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Introduction and Summary.

1. In this work the theory of scattering and emission of light
by an atom is developed on the basis of Kramers’ m ethod of
quantizing the classical theory of the electron.1,2 Accordingly, the
calculations are non-relativistic and we shall confine ourselves
throughout to electric dipole radiation. These restrictions will
allow us to avoid all divergences.

Scattering will be described by means of stationary states of the
compound system of atom and electromagnetic field, which bear
a close analogy to the custom ary classical treatment. To em pha­
size this analogy the properties of each state are interpreted in
terms of a classical radiation field. Emission is described by super­
posing these stationary states in such a way that initially the
radiation field vanishes.

The scattering is calculated for incoming light with arbitrary
frequency, either in resonance with an absorption line or not. In
the latter case the result is equivalent to the well-known Kramers-
Heisenberg formula. In the case of resonance—usually called
resonance fluorescence—not only the usual line shape is found,
but also a small line shift, which in  the current treatm ent is in ­
finite and has to be discarded. The behaviour of the Ram an scat­
tering inside the line width and the transition to non-resonance
are also investigated.

2. Kramers’ theory starts from the idea that in the classical
electron theory all physically significant results depend only on
the mass m  and the charge e of the electron, and do not contain
any reference to the structure of the electron. His program  was
to construct a structure-independent Hamiltonian that describes
the actual behaviour with the best obtainable approxim ation. For
this purpose the transverse electromagnetic field is decomposed
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into a “ proper field” and an “ external field.” The former is de­
fined as the non-retarded field, i. e. the field that follows from the
Biot-Savart ru le .3 It is determined by the instantaneous position
and velocity of the electron (in contrast with the sum of retarded
and advanced fields used by Dirac4). The vector potential A'
of the rem aining external field is finite for a point-electron, so
that the average of A' over the extended electron will be nearly
independent of the charge distribution. If now the equations of
motion of the electron are expressed in terms of A ', the effect
of the proper field being accounted for by an electromagnetic
mass mel, they contain only the total or “ experimental” mass
m — m 0 +  mel; they do not depend on the structure, except for
the very small wave lengths in A'. The equation for the external
field A ', however, still contains the proper field in such a way
that the formalism is only approxim ately structure-independent.

The next step consists of writing these equations in Hamil­
tonian form. First1 Kramers used a Hamiltonian which had
practically the same form as the usual one, but with the external
field instead of the total field, and with the experimental mass m
instead of the m echanical mass m 0. He showed that it describes
the secular effects correctly to the first order of e, whereas certain
high-frequency vibrations, caused by the interaction, are neg­
lected. Later, Opechowski5 found a Ham iltonian which is correct
in dipole approxim ation to the first order of e. Finally Kramers2
constructed in dipole approxim ation a Hamiltonian which is cor­
rect also to higher orders of e, and can therefore be applied to
the scattering of light.

3. In chapter I we obtain in dipole approxim ation a Ham il­
tonian which is correct in all powers of e, in the following way.
In the ordinary Ham iltonian the field is expanded in multi­
pole waves and only the electric dipole waves are retained. By
means of a canonical transform ation this simplified Hamiltonian
is cast into a form which only contains the constants m  and e
and is practically structure-independent. This new form  will be
the starting point of our calculations. We shall call it Kramers’
Hamiltonian, although it differs slightly from the form he used.

If there is no binding force, this new Hamiltonian appears as
the sum  of an infinite num ber of oscillators, each referring to an
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eigenvibration of the compound system. Hence the canonical
transform ation amounts to choosing the solutions for the free
electron as basic elements. If the electron is harmonically bound,
a further canonical transform ation can be found which again
transform s the Hamiltonian to norm al modes, so that also in this
case the rigorous solutions can be obtained. This is performed
in chapter II, and some results are derived which are of later use.

If the binding force is of a more general character (ch. I ll) ,
such a further transform ation cannot be found, and one has to
resort to perturbation theory. W ith the aid of the above mentioned
solution of the free electron, however, the zeroth-order approxim a­
tion can be chosen in such a way that the interaction of electron
and radiation field is already partly included, namely as if the
electron were free. The perturbation consists of the influence of
the binding on the interaction, and will be small for the high-
frequency quanta. Indeed, the shift of the energy levels caused
by the perturbation now turns out to be finite and small. This
has only a restricted physical significance, because the conver­
gence becomes effective at energies for which relativistic effects
should not be neglected. Mathematically, however, it seems that
there are no longer fundam ental obstacles in solving the Schrö-
dinger equation by perturbation theory and obtaining physically
significant results for the scattering of visible light.

4. In order to describe the scattering process we construct
a stationary solution of the Schrödinger equation, satisfying
the boundary condition that the ingoing radiation shall consist
of a monochromatic wave. This solution will then also contain
an outgoing wave of the same wave length, and the phase dif­
ference between both has to be found from the Schrödinger
equation. This phase shift contains all relevant information about
the physical quantities describing the scattering; indeed it is the
counterpart for light waves of the phase matrix in Heisenberg’s
theory of the S-matrix.

The above solution may also contain outgoing waves of dif­
ferent wave lengths, namely Ram an radiation. The intensities of
the separate Ram an lines follow, of course, from the coefficients
of this solution, but these coefficients need not be computed ex­
plicitly. It appears that the Ram an radiation is associated with
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im aginary terms in the phase shift mentioned above, so that the
probability for Ram an scattering can be calculated directly from
this phase shift.

Non-stationary solutions of the Schrödinger equation can be
obtained by superposing the stationary solutions. If the super­
position is chosen in such a way that at t =  0 the radiation
field vanishes, then the field that appears at t >  0 can only be
due to emission by the atom. Hence, such a non-stationary state
serves to describe spontaneous emission. Again the phase shift
(as a function of the incoming frequency) is sufficient to find
all data about the emission process. The scattering by an atom
in an excited state also requires a non-stationajy solution, but
this problem  is not treated in  the present work.

The properties of the ingoing and outgoing electromagnetic
radiation fields have, of course, to be interpreted by computing
expectation values of certain field operators, for instance the
square of the field strength. However, it is possible to represent
all relevant features of the quantum -m echanical field by a classical
analogue. This classical field is constructed in such a way that
the (classical) time average of any relevant quantity is equal to
the expectation value of the same quantity in the quantum -
m echanical state.

5. W ith the m ethod outlined above, the scattering by an atom
in the ground state is calculated (chs. I l l  and IV) for the case of
non-resonance, i. e. for incoming frequencies that are not near
to an absorption frequency. The result is expressed in terms of
the phase shift, but it can be checked to be equivalent to the
Kramers-Heisenberg formula. The expression for the phase shift
contains real terms of order e2, describing the Rayleigh scattering,
and imaginary terms of order e4, associated with the Ram an
radiation.

Chapter V is devoted to the case of resonance. Adopting tem ­
porarily some simplifying assumptions, the phase shift is calcul­
ated for incoming waves with frequencies in the neighbourhood
of an absorption frequency. Just as in the classical treatment,
the phase shift strongly increases inside the line width, passes
through the value tc/2 in the centre of the line and finally, on
the other side of the line, differs from the value n by a small
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am ount of order e2. However, the centre of the line does not
exactly coincide with the atomic frequency, but shows a small
line shift. W ith the ordinary Ham iltonian this so-called Lamb-
Retherford shift6 could only be computed by means of an ad hoc
prescription for the subtraction of infinite term s.7

Inside the line width the Ram an lines are very strong and their
intensities are proportional to those of the corresponding emission
lines. Therefore the scattering process m ay be visualized as the
absorption of an incoming photon and subsequent spontaneous
emission. This picture is, however, only partly true, because
several details are not represented correctly.

In chapter VI the formulae obtained for resonance and non­
resonance are combined into one form ula for the phase shift,
which holds for all values of the incoming frequency and for
any binding force. This equation shows that the transition be­
tween resonance and non-resonance is rather involved. The simple
device of inserting imaginary damping terms in the resonance
denominators of the Kramers-Heisenberg form ula has only a
restricted validity.

6. One feature of the transform ation that served to eliminate
the electron structure has still to be mentioned. If the electron is
chosen very small, and a fortiori in the limit of a point-electron,
the new Hamiltonian contains one oscillator with an imaginary
frequency. This corresponds to the well-known self-accelerating
solution of the classical electron8. As emphasized by B habha9,
this solution of the equations of motion cannot be found by a
perturbation calculation based on an expansion in e, because it
is not analytic in e =  0.

As there is no proper way to quantize an oscillator with
imaginary frequency, the transform ed Ham iltonian cannot be
carried over to quantum  mechanics, Of course, even in classical
theory the self-accelerating motion makes a rigorous solution of
the equations of motion meaningless. A plausible procedure,
however, consists of discarding the anomalous oscillator from the
H am iltonian; it will be shown that this leads to agreement with
experimental results. It is im portant that no radiation is associated
with this oscillator.
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Chapter I. Derivation of the Hamiltonian.

7. In this chapter Kramers’ Hamiltonian is deduced from the
usual one in the following way. In the non-relativistic Hamilton­
ian for an extended electron the transverse field is expanded in
electric dipole waves, all other multipole waves being omitted.
By m eans of a first canonical transform ation the proper field of
the electron is separated from the total field, so that only the ex­
ternal field occurs in the new Hamiltonian. By a second canonical
transform ation the rem aining A2 term  is incorporated in the oscil­
lators of the field.

The Hamiltonian thus obtained is, in dipole approximation,
equivalent to the Ham iltonian given by Kramers. The electron
is characterized only by the charge e and the experimental mass
m; the details of the structure have, for all practical purposes,
been eliminated. Therefore one may take a simple model, and
we shall choose a point-electron in order to get manageable
formulae.

The formalism of the deduction is adapted to both classical
theory and quantum  mechanics.

8. After elimination of the longitudinal field the rem aining
transverse field can be described by a vector potential A with
div A =  0. The Ham iltonian of the system electron +  field then
takes the form 8 * 10

$  =  ~ ( P - e A ) 2+ V (R )  +  ~ J { E 2 +  (rot A )2} d r , (1)

where — E /4 ji is the canonical conjugate of A.

R and P are the position and the momentum of the electron, e and m0
its charge and mechanical mass. The function q will describe the charge
distribution, so that jgdr =  e. We shall put c =  h  =  1 throughout
this work. A and E are the vector potential and the field strength of
the transverse electromagnetic field, V is the static potential resulting
from the elimination of the longitudinal field. For the sake of simplicity
we do not consider an external magnetic field, although it will be im­
portant in certain experiments. How it can be taken into account has
been indicated by Kramers1.
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The symbol *•> denotes the m ean value over the extended
electron, i. e.

eA =  $A (r)^ ( |r -R | )dr  =  $ A(R +  r)g(|r|)dr.

If the motion of the electron is confined to a region around the
origin that is small com pared to the wave lengths present in the
external field11, then this mean value is practically independent
of the position R of the electron, so that one m ay write

eA =  $A(r)e (|r|)dr. (2)

This condition is certainly fulfilled when dealing with the scat­
tering of visible light by atoms. Physically it amounts to neglecting
the transport of (canonical) momentum  from the transverse field
to the electron; indeed from ( 1) and ( 2) follows

P =  — S$I8 R =  — VF(R). (3)

W hen A is expanded in multipole waves, the result of this ap­
proximation is that only the electric dipole waves are coupled with
the electron: all other multipole waves are zero in the origin and
hence do not contribute to (2) if g falls off rapidly.

9. As far as electric dipole radiation is concerned the expansion
of the field inside a large sphere of radius L m ay be written

( « >

There are three directions of polarization corresponding to the three
components of qn. 2  means “transverse part of” and may be defined by12

2
It gives rise to a factor -g in the mean values over the electron, because
for small r

2
2q„(sin vnr)/r =  3 q^n  + Or;

and also in the normalization, because

 ̂ In (sin r„r)/r| *  = 3 J |q n (sin v„r)//j • 4 n r*dr.
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The orthogonal functions in the expansion (4) have the norm
|/ 4 j i; consequently, if E is similarly expanded:

(6)

then pn is canonically conjugate to q„. From  (4) follows further­
more

eA =  j/4/3 L E  q„ $ sin vn r • q (r) • 4 n rdr =  Z'enqn , (7)

where ______
*n =  8n vn V * e 2l S L >

dn being a convergence factor which depends on the structure q
of the electron and tends to 1 for a point-electron. Substituting
(4), (6) and (7) in the Ham iltonian (1), one gets

© =  (1 /2 jd0) P 2 +  V ( ® ) -  (l/m „)P 2 ;£nqn

+  ( 1/2 m0) (E  £„q„)2 +  ^ ( p ' + <  q„) •

10. If now new variables are introduced by means of the
canonical transform ation

P n  Pn>

where

P ', P P ', It = R' + E

m  =  m0 +  E (enlvny ,

(8)

(9)

then the Ham iltonian becomes

© =  ( l /2 m ) P ,2 +  V {R '+ r(£„ /m ^ )p ;}

+  (1 /2 m0) (E  en q ^ 2 +  -  E  (p^2 +  r2 q̂ 2) .

The third term  on the right stems from the A2 term. Together
with the fourth term  it constitutes a quadratic form in the field
variables q„:

E  A nn ' qn  qn '  — 2  ^  { V^ 8nn' 0 / m o) en en’}  fin f in '> ( H )
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which can be transform ed to principal axes by means of an
orthogonal transform ation

<ln =  £  Xnn' qn-, pn =  Z X nn- pn<. (12)

This is carried out in Appendix A, sections 1 and 2, with the
result

§
p'2
2m + v R' + - rm

J  4 cos r/n
'  3 Ln k n

p : + i ( p : + 4 ,a)1 (13)

where kn are the roots of a certain characteristic equation and
rjn and Ln are defined by

Lkn =  rjn +  n n ,  0< r)n < n l 2 ;

Ln =  L  — (cos»7„)2/x > 1/x =  2 e 2/3m .

The structure of the electron enters into the Hamiltonian (13)
only through the equation for the kn (nam ely (A 6)). It m ay be
expected that its influence on the physical phenom ena we are
interested in is small. Therefore we m ay choose a point-electron,
in which case the characteristic equation becomes

tan L k  =  k /x  or tan  r] =  k /x .  (15)

11. For a free electron (V =  0), the Ham iltonian (13) fur­
nishes the correct solution (of course in non-relativistic dipole
approxim ation). The momentum  P ' =  P is constant (as a con­
sequence of the dipole approxim ation, cf. (3)) and II' is linear
in t. The electron at the point R fluctuates around the uniformly
moving point R '. If  no photons are present, then classically
R =  R ', but in quantum  theory there is still a fluctuating motion,
owing to the zero point fluctuations of the field.* In this case the
square of the distance R — R ' has the expectation value

<(R — R ')2> =  (2 e2/3 m2) Z  (2 cos2 v J L k l ) (kn/2 ) . (16)

Our factor cos2 r/n gives convergence for £ -»- oo, but it be­
comes effective at too high values of k ,  owing to the neglect of

* The influence of this fluctuation in the position of the electron on the
physically measurable quantities has been studied by Welton18.
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recoil and relativistic effects (see also 40). There is a logarithmic
divergence for k  -> 0, but any binding force will cut off the lower
values of k  and thus m ake the expression finite (see ref. 1S).
It m ay be added that fluctuations with infinite m ean square
amplitude are known in probability theory14 and that the result
for a free electron is not unacceptable, because the mean square
amplitude is not an observable quantity. It will be shown in 15
that physically m easurable quantities do not suffer from this in fra­
red divergence.

12. The physical meaning of the transform ation (8) can be seen
from the corresponding decomposition of the field: A =  A +  A0.
Here A ' is of the form  (4) with q̂ , instead of q„, and

(with the aid of (A 22)). W e shall call A0 the proper field of the
electron and A' the external field. If P '/m  were the electron
velocity, A0 would be identical with the proper field as defined
by Kramers3. Now, however, this is only true in first approxim a­
tion, because P ' is the canonical m omentum

Owing to this difference in the field that has been split off, (13)
is slightly simpler than  the Hamiltonian actually given by Kramers.

At first sight, Bloch and Nordsieck’s transform ation15 seems
to be rather the same as our transform ation (8), but there is an
essential difference. Since they used the unbound electron as
zeroth approxim ation, they could replace with sufficient approx­
imation (P — e l y / 2  m0 by V (P  — eA) and consider the velocity
vector v as a constant:

§  =  V (P  -  Z  £„q„) +  E  (p* +  vUn) ■

Now the problem  is not to transform  this Hamiltonian to principal
axes, but to get rid  of the linear term  in q„. This is achieved by
the canonical transform ation

A °(r) =  £27 j / ;A  En p ' sin VnT =  2; —
L mvn r mm S f ^ dr' (i7>

P '/ju =  R ' =  R + O e .

q i  +  ( e J 2i*)v , P =  P', R =  R'



Nr. 15 13

This transform ation is m uch simpler than  (8) since R =  R'.
On the other hand, Bloch and Nordsieck used a less trivial con­
nection between P and P', because they did not confine themselves
to dipole approximation.

Pauli and Fierz18 supposed the electron to be so large that
the electromagnetic mass is small com pared to the m echanical
mass. In this case, one can put in (8) m =  m0 and the transform a­
tion becomes identical to theirs. It is consistent with this approx­
imation to omit the A2-term in the Hamiltonian, and accordingly
they obtained the same Ham iltonian (13), but without the phase
shifts rjn . The transition to the point-electron is, of course, ex­
cluded.

W elton13 used the same Ham iltonian as Pauli and Fierz, with
a rather sketchy justification. Schwinger’s elaborate calculation
of the self-energy17 is based on the same idea, but meets all
requirem ents of relativistic invariance and does not use dipole
approximation. On the other hand, an expansion in e is used for
the canonical transform ation and only the first power is computed.

13. The orthogonal transform ation (12) amounts to choosing
a new set of orthogonal functions for the expansion of A '. It is
shown in A 4 that they are sine functions with wave num ber kn
and phase shift rjn :

(is)

Owing to his slightly different definition of the proper field,
Kramers found as the external field belonging to a stationary
solution of the classical free electron, instead of (18),

Aj =  % |/3/L„ q" {sin (knr — rjn) +  sin r)n} jr ,

For a freely moving electron this field is finite at r =  0 , in contrast
with our “ external” field (18). After having obtained these solu­
tions, Kramers could write the Hamiltonian for the free electron
simply as a sum of term s:

1 I j„2„"2>.
2 " \ P n  / >
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each term referring to an oscillator associated with a stationary
motion. The Hamiltonian which we obtained by means of two
canonical transformations differs from this one only by the ad­
ditional term P '2/2 m,. associated with the linear motion with
constant velocity.

It is noteworthy that after the first transformation (8) the transition
to the point-electron is not yet possible, because the Hamiltonian (10)
still contains m0. Since the term with m0 has usually been omitted,
the necessity of the second transformation did not appear. The factor
cos2?jn, however, which arises from it, will turn out to be useful in
obtaining convergence (see 40 ; cf. also 11) .

14. When the electron is very small, the electromagnetic mass
is larger than the experimental mass m, and consequently m0
is negative. Then (11) is no longer positive definite and not all
the eigenvalues can be positive. In fact it is shown in A 2 that
for the point-electron there is one negative eigenvalue —■ x2,
yielding two imaginary solutions k* =  ix  and k* — — ix  of (15).

This anomalous eigenvalue gives rise in the Hamiltonian (13)
to a term

| ( p 2*—A * )>  (19)

and to a term (e/m) l/4/3s< p̂ . in the argument of F. In the ex­
pansion (18) it gives a term

STj/ïüq^e-*'/r;

this is a field which is appreciable only within a distance of the
order of the classical electron radius, and hence does not contain
a radiation field.

If the Hamiltonian (13) is used for the classical treatment
of the free electron, then the term (19) gives rise to two solutions
with time factors eKt and e~xt. The former is the “self-acceler­
ating” or “runaway” solution, well-known from the classical
theory of the electron8. The latter comes in because, owing to
the reflecting sphere, our treatment is symmetric in time. (The
usual boundary condition that there is no ingoing radiation at
infinity is, of course, not symmetric.)

The anomalous term (19) is not a structure-independent
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feature, since it cannot occur if the electron is chosen so big that
m 0 is positive. It m ay be expected therefore to be im m aterial for
the phenom ena we are interested in, just as in Lorentz’ theory,
provided it is treated in a suitable m anner. In his classical theory4
Dirac gave the prescription that the initial situation should be
chosen in such a way that the final velocity is finite. That means
for our free electron that the initial p* and q* must be zero,
because otherwise they will increase exponentially. This amounts
to simply omitting the term  (19) from the Ham iltonian of the free
electron. The initial field can then no longer be chosen completely
arbitrarily, but m ust be such that in (19) q* =  0 (and  that p* =  0
in the analogous expansion of E '). This restrictive condition
affects only the field in the immediate neighbourhood of the elec­
tron, whereas the radiation field can still be chosen freely. The
resulting Ham iltonian can be quantized without difficulty.

The bound electron in classical theory has also a self-acceler­
ating solution, but in this case Dirac’s prescription leads to dif­
ficulties18. Moreover, in order to apply it to quantum  theory in
the same way as above, one has to find a canonical transform ation
by which this solution is exhibited explicitly in a term  like (19).
This is only possible for a free or a harm onically bound electron.

A slightly different way of generalizing Dirac’s prescription to
bound electrons consists of dropping in the Ham iltonian (13)
both the term  (19) and the term  with p* in  the argum ent of V.
The rem aining Ham iltonian can be used in quantum  mechanics
and m ay again be expected to give right results for the scattering
of visible light by atoms. In the next chapter we shall apply both
the first and the second procedure to thé harm onically bound
electron, and the results will tu rn  out to be practically identical.
In  the later chapters the second procedure will be used for the
electron in a general field of force.

15. The Ham iltonian (13) might give rise to “ infrared” diver­
gences of the kind encountered in (16). We shall here show that
they are only form al and do not prevent a consistent solution of
the Schrödinger equation. For this purpose we use the canonical
transform ation

4 cos rjn P, P' P, R' r -2:# ,
m
e

I / :

4 cos r/n —
3 Ln k„ Pn’
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where are arbitrary num bers, bounded for n —>~oo. The Ham il­
tonian (13) takes the form

1

with
z (Pn +  *n »£) — ~  P ^ n  | /  3 ^  *n COS Tjnq„,

. ( 20)

m
1 _4e^

m 3 m2‘ L n

If we now choose #n =  1 for small n ,  there is no risk of diver­
gence for k -*■ 0 . If moreover =  0 for large n , (20) will have
the same features as (13) in the region of large k,  that means
(as will be seen later) that there are no divergences for k  —► oo .
Consequently there is no difficulty in applying perturbation theory
to (20). Any m easurable quantity, however, m ust be independent
of the arbitrary num bers so that one can put afterwards
&n =  0 for all n ,  without introducing any divergence.

A safe, bu t cumbersome, way to deal with (13) is to use its
transform  (20). Instead we m ay use (13) directly, because in the
final result the divergences for k->- 0 will cancel. In intermediate
stages any divergent term  may be cut off tem porarily at some
low value of k.

Even with the choice — 1 for all n the results are still
finite, owing to the factor cos rjn in the last term  of (20). This
choice might seem profitable because of the resemblance of the
resulting Ham iltonian with the customary one. However, it is
easily seen that then m ' = m /2 , so that half of the experimental
mass has to be furnished by the interaction; hence we would
get an unsuitable starting point for the application of perturbation
theory.

Chapter II. The Harmonic Oscillator.
16. In the case of a harm onically bound electron one has

V =  —mK2 R 2,, and the Hamiltonian (13) reduces to a quadratic2
form



Nr. 15 17

4 COS J?n
p :  + - ^ ( p ; '2 + « 2)+  - ~ K Z R' +  -2 7

This is a sum of three similar terms, each referring to one direc­
tion in space. Therefore the problem  can be reduced to a scalar
one by writing

The subscript v takes the values 0, 1, 2, . . . and also the “value” *
(at least in what is called in 14 the first procedure; in the second
procedure, considered in 18, the anomalous oscillator denoted
by * is discarded at this point).

The Hamiltonian (21) can be transform ed to principal axes
by means of an orthogonal transform ation

The shifted frequencies (ov are the roots of the characteristic
equation

<sP', R '

where e is a unit vector in the x ,  y , or z  direction.
On introducing new canonical variables Pv, Qv by

P ' = P 0m ï, R' =  Q0m ~ K  p"n =  Qnk n, q"n =  - P nk ~ \

and putting

k0 =  0 , d0 — 1, dn =  \z'2/xLn cos r)n ,

the Hamiltonian becomes simply

§  =  ~ Z ( P Ï  +  kÏQl) +  ± K 2(ZdvQv) \  ( 21)

Qv =  ZYw'Q'v', Pv =  Z Y w ’P'v',

with the result (see A 3)

§ =  I zx^ + ^ q;2). (22)

tan Leo (23)

and a new phase shift can be defined by

L(ov =  +  vn, tan  £„ =  tan  Lcov.
Dan. Mat. Fys. Medd. 26, no. 15.

(24)
2
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It is seen from (23), (24), that f  i) for c a » K; that £ is near to
ji/2 for co *** K, and £ «  n  for co «  K. Hence there is resonance
at the frequency K.

There is again one imaginary root eo* «a ix , analogous to A*
for the free electron. In the first procedure the corresponding
term is discarded in the transformed Hamiltonian (22). The re­
maining part is positive definite and can be quantized.

17. In order to investigate the aspect of the eigensolutions,
we express the original variables in terms of Pv and Qv. The
position of the electron is given by (see A 3)

R =  e Z d vQvm~^ =  em z Ef}vQv,

Pv _  i / 2x sin £y _  e i /~4~ Kofi
]/m T mL'v oov m \  3 Li, ^  (co?: A2)2 d- (o$/x*

In general this factor is small of order e, but for w «  K it becomes
of order 1/e.

The external field is described by

A' =  — Z  e Z  \/sJTn Pn sin (knr — »?n)/Anr  (25)

and, with Pn =  Z Y nvP'v, this becomes (see A 5)

a ' _  (2«))/ Lv r  mr

P is the momentum of the electron and the term with P is just
the proper field A0, according to (17). Hence the first term on
the right represents the total field; it is an electric dipole wave
with phase £„, whose dependence on the frequency cov is given
by (23) and (24).

It can be understood physically that the total field reappears in
our formula. Contrary to the free electron, the harmonically bound
electron can only perform an oscillatory motion and no translation.
Hence the total field must be of the type of a dipole wave, and cannot
contain a part with 1/r. This essential difference with the free electron
prevents a continuous transition if the binding tends to zero, i. e. if
K  o . This paradox is caused, of course, by our dipole approximation.
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18. The second procedure consists of discarding the anomalous
terms in the untransformed Hamiltonian (21) and transforming the
remaining Hamiltonian into (22). This is carried out in A 8 and, instead
of (23), the characteristic equation

tan £(o>) = ta n Lco =  — j l  + (0t _ K * _ 2 (0*K'/ioj* + **)}

is now found. There is no complex root, because we started with a
positive definite form, so that all eigenvalues co2 must be positive.

Again the. situation may be studied, and again

B = e 2  j/2 x K 2jm <t>\ Ly sin £v Q'v,

£v now being determined by (27). The expression (26) can also be main­
tained if a term with é~xr/r is neglected. The situation therefore is es­
sentially the same as in 17, the only difference being that between the
expressions (23) and (27) for the phase £(a>). This difference between
the two values of £ is always relatively small, except in the neighbour­
hood of K. Whereas (23) is infinite for cu = K ,  (27) gives resonance for

to =  K  + Ka/(K2 + x2) + Ox~* f*sK+ K  sin2 t,{K).

This shift of the resonance frequency is of order (A/x)2 (for visible light
about 137~~ 6) with respect to K ,  which is much smaller than the natural
line width and can therefore always be neglected.

Consequently, this second procedure is, to all intents and purposes,
equivalent to the first one: it does not make any appreciable difference
whether the problem is first solved rigorously and the new self-acceler­
ating solution is discarded afterwards, or whether, alternatively, the
self-accelerating solution of the free electron is discarded before the
binding is taken into account. In this chapter we adopt the first pro­
cedure, because (23) is simpler than (27). As mentioned in 14, we shall
use the second procedure in the later chapters, because the first one
cannot be applied to an electron in a more general field of force.

19. The investigation of the physical aspect of the solutions
can be simplified by the following two rem arks.

1°. In  order to get a picture of the electromagnetic field in
a quantum -m echanical state, it is convenient to construct a
classical analogue19. Let W — £ cv{a>v} e lWvt be a quantum -
m echanical superposition of one-quantum  states* {cov>. The ex­
pectation values of quadratic expressions in the P' and Q' are

* With {cu*} we denote a state in which one quantum is present, with fre­
quency COy.

2 *
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easily calculated; one finds, for instance, after subtraction of the
vacuum  part,

(P'xP'fi') =  ]/oil <°n {c\c,i e (co*_<V ' +  cAc> '} . (28)

Now consider a classical superposition of eigenvibrations, deter­
m ined by*

P'v( t) =  31 \/^w vcve~ ic°vt =  \/a>v/2 (c»e“ i% l +  cveioivt) . (29)

One finds for P'x ( t) P« (f) in this state the same expression (28),
plus terms with frequency «A +  <°/z ■ The same agreement holds
for QaQ/i and P'aQ'h +  Q'/x P'x and, consequently, for any quadratic
expression in A ' and E '. Hence the physical results are the same
in both states, provided that in the classical one the high-frequency
phenom ena are omitted (e. g. by averaging over a time which is
long com pared to the period of the waves, but short compared
to the m acroscopical changes in the situation).

2°. In problem s of particle scattering the wave function has
necessarily an infinite norm. It may be considered as referring
to an assembly of an infinite num ber of particles, such that the
particle density is finite20. In the same way we shall choose an
infinite norm  in order to get a finite incoming energy current.
In  our finite sphere this amounts to omitting in all coefficients
the factor L T *, with the result that the ingoing field is independent
of L . However, in the case of a perturbed state consisting of a
superposition of the eigenstates in a certain energy interval, the
num ber of these eigenstates increases proportional to L, and no
extra power of L  needs to be added.

20. We are now in a position to investigate the physical aspect
of the solutions. Any eigensolution, with frequency cov =  to say,
contains an ingoing and an outgoing wave and hence represents
a stationary scattering process. According to (26) and (29), the
incident electric dipole wave

A _ (f) = 3 U e e - iw(r+t)lr

* 9t denotes the real part.
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(whose total ingoing energy per unit time is ƒ =  co2/3) gives rise
to an outgoing wave

A+( 0  =  - fH e ~ 2ih : e e ta,(r- ° / r .

The phase factor e~2i^; is connected with the cross-section for
scattering of a plane wave by a well-known form ula21

6 n
^ (cö2

CO*

K2)2 + co* lx2'

This is identical with the expression found in  the classical theory
of electrons22.

21. Emission will be described by a superposition of stationary
states, chosen in such a way that the field vanishes at / =  0.
This is possible because the phase-shifted functions in (26) satisfy
an identical relation (see A 6)*, viz.

U (2 /L ’vcoI) sin fv sin (covr — £v) =  0 .

If now, classically, one takes a superposition of eigenvibrations
(29), the coefficients Cj, being determined by

J/2 covcv =  j/3 lL'v cov s in f „ -C ,

one finds, according to (26),

* / n  _ r 'c rnv  ^ sin sin (a)vr  £j>)A (f) — — CX e2. —y — »—------------------ cos covtLv coy r

as the classical analogue of the radiation field. At t =  0 both
A( t )  and E ( t )  =  — A (!) vanish, so that there is no radiation
present. Hence the field appearing at later times ( t >  0) has
to be interpreted as emission by the oscillator.

For the outgoing energy per unit time with frequency between
co and co +  dco one finds

I  ( (o') da> 3 C2 sin2 £(co) 3 C2 co* dco
4L  nco2 W 4L  (m2 — K2)2+  co*/*2 nx2' ^30'

* Whether the anomalous term is included in the sum or not is immaterial,
since it decreases exponentially as e~x r .
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If L tends to infinity (with constant C), this expression vanishes. In­
deed, the field describes only one act of emission between t =  — oo
and t =  +  oo, so that the outgoing intensity, averaged in time, must
be zero. If L is finite, however, the emitted radiation is reflected by the
sphere and after a time 2 L the initial situation is restored. Thus, our
non-stationary state then describes a sequence of emissions, one per
time interval 2 L . The emitted energy with frequency between co and
co + da> for each emission is equal to (30), multiplied by 2 L; for the
total energy per emission one finds 3 C2/4x .  This value can be used to
determine C, but, for convenience, we shall put C =  1 in the following.

The field for f >  0 can be calculated when the summation
over v is replaced by an integration over co:

In the last expression outgoing and ingoing fields appear sepa­
rately. After substituting from (23), (24)

one can carry out the integration in the complex plane. The poles
co m ±  ix give contributions e~xr and must be neglected. The two
other poles are (omitting higher orders of 1/x) K ±  iK2/2x and
— K ± i K 2l2x. One thus finds that the ingoing field is zero, of
course, and so is the outgoing field for r >  t . F o r r <  t the latter
is, omitting terms of relative order e2,

A+ =  % (3 e/2 xr) cos K (r — f) exp (A2/2 x)(r  — t). (31)

This is the well-known expression for a damped wave with
frequency K and half-value breadth K2/x =  2 e2A2/3 m.

22. It is useful to consider a more general formula for the
phase shift, viz.

% (e/r)  ̂(3/nco2') sin £ (co) sin {cor — £ (co)} cos cot dco

e—icotr + tn  do)

1 _ e±2i£(ö)) 2 i co
772 T72  -X co2 — K*Tico3lx’

tan £ (co) = / ®(co). (32)
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This is the phase shift caused by a number of oscillators with
frequencies K: and oscillator strengths fj — xjxj.

To each zero Qt of 0  corresponds an identical relation (A 21)
and hence a state in which there is no radiation at t =  0. At any
time t >  0 there is a radiation field, but it will be seen that it
contains all frequencies K j ,  so that the initial situation is one
in which all oscillators are excited. Indeed, choosing in (29)

j/ 2 <ov cv =  j/3/Ly sin £v/(Qi — tt>J),

one finds from (26) the field

« N 3 sin £„A (0  =  —% — — 2 ------- sin (twvr — £„) cos a>v t
r ~— Lv L2\ — o) j

(33)

r*+  oo

3 e l  f 1 — c"2!f .2iC
(34)

_____.  . ____________  io>(r—O i  L__£IZ »—<<»('• + Olcfft ) .
8 wr ) } O f - ft)2 ^ Q f - c o * e i

The integration can again be performed in the complex plane.
From (32) follows

1 — e±2f£ _  T  2 i(o/x 0
Qj — co2 1 T  (ico/x) 0  Q* — co2

and the only singularities are the zeros of 1 -F (ico/x)0.  Those
with o) ±  ix must be neglected and the others are K, ±  iKffi/2 x
and — Kj ±  iKf fj/2 x . Thus one finds an outgoing field for
r <  t, viz.

A(0  =  — cos Ki (r ~  exP (Kffi l2 *) (r — 0  •

This field corresponds to simultaneous emission by all the oscil­
lators.

In order to describe emission by only one of the oscillators,
one has to choose a suitable linear combination of these states.
For this purpose we use the theory of A 1 and substitute s =  to2
and F(s) — 0(a>). The poles tn of F(s) are now Kj and the resi­
dues are aj =  Kffj.  The roots of the equation F(s) =  0 are
Q\  and the normalization constants are
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PT* =  — F' (fi?) =  Z  Kf f iKt i  -  Kf),

so that (A 5) becomes
f t  dN

( Q * - K * ) ( Q f - K f )  K ) f :

Now let the states given by (33) be added, each being multiplied
by p\\(Q \ —Kl).  In other words, we consider a new state given
by new coefficients c, determined by

yYcov cv =  \ / ï iÜ  sin tv Z, f t l WÏ  -  Kl)  (fl? -  ml) .

Then the field follows from (26) and (29):

A ( 0 = 2 :  (3 e/2 » /)  cos Kh (r — t) exp (KlfJ2 x) (r — f)- (35)

This is exactly the field (31) of an oscillator with frequency Kh
whose probability for emission is reduced by a factor fh.

It should be emphasized that these results follow from the equation
(32) for the phase shift, and that it is immaterial whether this phase
shift is caused by oscillators or by any other scattering centre. In fact,
in this section we have derived the existence and properties of decaying
excited states from the behaviour of the S-matrix, in our case defined by

o /  -. _  _ g —  2i£(a>) _  _ _ 1  —  i t a n Cb{io) — —er- — 1+ftanC

The connection with the usual treatment23 follows from the remark
that the poles which contribute to (34) are the zeros of 1 +(i<o/x)&
=  1 + i tan C, and hence also the poles of S(eo).

It is noteworthy that tan £, rather than the multiple valued func­
tion f itself, describes the properties of the scattering centre in a simple
way24.

Chapter III. Arbitrary Binding Force.
23. In this chapter the Hamiltonian (13) is employed to

compute the scattering of light by an electron in a general
field of force with potential V(R). As V is no longer a quadratic
function in R, the Schrödinger equation cannot be solved by a
linear canonical transformation of the variables, and perturba­
tion theory becomes necessary. Accordingly, the term V in (13)
must be expanded in powers of e and the zero-order Hamiltonian is
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£° =  P'*/2 m + V  (R ')  +  -  Z  (P; 2 +  k l  C )  ■

Following the program  outlined in 14, the anomalous term  is
omitted in the sum, so that n  takes the values 1, 2, •• • .  This
Hamiltonian describes a motion of R ' as if there were no
coupling, whereas the electron at R fluctuates around R ' in the
same way as the unbound electron. The higher terms in e describe
the effect of the binding force on the fluctuation. Since for high-
frequency vibrations this effect will be small, the convergence
m ay be expected to be better than in the usual treatm ent, where
the whole interaction with the transverse electromagnetic field is
treated as a perturbation.

24. Each of the field quanta corresponds not only to a certain
oscillation of the field, but contains a vibratory motion of the
electron as well*. They are labelled by n and their polarization
v (v — x ,  y ,  z for the three components of q„ and p„). Instead of
the pair n ,v  we shall often use n . Creation and annihilation
operators are introduced by

Pnv =  (® n o  -t~ 2  k n .

The Ham iltonian (13) then becomes, to the second order,**

£  =  P '2/2 m + V  (R ')  +  2  kn a\v anv + 2  rn (am +

2  Tn Tn' ”1“ & nv) (® nV  “ I”  ® n v )  flrfV,
where

Tn = mV3 J ^ cos??" <= 0 e >-

(36)

(37)

Let En  be the eigenvalues of the operator P '2/2 m  +  V ( R ') .
The eigenfunctions will be labelled by N  and an additional sub­
script fi to cover the case of degeneracy. W riting N for N,/u we
shall denote the eigenfunctions by 9?N(R '). The eigenstates of the
operator 27Ifna„an will be denoted by { }, {n}, {n, n'} =  {n ',n},- • •,

* This is the reason why we prefer not to call them photons.
** do denotes derivation in the direction v.
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according as there are 0, 1, 2, • • • quanta present. A state vector
W of the whole system can be expanded as follows:

^  ^  Cn^n { } +  £  +  (1/2!) £  c™ 9?N{n,n'} +  • • •,
N Nn Nnn#

with =  cJi", etc.25 Finally, for the matrix elements of V
we use the abbreviations

rn <N |d„V| N ') =  <NnpN'> =  <NnN> ( =  Oe),

tbV  <N I d „ d ,v \N'> =  <Nnn'N'> ( =  Oe2) .

Then the Schrödinger equation (§ — W) W = 0 takes the form*

(£ „  -  lV)cN +  <Nn'N'> 4  +  -  <Nn'n"N'> 4 “' +  ^ <Nn'h'N'>cN. =  0 (38 a)

(En  — W  +  kn) c£ +  <NnN'> cN, +  <Nn'N'> +  <Nnn'N'> eg. +

+ 1  <Nn'n'N') <$. +  |  <Nn'n"N'> c^'n' =  0
(38 b)

(EN ~ W + k n +  km) c r  +  <NnN'> c“' +  <NmN'> eg. +

+  <NnmN'> cN- +  <Nn'N'> c ^ n' + 1  <Nn'n"N'> <^nn'n' +

+  <Nnn'N'> eg?" +  <Nmn'N'> cg-n +  -  <Nn'n'N'> =  0.

(38 c)

It should be noted that an infinite constant (3/2) 2  kn has been
dropped in (36). This is the zero-point energy of the shifted oscillators
and differs from the usually subtracted term (3/2) 2  vn by an infinite
amount (cf. ref. 2) ,

(3/2) 2  (kn —  vn) =  (3/2 L) 2  rjn =  (3/2 ») J r,(k)dk,

which represents the non-relativistic fluctuation energy of the free elec­
tron. In the usual treatment this infinite energy shift has to be furnished
by the perturbation calculation and causes divergence. In the exact
treatment of the harmonic oscillator in ch. II the subtracted zero-point
energy (3/2) 2  a>v differs from that for the free electron by a finite
amount

(3/2) 2  (con —  kn) =  (3/2 n) J (C (k) —  r, (*)} dk 1 (
=  3 K/2  +  (3 K 2/2 nx) log ( x f K) . f

* Summation over all primed letters is implied. Similarly in the following,
summation over primed letters is not indicated explicitly, when no confusion
can arise.
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The first term represents the zero-point energy of the harmonic oscil­
lator, and the second term is an additional fluctuation energy. It has
the same form as the Lamb-Retherford shift, but in this particular
case it does not give rise to a frequency shift, because it is the same for
all levels. In the present case of a non-harmonically bound electron, an
analogous term must result from the perturbation calculation; as it is
no longer the same for all levels, a frequency shift does arise.

It should also be noted that in the right-hand side of (36) a term
occurs with a at . Here the operators cannot be reordered with theno no
creation operators on the left, because this would amount to discarding
a term in the Hamiltonian which is not a constant. In fact, this term
will turn out in 39 to be essential for the cancellation of the infra-red
divergence.

25. In the same way as in ch. II we shall describe the scat­
tering process by means of a stationary scattering state. For this
purpose an eigenfunction W will be constructed, satisfying the
boundary condition that the ingoing field at large distance shall
consist of a m onochromatic wave with given frequency co and
given polarization w . The outgoing field then consists of waves
with frequencies co, colt  co2, • • •, describing the Rayleigh scat­
tering and the various Ram an linés.

This m ethod of stationary scattering states has the physical
advantage that it is a direct translation of the custom ary classical
treatment. Mathematically it is simpler than the tim e-dependent
method, because the latter is unduly complicated by irrelevant
terms arising from the initial conditions for the intermediate
states26. Moreover, it describes the time-dependence in greater
detail than  required for the actual experiments (cf. 50). On the
other hand, the interpretation of a stationary scattering state is
rather subtle. It should be emphasized in particular that it must
not be visualized as a steady stream  of photons, scattered by one
atom, but as an assembly of identical systems, each containing
one scattering center and one incoming photon20.

In the theory of particle collisions, the eigenfunction W is
constructed by starting from an unperturbed wave function W°
which has the required ingoing waves. In order to satisfy the
perturbed Schrödinger equation one adds a perturbation term  W
containing outgoing waves only. This means that the ic-represen-
tative of this term  m ust have a factor

2nid+(k  — co) =  (k  — co)—1 +  ind (k — co). (40)
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This method, however, will not be suitable when the scattering
is very large, for instance when co is in resonance with an absorp­
tion frequency of the atom. To cover the case of resonance as well,
we shall here use a different line of approach, which can be out­
lined as follows.

Since the above mentioned unperturbed wave function contains
a factor <5 (A: — co), the total wave function is of the form

W =  W° +  W  =  +  A<5(A — <u)}. (41)

(In  general C and Ï. will be functions of the direction in space,
but in our dipole approxim ation they only depend on the polariza­
tion of the incoming radiation.) Our method consists of finding
a stationary solution of the Schrödinger equation which has this
form  (41). The total energy W  can then be considered as a pre­
scribed quantity, determined by the given incoming frequency co.
The param eter A, however, has to be found from a characteristic
equation. The coefficients c in (38) can then easily be computed.
It turns out that A is directly connected with the phase difference
between the ingoing and outgoing waves, and hence with the
physical quantities we are interested in. In the same way as in
ch. II, it will be convenient sometimes to choose the normalization
constant C such that W corresponds to a given ingoing energy
current.

On solving the Schrödinger equation other singular terms will
appear, of the type (k  — ft>i)~ 1, (k  — co2)—1, . . . , where cox, co2, •
are frequencies lower than  co. They represent Ram an lines, and,
in order to obtain a state in  which there is no ingoing radiation
with these frequencies, they have to be supplemented with terms
i n d ( k  — co{), ind ( k — co2) , . . . .  sim ilar to (40).

The ^-functions, of course, refer to continuous variables. It
is shown in A 7 that our procedure follows directly from the
discontinuous treatment, when the enclosing sphere goes to in ­
finity. Discrete spectra in connection with stationary eigenfunc­
tions have been used in sim ilar problems by Rice27 and more
recently by Ham ilton28. They constitute a reliable basis, but the
actual calculations are m uch simplified by the use of (5-functions.
Nevertheless, we shall sometimes for convenience in writing use
discrete spectra.
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26. We try to find a solution of (38) whose zeroth order
approximation represents a state with the electron in the ground
state N  =  0 (which for simplicity we suppose to be non-degen­
erate), and with one quantum present of frequency co and polariza­
tion w.  Accordingly we put

W =  Z c $  <p0{n'} +  Oe, W =  E0 +  co +  Oe2. (42)

It may also be expected that c" is of the first (or higher) order
in e, except for those n for which v — w , kn on a>. In this chapter,
we shall show that this “Ansatz” leads indeed to a solution, if
the energy is too small for excitation

E0< W < E 1 or co <  Ei — E0 =  K10 (43)

and outside the level width (which may be expected, from the
particular case in 21, to be of order Kl0/x)

K10- c o > y K Ï J x .  (44)

One then finds to the first order from (38 a) and (38 c)

<Nn'0> ^  <NnO>c“ +<NmO>c"
Cn en - w «s - 'St  Es_ w + K + k m ■

all other coefficients being of higher order. Substituting this in
(38 b) and omitting orders higher than the second, one gets

~  ^  +  ^n) CN
«NnN'> <N'n' 0> <Nn'N'> <N'n 0>
{ e n. - w  + EN. - W + k n+icl-
' <Nn'N'> <N'n' 0>
£ JV, - W + * „ + * n, — <Nn'n'0>| Cg.

<Nnn' 0>l c“

This shows that all cjj are Oe2, except perhaps when En — E +  kn
is small. Owing to (43) and (44) this can only occur if N  =  0,
kn on co, and in that case (46) becomes

(<0nN'>'<N'n>0> <0 n'u;N'> <N'n 0>
\  En. - W  +  En. - W + 2 co

<0 n'n'0>lc" (47)

Here the value kn =  m is used in the factor {}; and also kn, =  co,
because in the sum over n' only terms with kn- on co are of order
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e2. Moreover, only the coefficients c"w referring to the polariza­
tion of the incoming radiation are retained, since the other coef­
ficients are Oe2. The second term  in (46) has been omitted; it
would yield a contribution

|<0 n 'N ') |2
En . E0+  k n.

-< 0  n 'n ' 0>| Cg ,

which can be absorbed in the term  with E0 on the left. Thus it
would give rise to a shift of order e2 in the atomic energy levels,
analogous to the last term  in (39). Outside the resonance region,
however, it is a term  of relative order e2 and m ay be neglected.

Taking v =  w  in  (47) one gets the equation

(kn -a> )cZw =  Tn0 ( c o ) Z T ; 4 w, (48)

where (see App. C)*

n , ,  |<0|öwy |N '> |2 |<0|ö„,V |N '>|2
0Cto) -  EN. - E 0-<o  +  En . - E 0+ 0>

=  2 to2
K n o  1 < 0 1 P m  1N )  |2

^  K 2N0-< o*

<o|5*y|o>
(49)

27. (48) is a set of homogeneous equations for the unknown
c™ which has the form (A 1) except for the factor <9 depending
on the eigenvalue cd. It can be treated in the same way, but it is
convenient to perform  now the transition to the limit L —*■ oo in
order to use the formalism for continuous spectra. Introducing
continuous functions r (k) and c(k)  by

e
m l /s S fe '08’'"- c(kn) J I WL0 >

one can write for (48)

(k  — co) c(k)  =  r (k )0 ((o )  \  r (k ') c ( k ')d k '.
1 "0

Now, as is shown in A 7, the solution o f this equation is

c(k)  =  r ( k ) { ( k — a y - '  +  M tk  — <«)}C,

* p  is the component of the momentum in the direction w.

(50)

(51)
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where C is an arbitrary constant and the eigenvalue A is determined
by the equation

d* +  M«>)2, (52)
*Jo

obtained by substituting (51) in (50).
In the integral the principal value has to be taken at k — co.

It is, however, of order e2 and is negligible compared to the left-
hand side, which is of order 1. It does not matter that the integral
is logarithmically divergent at k  =  0, because other terms of the
same order have already been neglected and from 15 we know
that they will cancel the divergence (see 39). The solution for A
can then be written with the aid of a new quantity £

A =  — 7t cot £, tan £ = — t it (co)2@(w). (53)

Clearly £ — Oe2, A =  Oe~z, and C will be of order e.
At this point the problem of determining W has been solved

in principle. For a given co one can find A from (53) and then
c(k) from (51). All other coefficients then follow in successive
approximations, the first step being written explicitly in (45).
By means of the conditions (43) and (44) it can easily be verified
that they are small of the order anticipated in (42).

It might seem from (38) that c"w for v?±w can also become large
when kn i& (o. These coefficients correspond to scattering with the in­
coming frequency but different polarization, which can be treated in
the same way as the Raman scattering (see 35). In the next chapter it
will be shown that our solution is not invalidated by such singularities
in the coefficients.

28. In order to investigate the physical aspect of the stationary
state, it is again (cf. 19) convenient to construct a classical ana­
logue. Let a classical field be defined by*

A (I) =  S (e7 r) A7J/3/2 Lnkn sin (knr -  Vn). i { ^ we~icot- ^  ei(0t); (54)

then it can easily be checked by direct calculation that the time
average of A (f)2 is equal to the expectation value of the operator
A'2 in the state IP, =  Znc"m{n ,w }, provided the vacuum ex-

* ew is a unit vector in the direction w.
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pectation value is sub tracted . Owing to the singularity  of c"ul at
kn =  o ,  (54) satisfies the  wave equation  for large r; consequently,
E ( / )  need not be in troduced  separately, b u t can  be rep laced  by
— A (f) . T he expectation value of any  q uadratic  expression in  A'
an d  A ' is equal to the  tim e average of the  sam e quan tity  for the
classical field (54). The non-singular term s in  W do not give any
rad ia tio n  at large distance, nor does the p ro p er field A0. T hus
A (f) m ay  be used  to find the  ingoing an d  outgoing rad ia tion .

In  order to  com pute the field, w e w rite (54) as an  integral
and  substitute (51)

A (f)  =  % (e^ /r) $ J/3/2 7ik sin {kr — r?(*)} c(k)dk.  2 sin o f

%(ew/r) (2 e /m  o )  cos rj ( o )  [cos{or — r\ (ft))} —cot £ s in {<or— rj (o)}] C sin co t

An elem entary  calculation  now  gives for the to tal incom ing energy
p er u n it tim e I  the value

T he field now  becom es

A (f) =  — ] / l2  1% ( ew/(or) sin  (cor — ry — £) sin cot

an d  £ appears as a  new  phase  shift to be  added  to the p hase  shift
rj of the free electron.

29. F o r this phase  shift £ follows from  (53) and  (49) the value

w here the  oscillator strength f ^ o  h as  been  in troduced  b y 29

sin ( o r  — rj — £)
cos »?(ft>)r m  o

C sin o  t .

I  == (2 x m )  1 {cos )?(o)/sin  £}2 C2,

an d  the  norm alization  constan t can  be expressed in  I:

C =  {sin £/cos »?(«))} j /2 x m l . (56)

^ N o f N O
COS2 ) ? ( « ) ) ,

|< 0 |P JN > |2 =  -m A N 0/ ,No> S f i s r u ,o — / n o>
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Since both r\ (the phase shift of the free electron) and I  (the shift
caused by the binding) are of the order' ea, the total phase shift
£ =  |  +  rj becomes, omitting terms Oe4,

The subscript w has been added to remind that this is the shift for
the radiation with polarization in the direction w. For a central field
of force one has f%0 =  %  o =  fzN0> so that the phase shift is independent
of the polarization. In that case (57) is identical to the expression (32)
for the phase shift caused by a set of independent oscillators. By using
anisotropic oscillators, one can also construct a model with the more
general phase shift (57). Hence, in this respect the atom in the ground
state can be represented by a set of oscillators; but (57) is only approx­
imate (see ch. IV), whereas (32) is true to all orders of e.

30. It is convenient to define the region o f resonance for each
atomic frequency KN0 as those values of co, for which in  the
sum  (57) the term  with KN0 predom inates, so that the term s with
different K  m ay be neglected. In  general it is sufficient that
| co — Kno I«  Kno , bu t if the line is very weak, or very near to
another line, the resonance region m ay be narrower.

The natural line width is the region where tan  £ is not small,
i. e. where co — KN0 ~  Kfj0/x.  Outside the line width the omission
of the principal-value integral in  (52) is justified. For visible
light the line width is of the order 137—3KN0; this is in general
m uch narrow er than the resonance region30. Hence it is always
possible to apply either the simplification for the resonance region,
or the simplification for outside the line width, except if the distance
between two lines is com parable to their widths.

Now (57) has been derived under the restriction (44), that
means outside the line width. In  this approxim ation there is no
reason to write tan  £ rather than  £ or sin £. In  ch. V, however,
the region of resonance will be studied, with the result that owing
to the choice tan  £, (57) also holds inside the line width (apart
from a small frequency shift). It is noteworthy that our derivation
should yield a more precise form ula than , is w arranted by the
calculation.

Granted this validity of (57) inside the line width, it is possible
to derive the formulae for emission from this expression for the

Dan.Mat.Fys.Medd, 26, no. 15. 3

(57)
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phase shift, as has been shown in 22. The probability per unit
time of transition from the state N to the ground state 0, under
emission of radiation with polarization w , was there (eq. (35))
found to be K%0 /no/*» in agreement with the usual result29.

31. The influence of the presence of the atom on the field can
be described by a polarizability tensor avw, expressing the electric
moment M of the atom in terms of the incoming field strength E :

M„ =  a0WE w.

The diagonal elements aww are related to the phase shifts ac­
cording to (B 12). Thus we find outside the line width

in agreement with the Kramers-Heisenberg form ula31. The phase
shift is also connected with a cross-section for coherent scattering
(with the same polarization), viz.

For the non-diagonal elements avw the coefficients for
v ^  0 have to be solved from (47). This will be done in the next
chapter, because the calculation is the same as for the Ram an
radiation. For a central potential field V they are, of course, zero.
Otherwise some of the energy of the ingoing radiation is lost in
radiation with different polarization. This energy loss can be de­
scribed by an “ absorption” cross-section <ra, which, according to
App. B, is associated with an imaginary term  in the phase shift.
This term , however, will turn  out to be of higher order (see 35).

Chapter IV. The Raman Effect.

32. We shall now consider the case where the frequency of
the incident light is higher than one or more of the absorption
frequencies of the atom. Thus we suppose, instead of (43),
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Em < W < E m  + x or Kmo<  w <  Km  + 1i0

and we shall use the subscript L for the states that can be excited
(L =  1, 2, . . M).  The region of the line width is still excluded:

Oi—  ^ M o ) ) ^ M o/ x > -^M + 1,0 to yy + 1, o /* . (5 9 )

In this case, some of the energy factors on the left-hand side of
(38) m ay vanish and the solution found in ch. I l l  seems to break
down. It will be shown, however, that the order of m agnitude of
the coefficients is not altered by this singularity, so that actually
the solution is not invalidated.

First take the expression (45) for c£m. As only the first order
is required, and eg =  Oe2 except if  kn ^  to, it may be replaced by

c T  = <L n 0 > eg*-------<Lm0> -  eg +  Oe2.
El  — E0 +  kn E l  E0 +  km

Hence the vanishing denominators do not occur in  the first order
expression of Cl “, which has been used in deriving (57). Therefore
the formulae of the preceding chapter can be m aintained, provided
that it is shown that the higher order term s may still be considered
to be small. T hat this is indeed justified, in spite of such vanishing
denominators, is due to the fact that wherever these denominators
occur in the Schrödinger equation (38), one has to sum over kn .
The resulting sum will tu rn  out to be of the same order as it was
supposed to be in ch. III.

Take, for example, the expression (46) for c£. As we are
interested in the behaviour for those values of kn for which
El  — W +  kn is small, it is possible to insert in the right-hand
member the value kn — W  — EL =  <oL - Omitting term s Oe4 one
gets

( k n —  (Ol )  Cl” =  r n ® L 0 Tn ' c 0 "*

where (App. C)

< L ia ,y |N /)< N ' |a .y |o>  I a  ig g y l0 v
En> E0 co +  En , - E 0+ col  1 " -  1

f<LlPPlN,)< N '|P 10|Q) , < L |P . |N ,><N, |P P10)1
(0(0 T \ I JT I | •LI — (o i£XT/T+ft)
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Going to the lim it of a continuous spectrum  and substituting (51),
one finds

( k - ( 0 L) c l ( k )  =  T(k)0roT(co)U C .

Hence cL(k ) has a singularity for k  =  coL , which will give rise
to a radiation field that extends to infinity. On dividing by k  — coL
a term  ind (k  — ojl ) must be added in order to get only outgoing
rad ia tion :

c l ik )  = — t (Ic) {(.k — WL)-1  +  ind (k  — J/2 Ijx  m  co2 cos f  (61)

(with the use of (56) and (37)).
It is now clear that in  any summ ation over k ,  such as occurs

in (38), cL (k)  can be considered as a quantity of order e2 (one
factor e from  t (k) and one from x  2), in spite of the singularity.
The same holds for the other higher order coefficients: each time
a denom inator vanishes it gives rise to a radiation field; as in­
going radiation of any frequency other than co is precluded by
the boundary condition, the singular term  must be supplemented
by an zyrd-term, and the order of magnitude after integration over
k  is not increased. But if  there were also ingoing radiation of the
same frequency, then instead of in  an arbitrary param eter would
appear, which might take large values.

33. The radiation field belonging to the frequency coL may
again be represented by a classical field, which can be found
from  (54) by replacing c™ by c™ and co by coL :*

Al ( 0  = —%(evjr)  ̂|/3 /2  Ttksin (kr  — rj) 3  c£(k) e ICUl< dk

=  % - ---- ----- 1/3 /c o s  £ 3 6>r0r xmcocol

(62)

This shows explicitly that there is no ingoing radiation. For the
total outgoing energy per unit time one finds by an elementary
calculation

I I  =  4 (xmooi)~21 @ l o  |21 c°s2 £(<*>). (63)

This formula has been derived only outside the line width and in
that case cos2 $ is indistinguishable from 1. It is interesting, however,

* Q denotes the imaginary part (without the factor i).
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that (63) can be extrapolated to the region of a line width (to r& K m  o
say), because 0 cos f  remains finite. One would thus find for the in­
tensity of the Raman lines in resonance

H  = t  K M L  / m l  . 2  f4 —--------- sin2 £ .
^ M O  /M O

Here /m l is the total oscillator strength for the transition from the level
Em to the state L for the polarization v:

/ m l  =  (,2/mKML)
I*

In 42 it will be shown that this expression for in resonance is nearly
correct. On substituting for L the value M, it gives / m =  0, so that this
Raman line disappears without discontinuity when <o drops below K m o-

In order to compare (63) with well-known results, a connec­
tion has to be established between the energy flow J  of a plane
wave and the ingoing energy per unit time in its dipole component.
According to App. B this relation is /  =  (3 n/2 to2) J.  Hence, the
energy in the Ram an line with polarizarion v is found to be

8 jeM 4M 2 j , « L |P . |N )< N |P J 0 >  , <L|Pu,| N)<N |J°p| 0)|
3 W  V®J N  I KN0 k n l +°>  J J  coszf .

This is the radiated energy for a given final state L . The total
energy with frequency odl is obtained by summing over the dif­
ferent states with the same energy EL and over the polarization v .
The result agrees with the usual expression32, apart from the
factor cos2 f .

34. The question may be asked how this energy loss is taken
into account in the Rayleigh radiation. It is true that, owing to
the phase shift f ,  the intensity in the forward direction is de­
creased, but the corresponding am ount of energy is found in the
scattered Rayleigh light. However, in the next section we shall
show that each Ram an line gives rise to an im aginary term  in f .
Such an imaginary phase shift causes a decrease in the intensity
in the forward direction without a corresponding increase in the
Rayleigh scattering, and is therefore connected with an “ absorp­
tion” cross-section cra . This im aginary term  in f  will tu rn  out to
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be of the order e4 and has therefore consistently been neglected
in the foregoing. The absorption cross-section aa is linear in this
term  and consequently also of the order e4. On the other hand, the
real part of f  has been found to be of the order e2, but as the
scattering cross-section <xs is quadratic in this term, it is also of the
order e4. Thus the energy decrease due to Ram an scattering is of
the same order of magnitude as that due to Rayleigh scattering.

Of an incoming plane wave with energy flow J  the energy
asJ  is lost in Rayleigh scattering. The energy aaJ  is lost due to
Ram an scattering, but only part of it is found in the radiation,
the rem aining part being used to excite the atom. If oaL is the
cross-section for the Ram an line ojl  , then clearly

4  =  <>raL ^(tt,i W  or 4 / wL =  ( 64)

This equation can also be interpreted as the conservation of the
num ber of photons. We shall now check that it is indeed satisfied.

35. For this purpose we calculate the higher order correction
in (57) due to the imaginary term  in (61), but still omit real terms
of higher order. Repeating the calculation in  26 one finds new
terms in (46), which result in an additional term  in (47), viz.

f<0 n N ')< N 'n 'L ')  <0 n 'N 'X N 'n l / )
E n .-~ W  E N, — W + k n+ k n,

■<0 nn'L 'M c";,.

On substituting from (61) this becomes

(k„.-a>v ) Tn.(%'w =  inrnr(ojL.y  Ov0Bv  0 &? $ t (k)c(k)  d k .

W ith this addition (50) becomes

(k — w )c(k) =  t(Jc) 0(<u) $ r(k')c(k')dk'  +  inT(k)r((ow)2\ 0 ql< |2$ r (k ')c (k ’)dk'I

Solving as before by means of the “ Ansatz” (51) one finds

0  +  f nr(coL. f  1 0 &  P =  (65>
(summed over L ' and »').

W riting f  =  — if"  one finds for the imaginary part

I" =  ^ 2 T ( t u ) 2r ( f t ) L. ) 2 | 0 o L ' | 2-
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The corresponding cross-section for one final state L is (App. B).

Comparison with (63) shows that indeed (64) holds.
The scattered radiation with the original frequency at but with

different polarization can be treated on equal footing with the
Ram an radiation. Its intensity is given by (63) when L =  0,
v ^  w . It also contributes to <xa . The radiation with the original
frequency and the original polarization, however, contributes to
the real part of £ and hence to <rs.

It is noteworthy that the damping by the Raman radiation is re­
presented by imaginary terms added to 0 , and not by damping terms
in the denominators of 0 . This is due to the fact that the Raman effect
does not damp the excited states of the atom, but only the state with
the primary radiation. (Actually there are terms in the Schrödinger
equation (38) connecting the cN with the c£, other than eg, but they are
of higher order and have been neglected in (45).) In case of resonance,
however, both damping effects cannot be separated and we shall find
an imaginary energy shift caused by the Raman effect.

36. For a complete description of the situation the higher
coefficients, describing the probability of finding more than one
radiation quantum , m ust also be computed. W e shall here briefly
consider the tw o-quantum  coefficients c^m. They consist of a
series in odd powers of e, and the first-power terms were shown
in 32 to be free from  singularities. The singularities in  the third-
power terms describe the radiation field after the atom, left in
an excited state by Ram an scattering, has emitted a subsequent
quantum . Accordingly, it m ay be expected that they will furnish
the breadth of the Ram an lines, due to the broadening of the
final level by the possibility of emission.

Instead of doing the complete calculation we shall retain only
the most im portant terms, nam ely those connecting cj)m with c£ ■
They can be visualized as the emission of a quantum  by the atom
in the state L , whereas the other terms are just m athematical
details. One thus obtains, just as in (45),

-f-r(Ar') <0 | V | L'> (k)} {(* +  k' — (o)~1 +  i nd (k  +  k' — co)}.

_  3 n / .  - 4 f t  =  8 31 [ e \* 1
ffaL 2 ft)2 3 a>2 \m  J atatL ©o l |2- (66)

c ?  (* ,* ')  =  - { t (*) <0 | d„V\L ')  c£ (* ') + (67)
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Again an ZTió-term has been added in order to obtain outgoing
radiation only33. Inserting this in  the equation (38 b ) for one
finds the following additional terms in the right-hand member
of (46)

r(*> <N I d„,v\0> <0 | duv\vy $ T(* ')c l (* '){(* + k ' — w )~1 +

+  ind ( i  +  k ' — «)} dk' +

+  <N I d„V10> <0 I d„VI L ')  cJL-(k)  J r(* ')2{(* +  *' -  t»)” 1 +
+  ind ( k +  k' — co)} dk'.

(68)

As we are only interested in  imaginary terms of order e4, we may
write for the second term

in  <N | V V| 0> <0 | VV | L'> r(co— k )2c l  (k)
(summed over 0 < L ' < M ) .

It is found that the non-diagonal elements (N ^  L ') give rise to
real terms Oe4 in the solution and hence m ay be neglected. The
diagonal elements can be brought to the left-hand side of (46),
yielding (for N =  L , L  <  M)

(k — (oL — i r l )  Cl (k) , (69)

where r l =  nx(K L^)21 <L | V T10) |2 is the well-known expression
for the transition probability from the state L to the ground state 0.

From  (69) it is clear that Cj^(k) is no longer a singular function,
but that one has to put

<£(*) =  y l ( k ) ( k - < o L- i r ° Ly \

where yi^(k) is slowly varying for k  in the neighbourhood of wL.
Hence the first term  in (68) vanishes, because

$ (* ' — coL -  i r l y 1 {(k  +  k ' — co)-1 +  ind  (* +  * ' — to)} dk' =  0 .

Since /  l is small, the sum  $r(Ar)cL(k)cMc rem ains the same as
before. Consequently one finds now instead of (61) the solution

cl(k ) =  —r(k)&Ltt0(k — coL  —  zT ,̂)-1  [/27/«jncu2cos f,

which shows indeed that the Ram an radiation has a width J 1®*
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By inserting this into (67) one obtains the probability of
finding two quanta with frequencies k  and k'. It is seen from  the
resulting expression that one of the quanta has a frequency in a
neighbourhood of the order r f, around coL, and that the frequency
of the other is such that the sum of both is exactly w.  By taking
into account still higher coefficients, one can find in  the same
way situations with more than  two quanta; it then turns out that
all but one of the frequencies have certain probability distribu­
tions around atomic frequencies, while the sum of all is exactly
equal to the incoming frequency.

37. In the region of the line width, (44) and (59) no longer
hold and 0  can become very large. In that case the principal-
value integral in (52) is no longer small com pared to 1 /0  and
cannot be neglected. Thus we are faced with the divergence of
this integral for small values of k ,  and according to 15 we have
to look for other terms which cancel this divergence.

On the other hand, if only the region of resonance is con­
sidered, it is possible .to neglect in 0  all terms referring to other
atomic frequencies, so that one m ay write (for co on KM0)

This is the usual approxim ation for resonance (cf. 30); we have
to resort to it in 38, bu t it will be possible afterwards to correct
the result.

To avoid irrelevant complications, we suppose all levels to be
non-degenerate and consider only one direction of polarization.
More precisely, we assume

Chapter V. Resonance.

^ M 0  /Wo
m e t) '

m ^M 0 / m o /2
^ M O  m

(70)

y (R ) == VX(RX) +  V„(Ry) +  VZ(RZ) (71)

with the result that the Ham iltonian (36) is separable. In the
same way as for the harm onic oscillator we only consider one
of the three parts, omitting superfluous indexes. The same Schrö-
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dinger equation (38) holds, but instead of N ,n may now be
written N ,n.

Thus we suppose that the incoming frequency is near to the
atomic frequency KM0, namely

0J — Kmo ~  or W — Em ~  K%[0lx.

If again Cq is assumed to be of the order 1 for kn & co it now fol­
lows from (38 a) that cM may be large. A closer inspection of the
example of the harmonic oscillator suggests cM =  Oe- 1  and then
follows from (38 b) cfa =  01 (except perhaps for N =  M). We
further put cN =  Oe for N ^  M and also ĉ m =  Oe, and proceed
to construct a solution satisfying these assumptions.

38. Instead of (45) one now finds from (38 a) and (38 c), to
the first order,

(Nn'N'y 1 <NrinM }
Cn  En —W 2 Em — W °m’ (N M)

„run _
l N  '

(NnN”)  c™ +  <NmN'y c ,̂ +  (NnmMy cM

En - w + K + K

(Em ~ W ) cm =  -  (Mn’N ’y cnN, - - ( .M n ’n'My cM. (72)

Inserting the first two expressions into (38 b) one gets an equation
for of the form

(En W + £„) =  Ax cM +  cjv' +  Caw' cN' • (73)

(73) and (72) together are a set of homogeneous linear equations
with eigenvalue parameter W. They can be simplified in several
respects.

1°. Since C^N- =  Oe2, the non-diagonal elements (N  5^ N')
may be neglected, because they would give rise to terms Oe4 in
the solution. The diagonal terms (with may also be neglected
in the presence of the term with EN — W  +  kn, except when the
latter is small. Hence the value kn =  W ■— EN — mN may be used
in the expression for , yielding

r icoK) _  I (NriN'y | 2
^ N N  p  ____p  I ,

%  ^  Kn’
^ (Nn’n'Ny =  — AN. (74)
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2°. The terms with B™N- can also be neglected for N ^ N ' ,
but the effect of B™N cannot be seen so easily. Provisionally we
omit that term  too, and it will be shown in 43 that this amounts
to the approxim ation (70) for the resonance region.

3°. To the first order, A% =  — (NnM)' ,  and the higher orders
(viz. Oe3) may be neglected. (It can be checked that this is also
true for N  =  M,  although in that case the first-order term  van­
ishes.)

W ith these simplifications, and writing

En  — =  En  +  A n  =  En ,

equations (73) and (72) become

(E'x- — W -Mr) cN(k ) =  -  r ( i )  | Ö V \ M> cM (75 a)

(e m  — W +  -<.Mn'n'My\cM =  — (M \d V \  N'}  $ r (k )cN-(k)dk.  (75b )

39. Solving (75 a) for cN(k)  one obtains

cN(k)  =  — T (k ) (N \dV \M ) (E 'N — W  + k ) - 1cM ( N > M ) (7 6 a)

cL(k)  =  — r(k)<L\dV\M>{(E'L — W  + k )~ 1 +  i n d ( E ’l - W  +  * )}cM |
> (76 b)

( M > L >  0 )  J
c0(A) =  -  r  (k)  <01 d V | M> {(EÓ -  W  +  k ) ~ :1 +  X» (£„ -  W  +  *)} cM . (76 c)

After substituting this in (75 b) the common factor cM can be
cancelled and we are left with a characteristic equation for A:

Em  — W +  — <Mn'n'M)
t/0

+  i n | <M| dV\  L ')  |2 r (coL.y  +  A | <M| d V 10> |2 r  (a»)2
(summation over all N' and over 0 < V  < M).

(77)

In order to compare this with (52) we simplify the latter by
using (70), and 'w rite  it in the form

(E m - W )  =  |< M |d F |0 > |2 — ~ 1  +  A |<M |dV |0>|2 r(«>)2. (78)
t /o
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1°. W hereas (78) contains one integral, (77) contains an
integral for each level EN . For each singularity in these integrals
a term  with in is added, except for the singularity in the integral
with N =  0 , as that is already accounted for by the term  with 1.
All these term s with N ^  0 do not occur in (78), because in ch. I l l
the coefficients (N  0) have been neglected, since they are
small if there is no resonance.

2°. In the denominators in  (77) occur the shifted energy values
E'n  instead of the E0 in (78). The difference, however, is of the order
e2 and m ay certainly be neglected in a principal-value integral.
(Actually it has .already been neglected in the other terms by
writing mL for W — E'l .) Also the W  in  the denominator m ay be
replaced by EM inside the resonance region.

3°. The new term  on the left-hand side of (77)

cancels the divergence in the integrals on the right*. Indeed, the
coefficient of l /k  for small k is now

which can easily be seen to vanish (see, e. g., App. C). Both terms
together give a small shift of the level EM, which turns out to be
just A m , defined in (74). -

40. According to App. C one can write for AM

This is nearly Bethe’s expression for the electromagnetic shift34,
but owing to the factor cos2 rj it is convergent. The effect of this
factor can roughly be represented by a cut-off at k  =  x.  From
Bethe’s work, however, it is known that the right num erical result

2
is obtained by cutting off at the Compton frequency m =  - x \  137.

* This is the term mentioned in the last paragraph of 24, which arises from
the term with an u in (36).

1
2

(Mn'n'M)) =  !< M |d 2F|M>$T(k)2dk

2<M|d2F|M> \ (M\dV\N'}  I2
E n ‘ —  E m

“  3 nm*
Z k n m \<M\p \N}\* \
N  Jo

■;os2 rj (k )
Ï N A f  +  k
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This can be justified by relativistic considerations35, and a cut­
off of the same order can also be found by taking into account
the recoil of the electron36. Since both effects have been neglected
in the present treatm ent, it is not astonishing that our result is
wrong. On the other hand, we have not used any subtraction
prescription ad hoc, but Bethe’s subtraction of the free electron
self-energy is here automatically perform ed by the elimination of
the proper field A°; that means that it is implied in the subtraction
of the self-action of the electron. Moreover, the convergence factor
cos2 rj is obtained by using in the zeroth approxim ation the field
quanta that are adapted to the unbound electron.

The line between two levels EM and EN suffers a frequency
shift A m — vltf- This shift was shown by Oppenheim er37 to be
divergent on the usual theory. In  fact, it exhibits the same diver­
gence as the shifts A  themselves, since in general the divergent
terms do not cancel. Serpe38 showed that it is finite on K ram er’s
theory in the special case of a harm onically bound electron.

Unfortunately his proof has no general value, because for the har­
monic oscillator the shift is actually zero, as was shown in ch. II. (It
can, of course, also be deduced from Bethe’s expression.) In fact, in the
general case he should have found a logarithmic divergence, because of
the omission of the A2-term. It may be added that he only found the
first term in (74) and cut off the divergence at k =  0.

41. For the phase shift |  one finds from (77)

tan  z = ------ * moW 2 *  (80)
w - e m  -AM + i r M

where
9  .2  M  — 1

Km l \<M\p \L>\> cos* , (KML)

— 2  K \jL fML.1% H •

This “ imaginary level shift” is caused by the dam ping of the
state M due to transition to lower levels L, the ground state ex­
cluded. The transition to the ground state does not give rise to
an imaginary damping term, because in our stationary state it is
balanced by transitions from the ground state. It does give rise,
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though, to a widening of the level in the same way as the width

^ mo Zmo/2 * =* I'm
resulted from (57).

The imaginary term in the phase shift is again associated with
a cross-section for absorption (App. B)

________ I'm  I'm______ _
ffa== co*(a>-KM0y + ( r ° M+ r My

where KM0 — KM0 +  A M — A0, co = W —E0 — A0. In this expres­
sion the total line width

M — 1

I 'm  — I 'm  +  I 'm  ~  £  Km l  Ïm l I^ k
L  = 0

appears. Adding the cross-section for Rayleigh scattering one ob­
tains the total cross-section

a  _  I 'm  I 'm
co2 (ew — Km o)2 +  I'm

This is the Breit-Wigner formula. Indeed, in our case the Raman
radiation plays the same part as the y-ray emission in the case
of neutron scattering. Thus, the Breit-Wigner formula is contained
in the above expression for the phase shift:

tan |  =  /*ƒ/( ft) KM0 +  iT M).

Clearly / j f  is just the sum of the residues of the integrand in (79),
multiplied by — n. I'm is obtained by omitting the residue at Kmo-
Hence the “complex level shift” Am — i T'm  in (80) can be found from
(79) by taking the principal value at Km o an(l avoiding the other poles
by shifting the integration path into the lower half plane. If the denom­
inator in ffa and ut is written as IW — Em  — Am  +  i I ’m |2> the total
complex shift Am  — i T'm of the level Em  appears; it can be found
from (79) by shifting the whole integration path into the lower half plane.

42. Once A is found, the solution is immediately given by
(76). cM may be used as an arbitrary factor, and on writing

- < 0 | d V | M > c M =  C,
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(76 c) takes the form (51). The radiation field associated with
the singularity in these coefficients can again be described by a
classical analogue (54), which instead of (55) now becomes*

A (() = rmco sing

From  this follows for the ingoing energy per unit time

I  — (2 xm )—11 sin 11—2 e2 *̂ | C |2 .

From  (7 6 b ) one finds the coefficients cL( i ) ,  which determine
the Ram an radiation. The outgoing radiation with frequency wL
can be described by a classical field (comp. (62))

Al (0  =  %*—  %ei0>L(r- t)- irl{,0,) ( L \ d V \ M y c M.
r m  (oL 1

The outgoing energy per unit time is found to be

IL =  (2 / xm)  |<L | d V \ M}  cM |2

. K - M L . f M L \  . f. |2 — 2 Ë" r
=  4 g 8 f  - l Sin^l e L

% 0  /M O

(81)

A nearly identical expression was found in 33 by extrapolating
the form ula obtained for non-resonance. However, the influence
of the damping of the level EM, exhibited by the imaginary phase
I", could not be found in that way.

Let again (see 34) aaL be the partial cross-sections and J  the
intensity of the plane wave whose electric-dipole part has an
ingoing energy I.  Then (81) can simply be written

I l I ^ M L  — a a L ^ I ^ M 0 ’

showing that for each emitted Ram an photon an incoming photon
is absorbed. (81) has only been derived for 0 <  L  <  M,  but for
L =  0 it takes the form

ƒ„ =  4 | sin 112 è ~ I  =  osJ,

which is obviously true if I0 is interpreted as the outgoing energy
of the Rayleigh scattering.

* The difference with (55) is that £ is now complex.
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In the custom ary picture39 the scattering in resonance is
visualized as the absorption of an incoming photon—after which
the atom is in the state M—and a subsequent spontaneous emis­
sion of a photon, either with the same frequency KM0 or with a
lower frequency KML. Now, an atom in the state M  would spon­
taneously emit waves with frequencies KML, whose intensities are,
according to 30, K\jLfMLl x . The fact that this is just proportional
to the Ram an intensities IL in (81) is the justification for the
custom ary picture. For the probability of the atom being in the
excited state M  one then has to take

Since atJ/KM0 is the num ber of photons absorbed per unit time,
1/2 r M has to be interpreted as the average time during which the
atom rem ains in  the excited state M.

However, this picture fails to m ake clear that the sum  of the
frequencies which the atom emits on its way back to the ground
state is exactly equal to the incoming frequency, as shown in
3640. Neither does it represent the interference phenom ena cor­
rectly; bu t we shall not discuss that here (cf. 51)41.

43. In  this section it is shown that the omission of the terms
B'n n  cn  in (73) is equivalent to using the approxim ation (70)
for the resonance region.

For each particular N  let Zffi) be the orthogonal m atrix that
transform s the m atrix k^ ^ — to principal axes:

Here k m denotes the new eigenvalues. Clearly Z ff i  =  ónm +  Oe2.
Now if the c$  are transform ed by

1 2 .-2  r
K m o  / mo 2  K m q F m

In y n m __
Kn ^ ( N )  n .

tnn' r y n 'm __ /. >?nm
lN N  ^ ( N )  —

■n _  y n n ' - n ‘
CN  —  -*(N ) CN>

then (73) becomes, omitting terms Oe3,

(E n  — W  +  kn) cnN - A x  cM +  C$n  cjv •

(82)

(72) rem ains the same equation with c’̂  instead of . Hence
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the omission of the term B ^ ,c%  in (73) is justified, provided the
unknowns are replaced by the transform ed ones c^.

Consequently the equation (77) for A is still valid, because
it does not contain the c’s. However, the connection of A with
the phase shift between ingoing and outgoing radiation is altered.
Indeed, since Bj$v vapies slowly with n and n ', the theory of A 1
can again be applied, and for Z ff i  is then found a m atrix of the
type (A 3). Hence, according to A 4, (82) is a transform ation to
new quanta whose phase is shifted with respect to the old ones.
W ith the m ethod of A 7 it is found that this additional phase
shift £n  is given by

tan  I jv =  — 71 B n n  ( wn  . % ) ■

Since the Rayleigh radiation is described by the c", the total
phase shift for the coherent scattering now becomes £ =  r? +  f  +  !o
(rj for the unbound electron, £ given by (80)). Using the explicit
value of Boo (<». ft>) one finds

tan i 0 = \  ' Aj^o/Wo ^ m o / mo

x  ^ T m 0 *2 — 2  x co-\-KM0

These are just the terms that are omitted in 0(co) by using the
approxim ation (70).

Combining the results one obtains for the total phase shift

y __ 0)3 \  ' ______ [NO_____ _
4 ~  co2- ( K 'N0- i W

This expression is correct to the order e2 for all values o f co. As m en­
tioned in 34, however, the imaginary terms of the order e4 are also
needed for the correct value of the total cross-section. They cannot
be found so simply by a combination of the form ula for non­
resonance and those for resonance with the different levels. The
right expression is found in the next chapter.

Dan.Mat.Fys.Medd. 26, no. 15. 4
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Chapter VI. General Result.

44. In chs. Ill and IV we have considered the case where the
incoming frequency (o does not coincide (within the line width)
with one of the atomic frequencies; whereas in ch. V the region of
resonance was considered. Both cases had to be treated separately,
because for an explicit solution of the Schrödinger equation either
of the simplifications mentioned in 30 had to be employed.
Fortunately the regions where these approximations are valid
overlap, so that for each value of <o a scattering formula could
be obtained.

Nevertheless there are some difficulties in linking up these
expressions. It is not clear how the imaginary damping in the
denominator of the resonance formula (80) merges into the imag­
inary term in the non-resonance formula (65). Moreover, the latter
has different values on both sides of the resonance region, cor­
responding to the disappearing of one Raman line when the in­
coming frequency drops below an absorption frequency. There­
fore it is of interest to find one formula for all values of to—which
is the purpose of this chapter.

In the choice of the approximations to be used we shall be
guided by the calculations in the previous chapters. All those
terms which were shown to contribute only to the small level shifts
will be omitted, since we are not interested in them now*. Then
it is possible to write a general equation (96) for the phase shift,
which comprises the previous results, and in addition describes
the transition between them.

45. We take again the simple case of the previous chapter,
namely a separable potential field (71). Furthermore we suppose

Em W <  Em + 1 and EM + 1 — WO) Aj  ̂+ 1>0/2 x,

but we do not exclude the width of the level EM. The subscript
L will again be used for levels between E0 and EM.

Again c0 (A-) will be of the form

Cb(*) =  y«(*) {(* -  « r 1 +  M  (* -  <*>)}
* Consequently, from a formal point of view the calculations of this chapter

could also be based on the usual Hamiltonian.
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and cN(k ) for N  >  0

cN(k)  =  yN(k)  {(k  — coN) 1 +  (£  — co^)}. (83)

W henever in the Schrödinger equation cN (k)  is integrated over k ,
the term  with (k  — co^)” 1 gives rise to a principal-value integral.
Since we have seen in the previous chapter that these integrals
are of im portance only for the level shifts, they will be omitted
here. The ó-term vanishes for N  >  M,  so that in the summations
cN (k)  m ay be neglected altogether for N  >  M.

Thus, writing for brevity

Yn (°>n )  =  YN’ =  rN , Ao =  A, AN =  in  ( N  >  0),

one obtains from (38 a) and (38 c), analogous to (45),

< N \ d V \ N ’> ,  . . .  N
CN ------ ---- ü----- tt7---rN’ ̂ N' YN' a)e n — w

civ(k>k')  =  — e< ^ _ |tt I I I ^ t (k)  An - Yn ‘ & (k'  — toN,). (84 b)
W TAT

The last term  in (46) contributed only to the level shift and there­
fore the corresponding term  in the expression for cN( k , k ' )  has
been omitted here. Inserting (84) into (38 b ) one gets an equation
of the form

(Eiv — W +  ky cN (k)  =  r ( k ) F NN. (k)rN- Aw- yN-
(summed over N ' from 0 to M).

The complete expression for FNN. (7c) is not required, because we
now substitute (83) on the left and take k  =  a>N . It turns out that
Fn n - (cojy) is the com pound m atrix element , which occurred
in the Ram an effect (see 32 and App. C), and we find

Yn  — XN ®NN' ̂ N‘ Yn ' ■ (85)

Now (85) is a set of homogeneous equations for the y#
( N  =  0, 1, • • •, M) with one adjustable param eter A0 =  A. The
condition for solubility is, writing rN xN> =  TNN.,
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1 - A T oo
- A r 10

— in T 01
1 — ij iTjj

— in T 21

— in T 02 •
— in T 12 .

1 — .

• • — m
• •
• • — iJtT% m =  0 .(8 6 )

— ii'iWO 1 — i™TMM

This is a linear equation for A, or for tan £ =  — n /k . W e shall
now show that it contains the formulae (65) and (80) as special
cases.

46. First, consider the case that co is not inside the line width,
so that all are small, namely Oe2. The evaluation of the
determ inant (86) with omission of the terms Oe2 is trivial and
yields

0 =  1 — A Tqo =  1 — kT^CDyOm,

which is identical to (53). Retaining also terms of relative order e2
one finds

1/A =  700 +  i n ( T 01 T10 +  T02 T20 + ■ • • • +  T0M TM0) ,  (87)

which is identical to (65).
Secondly, let W  be so near to E M that in the sums over M

the terms with W  — E M =  coM in the denom inator are large and
the other terms negligible. Then, according to App. C, one has

t n n ' =  — uN Un 'I<°m  with uN =  rN <iV|dF|M>. (88)

Instead of evaluating the determ inant (86) it is more convenient
to solve (85) directly. These equations are now

- wm 7 o =  |« o |2^y0 +  ^ ' i n - u f . y L.,

~  %  Y l  —  UL  Uo t y o  +  UL  • i j t  • UL ' Y v  ■

From  the second line:

— (oM (u y ) =  (uu) u§ky0 +  i(uu) ( u y ),

with the abbreviations

M  M
(uu) =  u£uL , (u y ) =  u£yL .

£=■1 L  = 1
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This, together with the first line, makes two homogeneous equa­
tions for y0 and (uy),  which yield for the parameter X

This equation is identical with (80), but for the level shift, which
has been neglected in the present chapter.

47. The equation (86) for X is still not general, because it
only holds between the levels EM and EM+1. When W drops
below E , one row and one column have to be obliterated in the
determinant, and when W increases beyond EM + 1, a row and
a column have to be added.

This discontinuity is related to Stokes’ phenomenon for asymptotic
expansions*2. Indeed, our boundary condition that the radiation with
frequency com should contain only outgoing waves, refers to the asym­
ptotic behaviour of the radiation field at large distance. The decomposi­
tion of the field in ingoing and outgoing waves is practically unique
only in the wave zone. When com tends to zero, the wave zone recedes
to larger and larger distances. When it is beyond the observing apparatus,
the boundary condition is no longer an appropriate expression of the
experimental conditions. In that case the scattering centre and the
observing apparatus cannot be treated as separate systems. (In actual
experiments, of course, these long waves would not be detected by the
spectroscope.) Consequently, there is a . “region of discontinuity” :

<oM  ~  (distance scattering centre—observer)—1 ~  10—6 K M0 (90)

where our formulae are physically insignificant.
It seems that there are also mathematical difficulties, because the

neglected principal-value integral

might become large for small o>M. However, it is clear from (83) in con­
nection with (61) and (37) that yM (k) contains a factor 4' and can
be expanded for small k  in the form

tan |  =  —-  =  —
*  toM + i ( u u y

(89)

coM ) dk
'0

yM (*) =  k  *(<*0+  < h * +  • ’ •)•
Now we have
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and the higher terms are certainly finite for co = 0; hence the integral
is always a small quantity, even when co is small.

The above considerations are only valid if the level E is sharp,
i. e. if the state M is metastable. If it has a finite width r ' then the
expression for cM (k) contains a factor (k — coM — i i ^ ) -1  instead of the
^-function (see 36), and no discontinuity arises.

Accordingly, (86) can be written in a more general form by
introducing a function p(m) defined outside the region of dis­
continuity (90) by

p(co) = n  (co > 0), p(co) =  0 (co <  0);

inside this region it is necessarily indeterminate. On replacing
An  in (85) by p(coN) one finds instead of (86)

1  A  Too ipi T o i  —  ipi T02 • • •

- X T 10 1 - i PlTn  - ipaT1 2 • • • =  0 , (91)

where pN =  p(coN). It is clear that for EM < W < E M + 1 this
reduces to (86).

For the phase shift in resonance one now finds from (91)
the same formula (89), but with

00

(uu) =2^p(coL) u luL.
L  = 1

Owing to uM =  0, this result amounts to exactly the same as
before.

48. Although (91) completely determines A as a function of
co, it is not yet fully satisfactory. It is unduly complicated by
higher order terms, which are meaningless since terms of the
same order have already been neglected in obtaining (91) from
the Schrödinger equation. As a consequence the results of the
previous chapters could only be derived from (91) by rather
lengthy manipulations. Therefore we shall now transform (91)
into a form that resembles more closely the formulae of the
previous chapters.
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For Tnn. we use an expression similar to (88), but more
complete:

_  s t un un -* j  , ,
TNN' — /  . _  » U~N ^  «>NrN <N I P I «/> ■ (92)

J  J

Here the first summand in ( C l )  is taken into account, but the
second one has still been omitted. It can easily be added after­
wards, since it does not give rise to resonance. (85) now becomes

Yn  =  ^ n’ un *̂ n’Yn' »

from which, writing ZN. u^.XN-yN. e=  (Ojy'j, we get

m j y 'j =  — Z n i  un * ̂ N uN y'i-

This is a set of homogeneous equations for the y j ,  whose charac­
teristic equation determines X ( =  A0) :

Det. || cojöjj +  X Uq*Uq +  i (zz'V) || =  0.

Here (uJzzJ) is defined by

(u-V) = p(coL) u i*u l.
L = 1

The determinant can be expanded in powers of X and it is
easily seen that only the zeroth and the first power survive. With
the abbreviation coj.+  i(uJuJ) =  (o'j one finds

i(u}u0)
z(u2u°)

+
U°0* «2 I (u° U1)

a>'i
uj|* zzJJ i (zz2 u1)

i(u°u1')
(Oy

i(u iu1')

i(u0u.2)
i(u1u2)

a>i zzJJ* zzj z (tz° zz2)
! (u1 Z Z ° )  Z z J *  Z i j  Z '(u1 U 2 )

I (u2 u°) zz£* zzj Ct)2

The determinants can easily be worked out if real terms of
relative order e2 and imaginary terms of relative order e4 are
omitted. After dividing by co0Wy(o2 . . . one thus gets
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! = _ V 7 “S y  [ | V'pCcoi.) V 1 ̂  *Û.û *u»f
f t) \T  . Ö ) v '  CO XTN  "  L  N * N ' .  *  *

(On  =  %  +  i -2z, jo ( o>l )  ul  * ul •

(93)

In the approxim ation for resonance (with the level fsM) this
equation reduces to'

1 =  «oM UpM* =  * W mo/2*
A <WM % + i ^ M

It should be noted that the imaginary term  in <wM is equal to
only inside this resonance region.

Outside the line width the denominator in  the second term
of (93) can be replaced by a>N-(oN ; in the first term  it can be
expanded, yielding

—  ------------------ h  1 p i p o ----------------a--------------•
N  °JN NL WN

This imaginary term  just furnishes the terms with N  =  N ’ that
are missing in the double sum  in (93). W ith the aid of (92) our
general equation (91) thus reduces to (65) outside the line width.

W hen Kramers and Heisenberg (ref. 31) constructed their
scattering formula, they considered resonance fluorescence as
partly due to spontaneous emission by the excited atom (cf. 42).
This gave rise to the question how this radiation combines with
the Rayleigh scattering that is also present outside the line width.
The present treatm ent shows that, basically, there is only one
kind of scattering process, which in resonance has some features
in common with spontaneous emission.

49. The equation (93) has been derived under certain simpli­
fying assumptions, but it can be generalized, without performing
any new calculations, by following up the analogy with the results
of the previous chapters.

1°. The terms that have been dropped when writing (92) can
be supplem ented by comparing (93) with (65). Both equations
can be combined into

tan |  =  — nr(co)2 {<900 +  i E p  (a>L )  x (coL y  @0l @lo} -
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Here the prim e means that all denominators coN are to be re­
placed by

<o'N =  coN +  i2Jp((oL)r(coLy ( o l \< N \P \L y \ ^ ;  (94)

and the bar means that all terms with denominators a>£  are to
be discarded:

^ L O  =  ^ o L ^ o - ^ ( ® , « 4 '/ < ) |< 0 |P |^ > |‘ |<Ar|P|L>|*. (95)

2°. The assum ption (71) of the potential being separable can
be dropped if also radiation with different polarization direction
is taken into account. From  (65) it is clear where polarization
superscripts have to be added.

3°. Degeneracy can be accounted for by writing L instead of
L,  following the example of (65). The result is an expression for
the phase shift £m of the radiation with frequency eo and polariza­
tion w,  caused by an atom in the state N  =  () ,/jl — n0, viz.

U m f „ -  - « * ( < » ) • { « £ ,w + i ^ p ( » n » ( ® n * | : ^ ë g Q .  (96)

The sum over L =  (L,[i)  includes L  =  0 , [i ^  (t0, bu t not the
initial state L  =  0 , [jl — ^  (cf. 35). In (94) one should now
write co'n,/i  =  w n  to exhibit the dependence on /j,,  and P rather
than P  to account for the three directions of polarization. Then

b £ , n  =  “ w-v
| ^u) 1N') <N'[Pl, |N )  <0^0| j >p| N') <n ' I Pu,| n >]

- < % '  ,  «  +  * * ■ *  J ^ *

4°. From  ch. Y it seems that also the level shift can be embodied
in (96) by a slight alteration of the definition of wN . However,
the interaction with the electromagnetic field constitutes a per­
turbation which splits up each degenerate level into a num ber
of components with distances of the order of the electromagnetic
level shift. The m atrix elements of this perturbation follow from
(73) and (79); they are for the level EN (see App. C)

r (" A ’) W M r | N - > < N ' | r | i V > \ g ^ < M : .  (98)
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Let us suppose that for each level this perturbation is cast
into a diagonal form, with diagonal elements A N say*. Then
each state N ,jj, has the shifted energy value EN +  A N „ =  E'n
and these shifts can be taken into account by putting

°>n =  mN~~ — A 0/iJ  +  T(ö,x.)*0,i  | <N | P | L> |*. (99)

The formula (96), together with  (97), (99) and (95), describes
the scattering by an electron in an arbitrary field o f force, for all
values o f a> except the region of discontinuity (90). The imaginary
terms are given to the order e4, so that it yields the correct values
for the cross-sections as, aa, at .

50. The form ula (96) will now be com pared with the results
obtained by previous authors. Outside the line width (96) was
shown to reduce to (65), which according to 33 is equivalent to
the Kramers-Heisenberg form ula. Actually our result is more
restricted, since it has only been derived for scattering by an
atom in the ground state. The Rayleigh scattering is described
by the phase shift (57) and the Ram an scattering by (65). The
corresponding cross-sections are (58) and (66).

The dispersion in the case of resonance has been treated by
W eisskopf43 and by Breit44, using tim e-dependent perturbation
theory. This method consists of taking an initial situation with
the atom in  the ground state and some radiation present. Since
that is not a stationary state, other states are built up in  the course
of time and from the rate of increase of their coefficients follows
the probability for scattering of the radiation present in the initial
situation. Because of the difficulty of solving the resulting set of
first-order differential equations, they had to resort to a simplified
model with only two possible states for the atom. Hence the Ram an
radiation does not enter into the picture. Of course, also the line
shift had to be neglected, because it would be infinite.

W eisskopf43 first calculated the Rayleigh scattering in  re­
sonance and found a line width T 0 (in the notation we used in
41), corresponding to the transition from the excited state to the
ground level. Our additional line width T ' is due to the transition

* In case of a central force, when there is no other degeneracy than with
respect to the direction in space, this is automatically fulfilled if f i  is the magnetic
quantum number.
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probability to other excited states, which he had omitted. Con­
sequently his result is equivalent to (80), if in the latter A M and
r'M are dropped.

It should be noted that inW eisskopf’s form ulae the frequencies
of the incoming and the scattered photons m ay differ by an
am ount yA (his notation). The reason is that he considers a
state of the whole system which is not stationary, but whose
energy has an uncertainty yA. That in our stationary state treatm ent
such a quantity does not occur, may be considered as an advan­
tage, because it has no bearing on actual observations.

Breit, in his review on dispersion44, gives the same calcula­
tion of the scattering in resonance. In addition he analyzes the
behaviour in time of atom and radiation field after the moment
when the interaction is switched on. Again this is im m aterial for
actual scattering experiments: at most the decay of an excited
state can be observed by specially designed experiments45, but
not the decay of the initial state of the whole system.

W eisskopf43 also gives—without calculation—a form ula for
the resonance scattering in the case where more levels are present.
This result is practically identical with ours; only the width of
the initial level does not appear in our form ula, because we sup­
posed it to be the ground level. He also omits the width of the
final level, just as we did (except in 36).

In a later paper46 W eisskopf obtained a general form ula by
writing the Kramers-Heisenberg form ula for the induced dipole
moment, and adding terms iT  in the resonance denominators.
This form ula is correct when terms of relative order e2 are dis­
regarded. However, since the imaginary terms Oe4 in this form ula
are not correct, it cannot be used to compute the total cross-section
for instance, from the polarizability by means of the relation
(B 12)*. Therefore it was impossible for us to generalize the
expression (57) for the phase shift in this simple way.

Ham ilton28 derived the usual results for emission and for
scattering outside the line width by solving the time independent
Schrödinger equation. For the physical interpretation, however,
he m ade use of time dependent states, which he obtained by

* Of course the total cross-section can be found by computing the partial
cross-sections for Rayleigh scattering and for all Raman lines:

at =  °s +  -̂ L °aL‘
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superposition of the stationary solutions. In his calculations again
only one higher level is taken into account and, of course, the
usual divergences occur.

51. The problem  of finding the states of steady scattering by
arbitrary atoms, which Kramers2 raised in 1948, has now been
solved. Nevertheless the present theory of emission and scattering
is incomplete on several points, even within the limits of non-
relativistic dipole approxim ation. We here list these points in  the
order in  which they seem to be logically connected.

1°. Second order emission can be described by a superposition
of stationary states, chosen in such a way that at t =  0 the whole
radiation field vanishes. Hence one has to find linear dependence
relations of the kind (A 21) for quantum  states whose phase shift
is given by (96). Since this is just a m atter of algebra, there does
not seem to be any fundam ental difficulty in  describing in this
way the two-photon emission studied by M. Göppert-Mayer47.
For the emission of three of more photons, one has first to find
the expression for the phase shift in which the singularities in
the coefficients cN (k ,k ',lc " )  etc. are taken into account.

2°. Higher order scattering processes, in which the incoming
photon is broken up into three or more photons, can be calculated
along the lines of 36. The result m ay be expected to be identical
with that of Güttinger48 and W eisskopf46, except that the line shift
is included. However, processes in which several photons are
simultaneously absorbed and one or more photons emitted, can­
not be treated readily, owing to the incoherence of the incoming
photons. It is true that by putting in (85) AN =  — n  cot £N (instead
of taking all A’s but one equal to in') one obtains stationary states
containing several ingoing waves with different frequencies. But
these waves have definite frequencies coN and even definite phase
relations, and therefore do not correspond to an incoherent mix­
ture of incoming photons. Hence it is necessary to use the many-
photon states for the description of the incoming field and, ac­
cordingly, to introduce adjustable param eters A into the singul­
arities of the coefficients cN ( k ,k ') ,  cN( k ,k ' ,k " ) , '  • •.

3°. Scattering by an excited atom has not been treated, be­
cause it cannot be described by a stationary state. It seems pos­
sible, however, to construct an appropriate decaying state in the



Nr. 15 61

following way. First one has to find the stationary states describing
the scattering of two photons, one with the frequency co of the
incoming radiation and one with a frequency k  in the neighbour­
hood of the absorption frequency, KM0 say. These states—for dif­
ferent values of k—have to be superposed in such a way that at
t =  0 the radiation with frequency in the neighbourhood of KM0
vanishes. Since co has a fixed value for these states, they have
different energies co •+ k  +  E0 with a peak in the neighbourhood
of (o +  E m . Consequently the superposition will describe a non-
stationary state with ingoing radiation of frequency co, in which
initially the atom has the energy EM.

4°. The classical analogue o f the quantized electromagnetic field
has only been used for one-quantum  states. It is desirable that
for the many-photon states a similar classical picture will be
developed. The solution of this problem  is not obvious, but pre­
sumably it is possible to describe every state of the photon field
by an appropriate mixture of partially coherent classical waves.

5°. Interference phenomena in the current tim e-dependent
theory require special calculations49. In the present theory, owing
to the close resemblance with the classical picture, they can be
analyzed immediately. Indeed, the Rayleigh scattered waves of
two scattering atoms are both coherent with the incoming light
and therefore also with each other. However, if the ground level
is degenerate, incoherent scattering is also possible (see 35) and
the two scattered waves will only be partially coherent50. The
interference of Ram an light can be studied in the same way, but
a complete account is only possible after the problem  4° has been
solved.

Appendix A.
A 1. The purpose of this section is to find the principal axes

of the quadratic form

^  x nx n' ^  (,ln ^nn '  d "  a n a n^) >

where for definiteness tn and «„ are supposed to be real. The
equation for the eigenvectors is

sxn E Ann-xn' tnx n ccnEccn'Xn' . (A 1)
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F rom  this follows

x n = anf}j(s ■ f„) w ith p =

an d  by  substituting the form er in  the latter one finds the ch a rac­
teristic equation  for the eigenvalues

y
« n 1 . (A 2)

T here is one rea l roo t betw een each p a ir of successive tn . If
there is only a  finite n u m b er of tn , there  is one root larger th an
all tn , and  there  are no other roots. If  there is an  infinite nu m b er
of o ther roots m ay  occur, e. g. com plex roots.

To each root sv corresponds an  eigenvector Xn:

X n v —  (Xn PvfcSp— tn) t

w hich m ay be norm alized  by  a suitable choice of /?:

1

Pv

V -7__ <
<£— / (sv — tn)2 5

Ctn

S tn s=sv

( A 3 )

(A  4)

F rom  the orthogonality  of the m atrix  X n v follow

5
Öfiv

(Sj) tn)  ( Sfi tn) fiv ^ v 1 (%  tn)  (%  tm) a i

T he transfo rm ation  to p rincipa l axes takes the form

Xn  =  X  X n y \]v > X  Ann XnXn  =  X Sy IJy \

an d  in  p articu la r one has

X  X n va n =  ftv> X  CCnXn — X f l y l j v

It is useful for the calculations in  22 to associate w ith this
transfo rm ation  an  analytic function of s

^--- 1 2
F(.s) =  y

5 fn

y
p i <5„;

(A 5)

w ith the following properties. It h as  poles tn w ith residues
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The characteristic equation can be written F(s) =  0 , and the
normalization constants are given by ft»2 == — F '(sv~).

A 2. For the transform ation of (11) one has to take tn =  4  =
(jin /L )2 and un =  If for s we now write k 2, the charac­
teristic equation becomes (using (9))

m0 X 4
k2~ vV k 2 4 (*2- 4 ) ‘

(A 6)

The latter form of the equations has been chosen so that it is
possible to put dn — 1 (transition to the point-electron). Subse­
quently, the series can be sum m ed:

m  “  “  2Y k{coikL~ i i )

and for large L  this reduces to (15).
With the abbreviations Ln and ijn according to (14) one finds

from (A 4)

m0

Pn

\ d (  V  4  V̂ 4A1 e2 L n
j[2j -JLr+ A  -f =0— *—■ (A?)

L * \  " v '  3 s in  r/«

The transform ation (12) is according to (A 3)

x  ' =  2 sin rjn. =  2 cos rjn.

I'LLn’ (4 ' -  4 ) * 1/LLn- (4  -  4) ‘

Finally, using (A 3), (A 6) and (A 7) one finds

S T ’fn ' =  V~’ 4 Pn’ Pn' 1 /  4 e2 COS ^  .

^  4 l / m o 4 ~ 4  ^  K 3L„, P" '’

which completes the proof of (13).
W ith k  =  ik' the characteristic equation (15) becomes Tnh

L k ' =  k '/x ,  and this equation has one positive root very near to
x . This eigenvalue ik' fa ix  will be denoted by k* and the cor­
responding jj# is defined by rj* — Lk* an iL x . Hence

cost]* Csh L x  eL x , L* =  L — cos2rj*/x ss* ■— e2 L * /4 x .  (A 9)
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In all summ ations over n  this anomalous term  must be included,
i. e. n also takes the value *.

A 3 . For the transform ation of (21) one has to replace tn
and un by k^ and Kdv, the subscript v being used to rem ind that
the value v =  0 is included. W riting for the eigenvalue pa ra ­
meter ft)2, one finds the characteristic equation

1 V 7 dl 1 V - » 2 cos2 T]n  ■ - v
—2----72 — 2 /  “7 ---- 2—"72 • (A 10)

K ~ K  m ■“ T ' xLn(0 —k^

In order to evaluate this sum  we now construct an analytic
function of <w with the same poles and residues.

First we define the function r)(k) by

c o s V(k) =  y = = .  Sinr,(k) ~  ta* , ( * ) - £ . '

so that r\(kn) =  r]n . Then the equation (15) for the kn is equivalent
to tan (Lie — rj (ft)} =  0 and one can easily verify

+ 00

I
-*-00

cos2 rjn
k n (ft) Ifi)

cos2 rj (o)) xft)
tan  {L co — ̂ (eu)} x2 +  e)2

( A l l )

The second term  is required for subtracting the additional poles
due to cos2 ^(co). After some calculations one finds from (A 10)
and ( A l l )  the equation (23).

Furtherm ore, from  ( A 4) with the aid of ( A l l )  is found after
laborious calculations

= ]/2xlL'v (Kla>v) s in H v, (A 12)
where

L ' =  L — sin £„ cos £„/<«,, +  2 x A 2 sin2 Cv/ft4 =  L  — (d^/d tw )^ .

Substituting all this in (A 3) one finds the transform ation matrix
(now denoted by F )
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r  _ * * *  * " i .* C i_ ± _ '  („ * 0)
j/L f i

= i ^«n^ = l / _ L _ = £ = = .
(A 13)

Again, putting co =  itu' in (23) one finds an imaginary root
to* ix ,  which is not quite the same as the root k* for the free
electron. The values of Ym and Y0* can be found from (A 13)
by taking, like in (A 9),

£*' =  iLx, Li =  - e L*/4x.

The values of Y%v are found by means of (A 9).
When the second procedure is applied (in 18), the sum in

(A 10) does not contain the term with n =  * . The corresponding
terms in ( A l l )  have to be subtracted on the right and the result
is that the sign of the last term in (A 11) is reversed. One then
finds (27) instead of (23), and both (A 12) and (A 13) hold,
provided L' is replaced by

2 K2 \ 2
ft)v +  H2/

Here the derivative has to be computed from (27), but its explicit
expression is rather complicated.

A 4. In this section it will be shown that the transformation
(12) is indeed a transformation to phase-shifted light quanta, as
stated in 13. For this purpose consider the boundary problem
given by

v"(r) +  k2v(r) =  0, u(L) =  0, n'(0) +  xu(0) =  0.

The solution is trivial and furnishes the normalized eigenfunctions

» n ( r )  =  l/2 l L n sin (knr — rjn),  (A 14)

where kn, r]n, Ln are again given by (15) and (14). In particular,
for x =  00 one finds the orthogonal functions

u n O )  =  K 2 / L  s i n  v n r -
Dan.Mat.Fy8.Medd. 26, no.15. 5



66 Nr. 15

Both orthogonal sets are connected by an orthogonal transfor­
mation

yn 0 )  =  ] L B n n 'u n - ( r )> B n

The integration can readily be performed, and Bnn- turns out to
be equal to Xnn, given by (A 8). This proves (18).

A 5. W hen the equation for the phase is more complicated,
as e. g. in (23), there is no corresponding boundary problem.
Nevertheless, if a phase function £ (a>) is given by

tan £(co) =  (ca/tt) <P(<o),

we m ay consider the set of functions

wn(r) =  V2iL'n sin (ea„r — £„),

where £„ =  £(eon) ,  and a>„ is determined by the condition
wn(L ) =  0. For convenience, a factor with

L'n =  L  — (d£/dco)a)n (A 15)

has been added, but that does not m ean that the functions are
normalized. They can be expressed in the complete orthogonal
set vn (r):

wn(r) = £ C m t ' V A r ) , Cnn' =  \u > „ (r) iv (r )d r ,
•̂ 0

(A 16)

and one finds readily

Cnnr
2 x sin £n sin rjn. |  _  1 )

a>l — &  \ ® ( w n ) j

For the harm onic oscillator 0(co) =  <w2/(&>2 — A 2) and

Cvn =  (knl(ov)Y nv =  (covlkn) { Y nv— )/2 x/Ln (sin rjnlkn)Yov}, (A 17)

according to (A 13)* .
In order to prove (26) we deduce from (25), using successively

(A 14), (A 17) and (A 16),
*) The same equation holds in the second procedure, where 0  is determined

by (27), provided the derivative in (A 15) is accordingly computed from (27).
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A' =  - S e  |/3 /2  Znv{vn(r)/knr} YnvP'v

=  —$ e |/3 /2  Z nv{vn(r)lwvr} CvnP'v —

— %e Znv V 3 x /L n {vn(r) sin rjn/knr} Y0vP'v

=  —$ e  [/ 3/2 Z v{wv(r)l(ovr} —

—%eZn  |/3  x/Ln {vn( 0  sin rjn/knr} Z v Y0vP'v ■

On the other hand

P =  P' =  eP0m3 =  e\/m ZYovP 'v

and with the aid of the relation

(A 18)

1 E Z 2 lL n { vn 00 sin Vn /*£} =  1 /* . (A 19)

which will be proved presently, (A 18) reduces to (26).

A 6. In  this section an identical relation between the in„(r)
will be derived, which proves that they are not independent. Let
0>(z) be a one-valued analytic function in the complex z-plane,
whose only singularities are simple poles and which tends to a
limit different from zero when |z| tends to infinity. Then

„ , v  sin {Lz —  C (z)} x sin Lz
G ( Z )  S 3  ---------;----- y - r ------- =  ---  . . . ------ COS L z

sin C (z) z 0 (z )

is also one-valued analytic and its only singularities are the zeros
of 0 .  The zeros of G(z) are the characteristic values <o„ and

the values of the derivative in these points are

G'(©n) =  L 'nls i n  L (°n>

Ln being defined by (A 15).
If J  is a closed path of integration that does not pass through

any point co„, then

1 P s in zx d z  s in a ix  V "7 s in wnL s in a)nx
2 n i  ]G (z)(z  — co) G (co) _ _  L n (co„ — a>)

v j

the sum  being extended over all u>n inside J . The integral on the
left vanishes for J - > o c ,  | x | < L .  Hence, with x  — L  — r ,

5 *
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sin &) x  sin wn L  sin wn x
G(co) L n (w — o)n)

sin fn sin (eon r ~ f „ )
r *  /  2  2 \  >Ln ’ wn)

(A 20)

the last m em ber being valid if 0  is an even function, so that
o>_„ =  — ft)„. Substituting o> — Qlt

0
V -'2sinC „sin(o)nr — f„) /  2 sin£„

^  Ln(Q ^ a > l)  2 j  Y L’n&l - a l*n w A c) (A 21)

In this way one finds a relation between the o>„(r) for each
zero of 0 .

Incidentally the relation (A 19) can be proved on choosing
0 = 1  (so that con =  kn, =  rjn, L n =  Ln) and taking in (A 20)
to =  0 and L  very large. Moreover, if in this relation n goes to
infinity, it becomes

2  (2 sin vn r)/Lvn — 1, (A 22)
which proves (17).

A 7. In this section the work of A 1 is reform ulated for the
case of a continuous spectrum. First suppose that the tn are very
dense on the real axis; introducing functions e(f) and a ( t)  by

+1 ^(^n)> a n ^ ( ^ n )  a  ( ^ n )  >

we suppose that they vary slowly:

d e /d f «  1, d a /d f « a /e .

Then, with xn =  a:(fn) l/e(fn) equation ( A l)  can be written

(s — t) x ( t )  =  a ( t)  J a ( t ')  x ( t ' )d t '  =  a ( t)  • /?.

The form al solution, given in 27, is

x ( f)  =  «(<){(«—/ ) - 1 — 1)}0, (A 23)

A being determined by

j ^ - d / ^ ; « ( s ) 2 =  1.tl s t
(A 24)
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For a justification we consider (A 2) for our nearly continuous
spectrum.

The (real) roots s are, from a macroscopical point of view,
continuously distributed, but microscopically the position of each
root between two successive t’s is determined by the equation
(A 2). Let s be the root between tm and tm+1, and put s =  tm +  a,
0 <  a <  e . Then

V _ f L = y 7 __ ___  y 1 i i \
^—J s ~ tn "  ^m+e/ 2 — " A  tm+ a - t n tm +  e/2 — tnJ

It is readily seen that the first sum on the right tends to a principal-
value integral

y ^ r ccjtfdt ? ? u(tYdt
fm +  £/2 —1„ y m+e/2  — t J s —t

which does not depend on the microscopical position of s.
The second sum is convergent, so that the higher terms, with

| n — m | >  N  say, may be neglected. The other terms cover an
interval 2 Ne,  which is small for small e, so that a\  may be
taken constant in it. Hence this sum can be written

ns e/2
2  7 t TC o=  am — cot — a =  na (5) cot — a .

e e e

Since the cotangent can assume all values from — oo to +  oo,
one can use instead of a the parameter

X =  — TTCOt na\s.

The characteristic equation (A 2) for s then takes the form (A 24)
with A as eigenvalue parameter to be determined.

The solution (A 23) can now easily be justified in the same way.

Appendix B.
Since we employ an expansion in multipole waves rather than

in the customary plane waves, the mathematical connection be­
tween both pictures has to be established. We shall first derive
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the relation between the intensity J  of the plane wave and the
outgoing energy I  associated with its electric dipole component.
Next we express the cross-sections in terms of the polarizability
a and, subsequently, we derive the relation between a  and the
phase shift f . Finally we shall apply the resulting formulae to the
classical dam ped harm onic oscillator.

1°. Let a monochromatic plane wave in the z-direction be
represented by the vector potential

A (f) =  9teeito<*-0. (B 1)

The expansion in multipole waves can be written

eei<uz _  Z lubluA la(r,ft,<p),

where the subscript / refers to the order of the multipole and u
distinguishes the different waves of the same order. Since the
multipole waves are orthogonal on the surface of a sphere with
large radius r ,  one finds the coefficients blu from

K  $ A/u (r,ft,<py dQ  =  $ e A lu(r,ft,(p) eitorco^ d Q .  (B 2)

W e are only interested in the electric dipole wave: 1 = 1 ,
u =  x , y , z ;  in this case we have

A lu(r, ft,<p) =  %eu sin cor/r. (B 3 )

Performing the elementary integrations in (B 2) one finds
blu =  (3/2 co) (eue) so that the expansion takes the form

+  • • • .  (B 4)
2 eor

Now the plane wave (B 1) has the intensity J  =  eo2/8 n ,
whereas the outgoing (and  also the ingoing) energy per unit time
in (B 3) is to2/12. Thus from (B 4) follows

J  =  (2 t»2/3 ri) I .

2°. Suppose there is a scattering centre at the origin which
has an induced dipole moment M proportional to the field strength
E of the incident plane wave:
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E  =  $ftE0e— E0 =  im tr, |

M =  SRM0e - i£U', M0 =  « E 0 =  i m «. J
(B 5)

T he w ork  done by  the field force p e r un it tim e is

EM =  ^i<o (E 0M j — E*M 0) =  i f t ) |E 0 |2 3 « . (B 6)

O n the o ther h an d , the dipole emits, according to a w ell-know n
calcu lation81, p e r u n it tim e the energy

/  =  (ca4/3) | M012 =  (o>4/3) | « |2 | E 01*- (B 7)

Since J  =  |E 0 |2/8 rc, (B  6) an d  (B 7) give respectively

<rt =  4 7i(o%a, as =  (8 ttcu4/3) | « |2- (B 8)

As the field is nów  singular in  the origin, its dipole com ponent
will not only contain  the regu lar dipole term  sin car/r,
cos cor/r. Therefore it can  be  w ritten

b u t also

„ s in (cor—0  _ j <
A (0 = 9 1 2 :C — ^ — ~ e  i(o t. (B 9)

T he singularity caused  by the dipole m om ent M has, according
to classical form ulae, the form

A =  — !(oM0e ~ i<oljr  +  finite term s,

so th a t one finds
— C sin  £ =  — i co M0. (B 10)

On the o ther h an d , the constants C an d  £ have to be ad justed
so th a t (B 9) contains the sam e ingoing dipole wave is (B 4 ):

Ce*£ =  3 e/2 (o. (B 11)

C om bining (B 5), (B 10), an d  (B 11) one finds

(B 12)

F rom  this, together w ith (B 8) follow82
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3 t ( l - e - 2if) =  — 9J
or

i tan C
1 +  i tan £’

3 n
° s ~  2Ö T 2 |1 _ ' e- 2 i f | 2 = 6 71

ft) 2

tan C 2
1 +  i tan f

ffa =
3 71

2 ft) 2
( l _ | e- 2 i f | 2) 3 Jr /  1 — i tan f  2\

2 co2 \ l  +  i tan f  /  ’

3°. For a dam ped harm onic oscillator the equation of motion is

R +  yR  +  K 2R =  (e/m)5RE0e - i<ö'.  (B 13)

The dam ping term  y  is the sum  of the radiation damping and
the damping due to energy dissipation by other processes53

y — y° +  y ' 3 y° =  2 e2o)2/3 m  =  o 2/x .

From  (B 13) follows in the ordinary way for the polarizability

a =  (e2/m) ( I f2 — <o2 — iyco)- 1 ,

and the phase shift can then be found from (B 12):

* „ eo8/*ta n f  =  —=----i . , ■co2 — if2 +  i y  to

This form ula takes the form (80) in the neighbourhood of the
resonance frequency. The expressions one obtains for the cross-
sections are also similar to those in 41.

Appendix C.
Here we shall derive a general relation between m atrix ele­

ments of the unperturbed atom, which has been used several
times to prove the equivalence of the results obtained by Kramers’
Ham iltonian with the usual results. If  H  is the Hamiltonian
P 2/2 m  +  V(R) and Q an arbitrary constant, one finds successively

P0 ( H - D ) - 1 PW =  i {Pv Pw — PV( H — Q J " 1 PW( H — 12)}

=  i { { H - Q ) P v( H - Q ) - 1 Pw- P vp j

=  |  i (PVPW- PvPw) + ( H - Q )  P0  ( H - i 2 ) - 1 Pw ( H — 12)

— \  {P„Pu, ( H - D )  +  (H - Q ) P„PW) .
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In the first term  on the right one can write

P „ P w -P vK  =  PvPw- P aPv-[Pv.Pw\
=  PttPw- P wPa- i d BdwV.

Hence, the eigenstates being labelled by

< N | d „ y |  J )  < j | d w v | M >

is found to be equal to

|  Z j  (Ej - E n )  « N  | P„ | J> <J | Pw | M> -  <N | Pw | J> <J | Pv | M>) + 1  <N | d„dmV\ M>
Z &

This identity will now be specialized in various ways.
1 °. On taking N =  M =  0 , v — w,  and £2 =  E0 +  co and

Q — E0 — co respectively, one obtains two identities, which added
together yield the equality used in (49).

2°. On taking M =  N, v — w ,  and Q — EN — k  one finds
the equivalence of (74) and (79). If  all three directions in space
are taken into account, one has to sum  over v, which amounts
to writing in (79) the vector P .

3°. In the same way, by writing N — N and M =  N,/c',
taking Q =  EN — k  and summing over v =  w,  one finds (98).

4°. Finally write the identity with Q = E M +  wM, and also
with Q =  En  — coM and v and w  interchanged; the sum  of both
equalities thus obtained is

(En - £ 2 ) ( E j - E m) +  (Em - Q ) ( E j - E n)
Ej - Q

<n | p „ |j ><j | p u, |m >.

y ?  (<N|apv|j)<j|droy|M) | (n I ^ f Ij x j I ^ f Im)]
j"1 |  E j — Em — (°m  E j  En  +  co M  J < N |d „ d „ ,y |M >

% )  E jy
<N | P„ | J> < J | P »  | M>

%  Ejm +  (Kmn +  mM) Kjn
<N | Pu, | J> < J | P„ | M>

Kj n  +  M
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Adding to this the identity

0 =  <N|PBPB, - P B,i>p|M> =  X j{< N lp.| J><J|i>u,|M >-<N |Pu,| J><j|P„|M>}

after multiplying with — — (2 coM +  KMN) , one gets on the right-
hand side

£Um (0Jm +  KMn )
y  [<n |p „|j><j |p w| m> <n |p u>|j><j |p , | m>|

|  Kj m  K j n  +  mM |
( C l )

This includes (60)—and also (49)—as special cases.
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STELLINGEN

i
De kanonieke transformatie die in hoofdstuk I van dit proef­

schrift werd toegepast, kan ook door middel van velden worden
geschreven, zonder tussenkomst van een ontwikkeling naar eigen-
trillingen.

II
Hoewel men moet toegeven dat de storingstheorie voor niet-

ontaarde toestanden niet zonder nadere rechtvaardiging op continue
spectra mag worden toegepast, is de bewering van P e n g dat zij
tot verkeerde resultaten zou leiden, onjuist. Integendeel, het kan
worden aangetoond dat zij nagenoeg de juiste uitdrukking oplevert
voor bijvoorbeeld de storingsenergie.

H. W. P  e n g, Proc. Roy. Soc. (A) 186, 119 (1946).

III
De berekening van Ma en H s ü e h  kan niet aanvaard worden

als een afleiding van de integraalvergelijking van H e i 11 e r voor
de stralingsdemping.

S. T. M a  en C. F. H s ü e h ,  Proc. Camto. 40, 167 (1944).

IV
Wanneer bij de 'beschrijving van een electromagnetisch veld de

vectorpotentiaal gebruikt wordt., pleegt men te eisen dat de theorie
ijkinvariant zij. In het geval van een gequantiseerd veld heeft dit
echter geen zin, indien voor de jjkfuncties c-getallen gekozen wor­
den: in plaats daarvan moeten jjkfuncties beschouwd worden die
lineaire combinaties zjjn van de creatie- en annihilatie-operatoren.
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y
De gevolgtrekking van S c h w i n g e r  dat een electromagneti-

sche golf geen vacuumpolarisatie teweeg brengt, volgt niet uit
zijn daaraan voorafgaande beschouwing. Met een aanvullende
berekening echter kan men aantonen dat de bewering wel juist is.

J. S c h w i n g e r ,  Phys. Rev. 75, 651 (1949).

VI

De door T o l l  en W h e e l e r  gevonden voorlopers van electron
magnetische golffronten in een dispergerend medium zijn te ver­
klaren, doordat in de begintoestand de verstoring ook al geen
scherp begrensd front heeft. Het is noodzakelijk het probleem
mathematisch nauwkeuriger te formuleren; in het bijzonder moet
gepreciseerd worden welke beginvoorwaarden gesteld kunnen worden.

J. S. T o l l  en J. A. W h e e l e r ,  Precursors and the
relation between absorption, refraction and scattering.
(„Preliminary draft”, ongepubliceerd.)

VII

Tegen de verklaring die R u b i n o w i c z  geeft voor het feit,
dat het buigingslicht afkomstig schijnt te zjjn van de buigende
rand, kunnen zowel bezwaren van mathematische als van physische
aard ingebracht worden.

W. R u b i n o w i c z ,  Ann. Phys. (4) 73, 339 (1924).

VIII

Ten onrechte beschouwen natuurkundigen veelal een exacte for­
mulering van de voorwaarden, waaronder de door hen toegepaste
wiskundige bewerkingen geoorloofd zjjn, als wiskundige haar­
kloverij. Bij juiste behandeling hebben deze voorwaarden dikwijls
een physische ondergrond, en soms kunnen zij een vingerwijzing
voor verdere ontwikkeling vormen.



3Kiiililmmm
IMS
■
lip

De toepassing van de methode der stationnaire phase op dubbele
integralen van de gedaante

ikf(x,y)
g(x, y)  e dx d y ,

k
I
mii'
m

zoals die geformuleerd werd in een vroeger artikel, leidt tot een
mathematisch correcte asymptotische ontwikkeling voor grote waar­
den van k. De critiek van W o l f  is niet gerechtvaardigd.

N. G. v a n  K a m p e n ,  Pihysica 14, 575 (1949).
E. W o l f ,  Reports on Progress in Physics 14, 95 (1951).

Als gr(a:) door de zgn. Hilbert-transformatie toegevoegd is aan
f(x),  dan bestaat een analytische functie H{z),  die regulier is in
de bovenhelft van het complexe vlak, aan zekere voorwaarden in
het oneindige voldoet, en op de reële as in f(x)  +  ig(x) overgaat.
Dit is bewezen door M. R i e s z voor het geval dat f  (x) tot de
klasse L'1 behoort (p >  1). Ben dergelijke stelling geldt ook., in­
dien de integraal van f  (x) over elk begrensd interval bestaat en
eindig blijft als de integratiegrenzen oneindig worden. Bovendien
kan deze stelling uitgebreid worden voor het geval dat de reële
as door een andere kromme vervangen wordt.

E. C. T i t c h m a r  s h, Theory of Fourier Integrals
(Oxford 1937) Hoofdst. V.

De gebruikelijke, op de klassieke lichttheorie gebaseerde verkla­
ring van het bestaan van incoherente lichtbundels, is onjuist.

XII

In de theorie van de Stark-verbreding van waterstof lijnen moet
ook de richting van het storende veld in acht genomen worden.
Daardoor zal men een kleinere verbreding vinden dan uit de
berekening van S p i t  z e r volgt.

L. S p i t z e r ,  Phys. Rev. 55, 699; 56, 39 (1939).
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Voor zover de verklaring, die G o r t e r  gegeven iheeft voor
de door V a n  I t t e r b e e k  en anderen gevonden weerstands­
verandering van dunne metaallaagjes, afwijkt van de verklaring
van M o s t o v e t c h  en V o d a r ,  verdient de laatste de voorkeur.

XIII

C. J.  G o r t e r ,  Physica 17, 777 (1051).
N. M o s t o v e t c h  en B. Y o d a r ,  Comptes Rendus 230,

2008 (1950); 233, 360 (1951).

XIV

Het gedrag van de „tippetop” kan begrepen worden, indien men
de wrijvingskracht ten gevolge van de gliding over het ondervlak
als een kleine storing in rekening brengt.

XV

Door aan de physiologische maatbepaling een fundamentele
betekenis toe te kennen, miskent R e e n p a a  het willekeurige
karakter van de keuze van een maatbepaling.

Y. R e e n p a a ,  fiber Wahmemen, Denken und mèssendes
Versuchen (Bibliotheca Biotheoretica, ser. D, vol. 3;
Leiden 1947).

XVI

Het existentialisme van S a r t r e  vertoont aanrakingspunten
met de positivistische opvatting in de moderne natuurkunde.



[

■




