t the fluid-solid transition discussed before. The hsss model,
however, provides us with a model to  understand this a t least qualitatively:
The configuration change implies a change of number of nearest neighbours,
which involves more deformations in the skins. The larger number of defor­
mations cooperate in such a way th a t the pressure remains constant. W ithout
making predictions on the elasticity of the skin one cannot calculate the influ-
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ence on the potential energy, but a fall in potential energy on solidification
is likely, which implies the normal positive heat of melting*).

At T  >  Tc the change from rep to the incoherent unbound structure of
the vapour is continuous. The molecules able to escape do not need a supply
of kinetic energy. Nonetheless, energy has to be supplied to keep the temper­
ature constant. Therefore at supercritical conditions the heat capacity Cp
should increase rather strongly, dependent on the depth of the potential well
in the region where the rep structure changes into the incoherent structure.
This has been confirmed by Jones and W alker9) for argon and by
M oldover and L i t t le 10) for helium. According to this model the total
amount of heat, supplied to a sample below and above its critical point,
in order to change from rep to incoherent structure should vary continuously.

Probably in the classical case the hard sphere and the hsss model would
remain fluid at absolute zero (i.e. rep configuration). An external pressure
might be able to solidify the hsss model. If an attractive force exists things
are different. With a finite kinetic energy the state depends not only on the
depth of the potential well, but also on its width. Only if <p{Vo +  dV) —
—<P(Vo) >  Lkin will the lattice be regular and resistant against shearing
stress. Vo is the volume per molecule if the rep lattice has a minimum
potential energy; <p is something like the mean potential energy per molecule;
Ukin is the kinetic energy and ÖV is the volume increase of a molecule
escaping from a microscopic ordered cluster. If this condition is satisfied
solidification of this model takes place, when cooling down, in the same way
as in the case of increasing pressure. Now a triple point occurs and the vapour
pressure curve shows a kink at the triple point due to the configuration
change of the bound phase.

3. The helium case. The radial distribution function and the number of
nearest neighbours in fluid helium reminds one of a rep configuration. The
formation of a liquid however shows that the interaction between the atoms
should have an attractive part. Moreover, the anomalous volume change at
solidification proves that a hard sphere or a hsss model is not adequate to
describe the phenomena in helium.

The attractive forces between the helium atoms are small. They are of the
London-Van der Waals type. The interaction between the atoms can be
obtained from experiments about scattering of helium atoms and by
measurements of second virial coefficients. In order to be able to compare
our results directly with those of L ondon11) we based our calculations on

*) If a certain force K  stresses a normal spring, the potential energy of the system is %K2/y, y
being the elasticity coefficient. If K  stresses two equal springs, the potential energy is equal to ±K2/y
or one half of the first value. As the number of nearest neighbours increases at constant P  from
8.8 to 12 at the rep-hep transition a decrease of the potential energy is likely in the hsss model.
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the same potential as used by him:
<p'(r) =  {1200 e-4,82r — 1.24 r~u — 1.89 r-8} 10-19 Joule pair-1

r in A. This form was derived by Y ntem a and Schneider in 195012).
Other potentials often used to describe the helium properties are the
Lennard-Jones potential of De Boer and M ichels13) and the Slater-
Kirkwood potential14). Since we know from the calculations of Kihar  a and
K o b a 15) that a quantitative change of the interatomic potential may involve
qualitative differences as to the molar potential energies of several lattices,
we carried out our calculations also with the Lennard-Jones potential13):

\{ 2.556 V 2 /  2.556 \«)<p (r) =  5 6 .4 4 ------- J — y--------J j  10-23 Joule pair-1.

As this gave qualitatively and also to good approximation quantatively the
same results, we do not mention the results thus obtained here. Assuming
the additivity of the interatomic forces*), we calculated the potential energy
of a hep, a rep and a body centered cubic (bcc) lattice, taking into account
the contribution to the potential energy of one atom of all atoms within a

TABLE IV

a. The num ber of atoms of a rep configuration
a t a distance r, within a shell of thickness Ar

random  close-packed
Ar n

distance shell
thickness

atoms
in shell

0.85 0.05 0.026
0.90 0.05 0.613
0.95 0.05 1.259
1.00 0.05 1.533
1.05 0.05 1.632
1.10 0.05 1.648
1.20 0.10 2.094
1.40 0.20 2.989
1.60 0.20 4.938
1.80 0.20 9.319
1.90 0.10 6.792
2.00 0.10 7.383
2.10 0.10 6.688
2.30 0.20 13.069
2.50 0.20 17.181
2.70 0.20 22.566
3.00 0.30 38.04

b. The num ber of atoms a t discrete distances
for a hep and a bcc lattice

hexagonal close- body centered
packed cubic

r
distance

n
num ber
of atoms

r
distance

n
number

of atoms
1 12 1 8
1.412 6 1.155 6
1.632 2 1.633 12
1.731 18 1.915 24
1.915 12 2.000 8
2 6 2.309 6
2.235 12 2.517 24
2.380 12 2.582 24
2.449 6 2.828 24
2.516 6 3.000 32
2.582 12
2.646 24
2.708 6
2.886 12
3 12

*) J a n s e n  and Z ira e r in g  calculated the potential energies of hep and cubic close-packed
lattices, taking into account discrepancies of the two body interactions and the effects caused hy the
finite size of the a tom s16). As these effects give only differences of about 4% and our results deal
w ith larger effects, our assumption does not pu t serious lim itations to the validity of our conclusions.
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sphere of radius 3D. (D being the distance between nearest neighbours of
that special molar volume).

For the rep configuration we took the radial distribution function of
S c o t t7) normalised for the number of 8.8 nearest neighbours. In that case
the interatomic distance r is equal to r =  1.071 R ; R =  (F/IV)* in which V
is the molar volume and N  is Avogadro’s number. For a hep structure
r =  1.123 R and for a bcc structure r =  1.0911 R. In table IVa the number
of atoms within a shell of thickness AD at a distance measured in units D
are listed. Table IV7> gives the number of atoms at discrete distances for
the hep and the bcc structure respectively. The results are shown in figure 3.
The meaning of the curves are listed in the caption. The potential energy
of the rep configuration is above that of the hep or bcc structure in the <PV

IOOO

mole

-500

molar

V molar

.1000

mole

Fig. 3. The energy of helium as a function of volume
I — potential energy of a hep lattice

II — potential energy of a rep configuration
III — potential energy of a Ta2 lattice
IV — total energy of the fluid, calculated by us
V -  potential energy of a bcc lattice
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diagram. Curve I I I  represents the potential energy of a close-packed lattice
of which only half the number of sites are occupied. I t  was suggested by
K eeso m  and T a c o n is 2) in order to  describe the liquid structure. L o n d o n
used it as a basis for his calculations of the potential energy of the fluid*).
The disadvantage of this model is obvious as it would involve a much too large
potential energy of the fluid a t a molar volume of about 10 cm3. The pressure
of the sample P  >  — d<P/dF. The Keesom-Taconis potential gives: Pn  >
>  1.45 X 105 atm  at a molar volume of about 10 cm3 instead of the ex­
perimental value of about 4000 atm . The rep model gives Pn  >  220 atm,
which is in better agreement. At the absolute zero of tem perature the molar
volumes of 3He and 4He are 37 and 27.6 cm3 respectively, which is much
larger than  the volume at which the potential energies have their minimum.
The reason for this is the complete inadequacy of the classical description.
The energy of the system is given by

rp(XiyiZi ...) is the wave function depending on the coordinates of the N
particles. 0  is the potential energy of the system, also depending on x* ....
The minimum of this expression is the to ta l ground state energy. This
problem has not been solved. Experimentally the to ta l energy of the liquid
a t absolute zero can be extrapolated from results a t higher temperatures.
Assuming the energy of the vapour a t T  =  0°K to be zero, Uo == —To'7-0
being the latent heat of vaporization at T  =  0°K. One finds: Uo =  —59.62
Joule mole-1 for 4He and —21.10 Joule mole-1 for 3He. As the potential
energy of the rcp-configuration is —110 Joule mole-1 a t 27.6 cm3 mole-1,
the zero point energy equals 50 Joule mole-1. L o n d o n 11) calculated the
zero point energy, which he assumed to be the same for the fluid and the
solid structure, from

in which d is something like the hard sphere diameter of the atoms and
R  — (V/N)*; R  and d in A units. This is an interpolation between the
problem of the dimensionless particle in a spherical box of radius R  and a
particle in a spherical box with radius r — d. r is the distance between
the centers of the nearest neighbours**). If added to  the Keesom-Taconis

*) Neither Keesom and Taconis nor London suggested that the fluid had really a crystal
like structure of this type.

**) Lee, H uang and Yang calculated the energy of the ground state of a hard sphere dilute Bose
gas with a pseudo potential method 76). A volume dependency of (1I V )  +  (a/F1*) is found for the
zero point energy. For dense systems as the present one however, the derivation does not remain
valid.

r w l
\——  2  {ViV'PiV*) +  0ynp*\ dxi dy{ dz*[2m i J

v v

628 d
Joule mole-1

E° (R -  0.891 d)* (R +  0.713 d)
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potential, a total energy is found with a minimum at the right place and an
energy about 16 Joule mole-1 lower than the measured value. If added to
the hep potential the to tal energy of the solid is found. The common
tangent to both curves gives energy and volume of fluid and solid a t the
transition. L o n d o n  took 2.3 A for the param eter d. Of course L o n d o n
realised the serious objections which can be made against this treatm ent.
In  our opinion two of the most serious disadvantages a re :

1. The zero point energies of fluid and solid are taken to  be the same.
The cross over of <f>Ta and <f>&ep is presented as an argument for the absence
of solidification of the liquid, (see ref. 11, p. 29). Our calculations show on
the contrary th a t the potential energy of the solid, either in bcc or in hep
configuration, remains lower than  th a t of the fluid. Hence we m ust conclude
th a t the zero point energy causes the instability of the solid. This can be
understood easily if one notices the increase of number of nearest neighbours
from 8.8 to 12, which should really mean a lot as to  the inclusion of an atom *)

2. The walls of the spherical box in which the helium atom is located
are far from rigid. W hen the volume of the cell decreases, however, the
walls “harden” . So a stronger dependence on molar volume m ust be ex­
pected for the zero point energy, than the London-equation gives. Recently
S c h u c h  and O v e r to n 17) drew the same conclusion from considerations
of the polymorph phase transition of the solid.

We made a preliminary attem pt to  estimate the zero point energy. We
wrote Eo =  alVb and fitted the constants a and b according to  the ex­
perimental data in such way th a t the zero point energy at 27.6 cm3 mole-1
should be about 50 Joule mole-1, the zero point energy at 25.25 cm3 mole-1
should be about 98 Joule mole-1 and at T  =  30.6°K and F  =  10.15 cm3
mole-1, the pressure is equal to  3500 atm. The pressure can be written as

P dU0
dV

+  AP(T)

where AP  is some positive function of temperature.

dU0 d $ rcp dEo
' dV  ~  dV  dV~'

If we estimate AP(T), treating the system as an ideal gas, which can be
justified to some extent as we consider the potential energy separately,
AP(T) «a 250 atm . —d<5rep/dF «a 200 atm , hence —dEo/dV should be
about 3000 atm. W ith these conditions an appropriate solution for Eo is:
Eo,fluid =  1.154/F3 X 106 Joule mole-1, F  in cm3 mole-1. W ith this

*) Although in the bcc lattice the number of nearest neighbours decreases to 8, we can see from
table IV6 that the number of next nearest neighbours, 6, is in very close proximity to the center if
compared to the hep lattice. It is therefore likely that the two opposing tendencies (14 versus 12
atoms against a slightly larger mean distance) cancel each other.
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empirical formula and the rep potential energy, the minimum of the Uo <-*• V
curve is situated at 24 cm3 mole-1. The curves for the energy at T =  0QK
as calculated by London and by us are drawn in figure 4. Presumably the
dependency of the zero point energy of the volume is not as simple as
suggested here.

mole

- lO O

mole
Fig. 4. The to ta l energy of the  fluid a t  T  =  0°K as a  function of volume.

I — our d a ta  I I  — L o n d o n ’s d a ta
1 — liquid (P  =  0) exp 3 -  solid (P  =  25 atm) exp.
2 — fluid (P  =  25 atm ) exp.

Therefore one should not worry too much about the fact that the experi­
mental point for the solid lies at the wrong side of the curve. This and the
wrong place of the minimum could be overcome very easily if we had chosen
a slightly more complicated form for Eo.

4. Experiments on the fluid-solid transition of 4He. In order to carry out
experiments to get more detailed information about the fluid-solid equili­
brium, we used the third apparatus described before 18). In 1960
G oldstein  predicted the existence of a minimum in the freezing pressure
of 4He19). Van den M eydenberg calculated the probable depth of the
minimum to be AP <  0.04 atm, AP =  P(T  =  0) — P(T  =  Tyi), with
Tm <  0.8°K. To detect this small effect, we needed the highest possible
accuracy. With our apparatus differences of 0.003 atm could be seen. In
order to obtain this accuracy, the experiments had to be done isothermally46)
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Procedure. Initially the Bourdon tube is filled with solid 4He. This is
realized by putting a fluid sample at T  sa 2.15°K under a pressure of about
48 atm. After cooling down to 1°K the Bourdon tube contains solid 4He at
about 29 atm. With aid of the 3He cryostat, the temperature is lowered until
about 0.5°K. Then the pressure outside the cryostat is allowed to decrease.
This happens very carefully and slowly and above all continuously. When
the pressure outside the cryostat becomes lower than the minimum melting
pressure (about 25 atm) the gas starts escaping from the Bourdon tube and
the pressure in the Bourdon tube falls very sharply. About 10 seconds
before we could see any change in the tube, the temperature increases
presumably because of melting in the capillary wound around the 3He
cryostat, to which the thermometer has been attached. The warming up
can be compensated easily by increasing somewhat the pumping speed of
the 3He pump. The pressure of the solid decreases non uniformly in about

minutes and becomes constant at the melting pressure. The nonuniformity
was expected. The solid within a long narrow vessel will not very easily
transmit the pressure and the process takes place in an irreversible way.
The pressure remains constant for about J to 1 minute and then decreases
slowly and gradually. The fluid is of course a perfect pressure transmitter.
When everything has become fluid, the speed in which the 3He is pumped
off has to be decreased. This means that the heat leak from the 4He bath

___________-Z _ ________
• f

■ / - -

X
/  V ^ c h o n j*  of

outside pressure

Fig. 5. Typical run of a measurement of the melting line of 4He below the temperature
at which this line has a minimum.
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to the low temperature part of the apparatus through the 24 cm long,
0.18 mm i.d. capillary of stainless steel, filled with He II is much smaller
than the heat produced during the melting process. When it is certain that
the sample is in the fluid phase, the pressure outside the cryostat is raised
and the process is reversed. Now the pressure within the Bourdon tube
increases uniformly and at a certain moment drops about 0.015 atm and
remains constant. Then the difference between the two constant pressures
is known. The first one gives the melting pressure at that particular temper­
ature; the last one -  the blocked capillary result -  gives the minimum
freezing pressure. Hence AP is known. A typical run as described here is
shown in figure 5. Calculations of the jump occurring each time the pressure
is increased and solidification sets in, show that the volume contraction
of freezing in the capillary is large enough to compensate for the extra
number of moles supplied to the Bourdon tube. Actually only 0.1 of the
total length of the capillary within the vacuum jacket needs to be filled with
these extra moles to compensate for the effect of overpressurizing. So the
solid block in the capillary extends to about 2.4 cm. Results are shown in

005
a t m

Fig. 6. The melting pressure difference of 4He P  — P m as a function of temperature
below I'm-

figure 6. Above 0.7°K no difference between the two constant-pressure-lines
could be found. We did not see a difference at 0.65°K either, but this result
is not very reliable because the blowing off process went too quickly here;
the pressure remained constant only during 10 seconds and we are not
quite sure that we detected the value accurately.

5. The melting lines of ^He and ^He. The fluid-solid transition has been
studied by many authors. We list the most important as well as the most
recent contributions in table V. The latest handbook is “Liquid Helium
by A tkins, published in 195920). The classic in the field is “Helium by the
late W. H. K eesom 21), which was supplemented in 1959 by L ifsh itz  and
A n d ro n ik ash v ili with "A supplement to Helium” 22). The phase diagram
of both isotopes is shown qualitatively in figure 7. The diagram has no
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ordinary triple point. Both isotopes exist in two known solid configurations
in the pressure range up till a few hundred atmospheres: bcc and hep. The
properties of the polymorph phase transition have been investigated by
several authors40)38)43). The X transition in the 4He fluid has been discussed
in the previous part18). Both melting lines show a minimum. This property
is very peculiar as it involves a larger degree of disorder in the solid than
in the liquid. In 4He this minimum is so small, that it is not to be seen in the
figure; but see fig. 6. The history of our knowledge on this point shows a
parallel. In both cases the theoretical prediction came first: Pom eranchuk
(3He) and Goldstein (4He). Next the experimental confirmation by de­
tection of a negative heat of melting55) and 45) and than a direct determi­
nation:56) and 46). 3He has a nuclear spin because of the odd number of
particles in the nucleus. The random distribution of these spins contributes
R In 2 to the total entropy. At temperatures at which kT becomes of the
same order of magnitude as the magnetic dipole-dipole interaction, spin

table v«

Contributions to the knowledge of the fluid-solid equilibrium of 4He

author year
pressure

range
atm

esti­
m ated

accuracy
atm

m ethod used, theoretical con­
siderations and typical aspects

ref.

Keesom 1926 25-140 0.1 blocked capillary, theoretical con-
siderations 21

Simon, Ruhemann
and Edwards 1929 800-1800 1% heating curve 23

Simon, Ruhemenn
and Edwards 1929 1800-5500 1% blocked capillary 24

Keesom and Keesom 1933 26-30 0.01 density measurements, theoretical
considerations 21

Holland, Huggill,
Jones and Simon 1950 4000-7500 100 blocked capillary 25

Holland, Huggill and
Jones 1951 >  5000 blocked capillary 26

Simon and Swenson 1950 25-27 0.01 blocked capillary 27
Swenson 1950 thermodynamic considerations 28
Swenson 1952 27-130 0.1% piston displacement, theory 29
Swenson 1953 26-130 0.1% blocked capillary, detailed discussion

about piston displacement and
blocked cap. techniques 30

Dugdale and Simon 1953 140-800 3 blocked capillary, thermodynamics 31
Robinson 1953 9000 5% moving pellet 32
De Boer 1952 theories of the liquid sta te , compari-

son with experiment 33
Fisher 1954 theory, deriviation of theoretical

formulae for the melting line,
comparison with experiment 34

Salter 1954 idem 35
Domb 1957 theory, difference of internal energy

of 3He and 4He 36
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TABLE V a (continued)

author year
pressure

range
atm

esti­
m ated

accuracy
atm

m ethod used, theoretical con­
siderations and typical aspects

ref.

Domb and Dugdale 1957 review article from which pa rt of
table is taken, extensive theoreti-
cal considerations 37

Grilly and Mills 1959 ‘35-3500 0.05% blocked capillary, volume of melting
etc. 38

Lounasmaa 1960 theory, thermodynamics 39
Goldstein 1960 theory, thermodynamics, prediction

of minimum in melting curve 19

Vignos and Fairbank 1961 25-33 0.01 velocity of sound, new solid phase 40

Langer 1961 14000 200 piston displacement 41

Van den Meydenberg 1961 theory, depth of the minimum 42

Grilly and Mills 1962 P V T  relations and polymorph phase
transition 43

Goldstein 1962 theory, thermodynamics calculation
of depth of minimum 44

Wiebes and Kramers 1963 heat capacity measurements, indirect
verification of éxistense of melting
pressure minimum 45

Le Pair, Taconis, De 1963 direct pressure measurement, verifi-
Bruyn Ouboter and cation of existence of melting
Das pressure minimum 46

Sydoriak and Mills 1964 heat capacity idem, indirect 47

Zimmerman 1964 heat capacity measurements idem,
indirect 48

alignment will occur. P om eranchuk  estimated the transition tempera-
ture for the solid to be about 10-7°K. The fluid structure, although being
more open than the solid structure, has a shorter mean atomic distance than
the solid. This effect is small, it amounts to about 3% in 3He. It should
involve a transition at T  <C 10—® °K. Specific heat measurements, however,
together with heat of vaporization data show that the entropy of the liquid
falls below R In 2 at about 0.5°K. At higher pressures this happens at slightly
lower temperatures. At the melting pressure it happens at T — 0.33 K. This
must be attributed to strong exchange effects in the fluid, which do not
occur in the solid because of its long range ordering. (In the fluid density
fluctuations of microscopic size are larger and more frequent). As the slope
of the fluid-solid transition line is determined by the Clausius-Clapeyron
equation dP/dT =  (Sn -  Saoi)l{Vn -  Tsoi) =  AS/AV  and AV  is not
affected within the first order approximation by the spins, the change of
sign of AS preserves the slope of the transition curve. At very low temper­

atures i s  should become zero again, according to Nernst’s heat theorem.

According to G oldstein , who reported the work of Zeigler and P erego68)
about the least square fits to an analytical function of all known data, the
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TABLE V b

Contributions to the knowledge of the fluid-solid equilibrium of 3He

author year
tem pera­

ture
°K

accuracy
atm m ethod and typical aspects ref.

Pomeranchuk 1950 theory, prediction of minimum 49
Osborne, Abraham

and W einstock 1951 1.02-1.51 0.1 blocked capillary 50
D aunt 1952 review article; discussion of exp.

results 51
Osborne, Weinstock

and Abraham 1952 0.16-1.51 0.1 blocked capillary; no minimum 52
Roberts and Sydoriak 1954 heat capacity; disadvantage blocked

capillary technique 53
Mills and Grilly 1955 1.3*30.0 0.05% blocked capillary; comparison with

Simon melting equation 54
Domb 1957 theory 36
W alters and Fairbank 1957 <  0.5 heat capacity ; indirect conformation

of the existence of a minimum 55
Domb and Dugdale 1957 review article 37
Baum, Brewer, D aunt

and Edwards 1959 0.12-0.7 0.2-0.01 strain  gauge; minimum directly 56
Goldstein 1959 theory; thermodynamics 57
Grilly and Mills 1959 >  1.3 volumetric; solid-solid transition 38
Grilly, Sydoriak and

Mills 1960 0.3-0.5 0.02 volumetric; minimum directly 58
Edwards, Baum,

Brewer, D aunt and
Me Williams 1960 0.12-0.7 specific heat; strain  gauge 59

Peshkov and
Zinov’eva 1959 review article 60

Sydoriak, Mills and
Grilly 1960 >  0.3 extension of 58) ; thermodynamical

considerations 61
Bernardes and

Primakoff 1960 theory 62
Anderson, Reese and

W heatley 1961 >  0.03 magnetic properties 63
Mills, Grilly and

Sydoriak- 1961 0.3-1.2 extension of 61) 64
Edwards, Me Williams

and D aunt 1962 >  0.1 heat capacity 65
Goldstein and Mills 1962 theory; thermodynamics 66
Anderson, Reese and

W heatley 1963 0.03 67
Goldstein 1964 0.02 theory; extensive article; compari-

son with experiments 68

melting pressure of 3He at T =  0°K should be:

Po <  Po,02 +  R In 2/AV X 0.02 33.87 atm.
l

4He has no spin contribution to its entropy. At low temperatures only
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Fig. 7 . P T  «1ia.gra.Tn of 3He and 4He. Below are the liquid lines, ending at the critical
points. Other lines are discussed in the text.

configurational and collective motion contributions to the entropy of both
fluid and solid are left. Only very recently the first information about the
entropy of fluid and solid below 1°K has been collected69). The data have
not yet been used in calculations about the transition. G oldstein  launched
the idea about a possible minimum. He estimated it to be about 0.052 atm be­
low the pressure at T = 0 °K 44). Van den Meydenberg,however,estimated
it to be smaller than 0.04 atm 42). The idea that underlies the phenomenon is
the fact that in solid helium longitudinal and transversal wave propagation is
possible. In the fluid only longitudinal phonons exist. So in the region where
phonons are the only excitations, the entropy of the solid may exceed that
of the fluid, even when the sound velocity is larger in the solid. W iebes
and K ram ers found a negative heat of melting below 0.76°K. They
estimated the depth of the minimum to be about 0.008 atm45). Our measure­
ments confirmed this result46). Uncertainties in our measurements are:
1 The complete dependency on the block in the capillary. If this occurs too
close to the Bourdon tube, the measured effect is too small. 2 The possibility
of hysteresis of the Bourdon tube, this possibility was discussed with Mills
and S ydoriak  in private comments on mutual work. We refer to the ap­
pendix of part I about the properties of the Bourdon tube18). The complete
absence of even the least effect above 0.7°K strengthens our belief in the
validity of the absence of an appreciable hysteresis. Sydoriak  and Mills
investigated also the minimum of 4He47), Their measurements suggested
an effect of 0.027 atm at T  =  0.6°K and the minimum occurring at 0.875°K.
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Z im m e rm a n 48) states in the program of the 9th conference on Low
Temperature Physics, p. 32: ‘‘Using the Clapeyron equation, the average
slope of the melting curve of pure 4He between 0.145 and 0.6°K was computed
to be 0.008 atm  °K-1. This result is in good agreement with Le P a i r  e.a.
and W iebes e.a. and somewhat smaller than  th a t calculated by G o ld s te in ” .
In  his address to  the conference he declares: “ By inserting the specific heat
data  of A tk in s  and S t a s io r 70) and the change in volume upon solidification
data  of S w e n s o n 28), one obtains for an average slope between the two above
mentioned tem peratures: dPjdT =  —0.2 atm  °K-1. This value is greater
than  the determination of the negative slope in the melting curve of Le
P a i r  e.a. and W ie b e s  and K ra m e rs  and gives a change in pressure
between the minimum and 0°K greater by a factor of two than th a t calculated
by G o ld s te in  when added to  the change in pressure reported by S y d o r ia k
and M ills” . This shows above all how delicate the question is. Tests on
the properties of our Bourdon tube as mentioned before (ref. 18, appendix),
although not sufficient to claim absolute certainty, improve our faith as to
the reliability of our measurements. So until better information on heat
capacities etc. become available, we trust our results to  be correct*). I t
might be th a t the deformation energies of the Bourdon tube used by S y d o r ia k
and M ills  are responsible for the discrepancy. We have evidence from the
measuring technique of F o k k e n s  e.a. 71) th a t deformation of metals
produces a  considerable amount of heat a t low temperatures. The slope of
the Los Alamos curve below T m is about 5 times steeper than  ours. If the
heat contribution from the tube would be 4 times the heat of melting effect,
this would cause the difference. Above T m the relative influence of this
effect decreases rapidly with about T 3. Above T m the positive heat of melting
will soon exceed the Bourdon contribution. The result would be a too steep
slope below T m and a too flat slope above. This is in agreement also with
some other peculiarities reported by S y d o r ia k  and M ills**).

6. Concluding remarks. From  the foregoing sections it  is clear th a t
neither for 3He nor for 4He the Nernst-condition: dPjdT  =  0 a t sufficiently
low temperatures, has been confirmed experimentally. The existence of the
minimum in the melting line of pure 4He has become sufficiently certain,
although serious discrepancies exist about the order of m agnitude of the
results between the various experimentalists.

The calculation of the potential energy of the fluid based on the rep
configuration indicates th a t the non-existence of the solid in equilibrium
with the bound fluid phase cannot be ascribed to  the potential energies,
but m ust be due to differences of the zero point energies.

*) W iebes also still believes his observation of the value of Tm to be correct.
**) Up till now the discussion between the LAS and the KOL groups is not closed. We are indebted

to Dr. Sydoriak  and Dr. Mills for sending us preprints and private comments about their work.
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In our calculation of <f> we took into account contributions to the potential
energy of the atoms by atoms within a sphere of radius three times the atomic
distances. Contributions from further atoms as well as manybody forces
and deviations from the central force model are negligible compared to
the effects studied here. The potential well found in this way is about
100 Joule mole-1 deeper than that calculated by London from the same
interatomic potential, taking into account only nearest and next nearest
neighbours. Only a small difference exists between &hcv and 0t>cc and a
cross over at ~20 cm3 mole-1 occurs. The effect is very small and without
more detailed knowledge about the zero point energy and the limitations
of the two body interaction assumption no conclusions may be drawn as
to the bcc-hcp transition, which occurs at about that molar volume.

As far as higher temperatures are concerned, one is inclined to pay more
attention to the classical hard sphere model. U hlenbeck  even goes as far as
r ailing the solidification of helium an argument in favour of the probable phase
transition of a hard sphere assembly72). We are a little bit reluctant on this
point, because it might be that a hard sphere model is stable against transi­
tions caused by pressure. On the other hand the deviation from the hard
sphere model is obvious and becomes even more so at large pressures. The

TABLE VI

D ata about 8He and 4He along the m elting line, taken from G r i l ly  and M ills  88).

p
atm

7
°]

V n
cm3 mole-1

V  so l
cm8 mole”1

S

Joule m o le '1
«K -1

d P /dT
Joule cm-8

“K -i

4He 8He 4He 8He 4He 8He 4He 8He 4He 8He

30 1.793 0.517 22.349 25.807 20.683 24.619 3.605 1.273 2.192 1.071
50 2.332 1.332 20.857 23.700 19.581 22.663 5.025 3.528 3.940 3.405

100 3.418 2.490 19.023 20.894 17.941 20.055 5.665 4.345 5.230 5.180
1000 14.049 13.297 12.919 13.342 12.299 12.764 7.110 6.675 11.45 11.54
3500 31.110 30.533 10.077 10.355 9.650 9.939 7.630 7.280 17.82 17.53

large compressibility of the fluid for instance is not due to a gradual con­
figuration change but to a decrease of the interatomic distances. In table VI
some data about both isotopes are listed. We see that even the hep arrange­
ment shows a very large compressibility. At high temperatures, U hlenbeck
argues that the transition line for hard spheres should be straight. Along the
line the Gibbs functions of both phases are equal:

Un — TSti +  PVa  =  U so i — T S g o i +  P V goi-

Because hard spheres have only kinetic energies, Uso\ — Un- The entropies
depend only on configuration, not on T, so we have:

P
Y

Stl — S so l

Vtl — V sol
=  constant.
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Hence the melting pressure is simply proportional to T. From table VI it
is clear that this does not hold in the helium case. dP/dT changes considerably
even at pressures up to 700 times the critical pressure. The melting pressure
at high temperatures can be described by a Simon equation 73), with constants
according to D om b and D u g d a le 37):

P (  T \ l-5 5 5 4

17.23 "" \  1.0179/ ~

This formula covers even the result of L a n g er41) at 13950 atm. As we see,
no indication of a linear behaviour at all. Helium has to be considered as a
soft sphere assembly,' which explains the anomaly in the value of zl F /F soi for

l
this substance. More detailed calculations should be made about the hcp-
cubic closed packed transition at very high pressures74) 37), using Jansen’s
theory16). Recently more reliable data about the total energy of fluid and
solid have become available69) 75). We intend to use these in further calcu­
lations, to obtain a better picture of the volume dependency of the zero
point energy.
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SAMENVATTING

In dit proefschrift worden een aantal experimenten beschreven over de
phase overgangen van helium bij drukken van enkele tientallen atmosferen.
Onderzocht werden zowel mengsels van 3He en 4He, als puur 4He. Bij het
onderzoek werd gebruik gemaakt van een Bourdon veer, die in het lage
temperatuur gebied fungeerde als manometer. Dit maakte het mogelijk,
drukken te meten, zelfs als door het optreden van minima in de stolkrommes
de toevoer capillairen door vast helium waren geblokkeerd. Voor de druk-
aanwijzing werd achtereenvolgens een spiegelaflezing en een electro-mag-
netische methode gebruikt. De apparatuur en de meetresultaten zijn be­
schreven in deel I A. Bij vaste samenstelling vertonen de stol- en smeltlijnen
van de mengsels een minimum in het PP-diagram, dat qualitatief kan
worden verklaard. De apparatuur maakte het ons tevens mogelijk om singu-
lariteiten in de Volume-Temperatuur relatie van vloeibare mengsels te vin­
den ; aan de hand waarvan de A-overgangen van de mengsels als een functie
van de druk konden worden vastgesteld. Tevens kon worden bevestigd dat
bij de ontmoeting van een tweede en eerste orde overgangslijn de laatste een
knik vertoont.

In deel I B is, gebruik makend van de gevonden resultaten en van de ge­
gevens van anderen een phase diagram van helium geconstrueerd. Daarbij
is rekening gehouden met de ontmenging in de vloeistof en de vaste stof, met
de structuur verandering van de vaste stof, met de vast-vloeistof overgang en
met de daar soms bij optredende azeotropie. Hoewel nog niet alle gebieden
van het diagram met voldoende zekerheid bekend zijn, kan toch worden
gezegd, dat het gecompliceerde phase diagram zijn meeste geheimen heeft
prijsgegeven.

In deel II zijn wat beschouwingen gewijd aan het tot op heden onopgeloste
probleem betreffende de struktuur van een ideale vloeistof. Gebruik makend
van een model van een willekeurige stapeling van harde bollen — dat een
door meetresultaten verrassend gerechtvaardigd beeld van de fluide toestand
geeft -  zijn berekeningen over de energie van de pure componenten bij het
absolute nulpunt uitgevoerd. De resultaten van dit werk, die afwijken van
hetgeen eerder door anderen werd gevonden, konden kwalitatief worden
verklaard. Hiertoe moest voor de vaste stof een grotere nulpuntsenergie dan
voor de vloeistof worderi aangenomen.
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Tot slot zijn in het tweede deel ook de resultaten gegeven van gevoelige
metingen aan de stollijn van 4He beneden 1°K. Op grond van het phonon-
energie spectrum zowel in de vaste- als in de vloeistof was hier een weinig ge­
prononceerd minimum voorspeld. De vermelde resultaten bevestigen dit
vermoeden.
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STUDIEOVERZICHT

Op verzoek van de faculteit der wiskunde en natuurwetenschappen volgen
hier enkele gegevens over het verloop van mijn studie.

Na het behalen van het einddiploma HBS-B aan de Gemeentelijke HBS,
thans Rembrandt Lyceum, te Leiden, begon ik in 1953 mijn studie aan de
Leidse Universiteit. In 1957 legde ik het candidaatsexamen natuur- en wis­
kunde (A') af.

Mijn practische opleiding kreeg ik op het Kamerlingh Onnes Labora­
torium in de groep onder leiding van Prof. dr K. W. Taconis. Aanvankelijk
assisteerde ik dr C. J. N. van den Meydenberg bij zijn experimenten aan de
filmsnelheid van mengsels 3He en 4He. Vervolgens werkte ik samen met
dr R. de Bruyn Ouboter aan de meting van de soortelijke warmte van deze
mengsels. In 1960 legde ik het doctoraalexamen, hoofdvak experimentele
natuurkunde, af. De doorvoor vereiste tentamens in de theoretische natuur­
kunde werden afgenomen door Prof. dr S. R. de Groot en Prof. dr P . Mazur.

In 1961 werd begonnen met de onderzoekingen over de stoleigenschappen
van 3He-4He mengsels, die in dit proefschrift zijn beschreven. Achtereen­
volgens werd ik daarin bijgestaan door de heren drs. K. Fokkens, drs. P . Das,
P. Guthman, J. Walter, H. Alblas, A. C. de Vroomen, E. de Jong en J. Pit.
Grote steun heb ik gehad van dr R. de Bruyn Ouboter. De constructie van de
verschillende apparaten is tot stand gekomen in nauw overleg met de heer
E. S. Prins, technisch ambtenaar.

In samenwerking met drs. B. van Laar ontwikkelde en beproefde ik een
methode voor de bepaling van de concentratie van helium mengsels met be­
hulp van thermische neutronen. De experimenten werden gedaan in het
Reactor Centrum Nederland.

Sinds 1961 heb ik als hoofdassistent in de rang van wetenschappelijk
ambtenaar leiding gegeven aan het natuurkunde practicum voor prae-
candidaten in de biologie.

Met gevoelens van dankbaarheid vermeld ik hier ook de hulp en de mede­
werking die ik ontvangen heb van de technische staf van het Laboratorium,
in het bijzonder van mijn vader en de heren A. Ouwerkerk, L. Neuteboom,
K. I. Mechelse en J. Turenhout.

De dames E. S. E. Groen-Plesman en J. A. van Zijl ben ik erkentelijk voor
het typen van het manuscript en de heer W. F. Tegelaar voor de zorg waar­
mee hij de tekeningen heeft vervaardigd.
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STELLINGEN

1

Uhlenbeck ontleende aan de stolling van helium een argument voor
het bestaan van een “fluid-solid” overgang in een systeem van harde bollen.
Dit argument is niet steekhoudend.

U hlenbeck , Statistical Physics 3, pp. 47, 48.

2

Thermodiffusie kan veelal met succes worden gebruikt voor de controle
op de zuiverheid van een gas. De methode is bijzonder waardevol, indien
het aantal verontreinigingen groter dan één is.

3

Het is bedenkelijk de metingen van P ickard  en Simon aan de soortelijke
warmte van 4He als argument voor de T3-afhankelijkheid hiervan te ge­
bruiken.

Lane, Superfluid Physics, p. 81.

4

De instabiliteit van de dichtste bolstapeling van helium bij lage tempera­
turen en drukken mag niet aan de potentiële energie van het systeem
worden toegeschreven, zoals door London werd gedaan.

Dit proefschrift, part II.

5

De struktuur van vloeistoffen van eenatomige moleculen vertoont grote
overeenkomst met de resultaten van modelproeven over de lukraak stape­
ling van harde bollen. Hieruit mag echter niet worden geconcludeerd, dat
de onderlinge aantrekking tussen de moleculen de struktuur van een vloei­
stof niet in belangrijke mate beïnvloedt.

Zie: B ernal, Proc. Roy, Soc. A 280 (1964) p. 321.



6

Het is misleidend om de periodieke variatie van de kritische stroom als
functie van de omvatte magnetische flux, zoals gemeten en beschreven door
M ercereau c.s., op te vatten als een interferentie verschijnsel, volkomen
analoog aan dat van het experiment*) m.b.v. electronenstralen door twee
spleten.

Advertentie Ford Motor Company, Sc. Am. sept. 1964,
M ercereau c.s., Phys. Rev. Letters 12 (1964) 159,
*) M öllenstad t, Phys. Blatt. 18 (1962) 299,
*) C ham bers, Phys. Rev. Letters 5 (1960) 3.

7

De experimentele controle door S itn ikov  van Van Vleck’s theorie over
de soortelijke warmte van een spin-systeem in paramagnetische zouten is
van generlei waarde.

Sov. Phys. Solid State 4 (1963) 2592.

8

Phasescheiding in mengsels van 3He en 4He is niet noodzakelijk een ge­
volg van de derde hoofdwet van de thermodynamica, zoals o.a. door
M endelssohn wordt beweerd.

M endelssohn, M & B Laboratory Bull. Vol. IV No. 4.

9

Ten onrechte concludeert Chance dat de beslissende informatie over
het al of niet cyclische karakter van een fotochemische reactie wordt ver­
kregen uit experimenten, waarbij de snelheid van de licht- en donkerreacties
van slechts één tussenproduct wordt gemeten.

Chance, Bacterial Photosynthesis (1963) p. 369.

10

In zijn verslag van de experimentele verificatie van het uitsluitings-
beginsel bij levende spinnen verzuimt Tretzel  belangrijke directe uit­
komsten van zijn meetresultaten te geven. Dit is te betreuren, omdat
daardoor een inconsistentie in zijn cijfers niet kan worden opgehelderd en
zijn conclusies statistisch niet zijn na te gaan.

Zeits. für Morph, u. ökol. d. Tiere 44 (1955/56) 43.



11

Er bestaan aanwijzingen dat bij de politieke overwegingen die aan de
strategische beslissing over het al of niet oprichten van een Multilaterale
Kernmacht voorafgingen, niet voldoende rekening gehouden werd met de
terugkoppeling op de politieke verhouding tussen Oost en West.

12

De effectiviteit van de “geweldloze actie” zou vermoedelijk aanzienlijk
kunnen worden verhoogd door gebruik te maken van psychologische
gevoeligheden van de mens, zoals die o.a. ook bij de reclame worden toe­
gepast.

C. Ie Pair, 29 juni 1965.
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