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I N T R O D U C T I O N

There have been many excellent review articles on diffusion *) and thermal
diffusion ) of molecules in mixtures of gases. We, therefore, feel, that it is
not necessary to give a broad introduction on the subject. Thermal diffusion
appeared to be very sensitive to the characteristics of the collision process and
the interm olecular potential.

Experimentally, the thermal diffusion data already available concern
predominantly isotopic mixtures of molecular gases, for instance of hydrogen3,4)
and of carbon monoxyde 5). Because of the relative simplicity of the description
of a collision between an atom and a molecule, we thought it useful to examine
mixtures of molecular and atomic gases. Apart from the early measurements of
Clusius and Flubacher ) of argon and HC1 isotopes, no systematic research on
this subject appeared to be present in literature. The first part of this thesis has
been devoted to the investigation of the thermal diffusion factors of all possible
mixtures between inert gases and hydrogen isotopes. The temperature range was
chosen so as to have no temperature dependence of the thermal diffusion factor.

7 qApart from some subtile differences ), the theory of Chapman and Enskog),
using a spherically symmetric interatomic potential, succeeds very well in pre­
dicting transport properties of symmetrical molecules. They behave approxima­
tely like atoms. The anomalous behaviour of a group of molecules, which have
in common an asymmetric distribution of the atomic masses, therefore is very
interesting. The experimental thermal diffusion factors for these molecules de­
part so far from the calculated values that it was a challenge for many authors to
find an answer to this problem. Wang Chang, Uhlenbeck and De Boer 9) developed
a formal kinetic theory for transport properties, which includes the existence of
internal degrees of freedom and inelastic collisions. New collision integrals were
introduced. Monchick, Yun and Mason ) extended this theory to mixtures.
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Waldmann 1  and McCourt and Snider ) removed the restriction from the
Wang Chang -  Uhlenbeck theory, that it did not account for the possible degene­
racy of the internal states. This is the case for the rotational energy levels of
hydrogen. Although being of great theoretical significance, these advances
failed to give the required improvement in the few calculations, which were per­
formed with simplified models. The theoretical formulae still grow in complexi­
ty. The second part of this thesis is an attempt to give a reason for the theore­
tical failures and a contribution to a more adequate calculation of the thermal
diffusion factors of asymmetric molecules.

1 0

1 2



C H A P T E R  1

THE POTENTIAL MODEL FOR HYDROGEN - INERT GAS INTER­
ACTION IN THERMAL DIFFUSION

1.1 INTRODUCTION

Both in equilibrium and in non-equilibrium processes isotopic substitution
in the molecules has a detectable, although often small effect, which has to be
ascribed to variations in the intermolecular potentials and transfer of energy
between internal and external degrees of freedom. Due to the different averag­
ing procedures for each process, characteristic changes in the potentials may
show up in a different magnitude. The thermal diffusion factor of gaseous mix­
tures has the advantage of being very sensitive to the potential model, more than
to the magnitude of the parameters for a given model. As compared to other
transport properties the experimental deviations may be very large, especially
when the masses of the two components do not differ much.

The theoretical treatment is simpler for a mixture of a mono-atomic and a
poly-atomic gas, than for two gases consisting of poly-atomic molecules. This
fact determined our choice to the experimental investigation of the thermal dif­
fusion factors of mixtures of the inert gases and hydrogen isotopes. The hydrogen
isotopes offer the possibility of a variation over a wide range of relative mass
differences and of molecular asymmetry in the atomic mass distribution. The
thermal diffusion factor being in first approximation linear in the relative mole­
cular mass differences of the two components, it is possible to investigate both
tiie case of equal masses and the case of very large separations in changing from
He and He to Ar and Kr.

13



1.2 EXPERIMENTS WITH 3He AND 4He

The thermal diffusion factors were measured in a swing separator ).
This apparatus multiplies the elementary effect by the number of gas tubes con­
tained between the hot upper part and the cold lower part of the device. The
upper side could be varied between 100 °C and 500 °C, whereas the lower part
was kept at room temperature. After the stationary state was reached, the se­
paration was measured by analyzing samples of the gas mixtures from the hot
and the cold ends of the device. The mixtures which contained the radioactive
isotope tritium T, were analyzed with ionization chambers. The other samples
were analyzed by mass spectrometry. We confined ourselves to mixtures where
the hydrogenic components were in trace concentrations, never becoming larger
than 5 %. The total pressure was kept at 200 Torr. Under these circumstances
collisions between the hydrogenic molecules occur so rarely, that their effect
on the separation can be overlooked. For the same reason it was possible to
measure two isotopes of hydrogen at one time, provided they did not interfere
with each other in the detection stage. The principle of handling a ternary mixt­
ure as two binary mixtures was proved to be sound by Van der Valk and
Laranjeira ;.

In treating hydrogenic gases two specific difficulties were encountered.
First, hydrogen penetrates rather deeply into metal walls, due to bond forma­
tion and diffusion through the solid state as a proton gas. It is, therefore, diffi­
cult to remove after a run has been finished. The probability exists that it may
perturb following rims. The apparatus must be thoroughly pumped and flushed
out with some neutral gas, for instance the carrier noble gas. If not, through
exchange reactions at the high temperature walls, the gas may be contaminated
with the wrong kind of hydrogen molecules and one might be deceived by an
apparently low separation. Second, the separation of the radioactive component
T can be too high, due to the formation of heavy water with traces of oxygen,
again at the high temperature walls, which act as a catalyst. The activity is then
carried by a far heavier molecule, which concentrates on the cold side. Also the
background of the ionization chamber is raised by adsorption of active water.
In our apparatus the water molecules are frozen out in a liquid air trap, which
does not interfere with the thermal diffusion process.

We chose our ternary mixtures always in a way so that the non - radioactive
hydrogen isotope was in excess with respect to the very small concentration of
the radioactive molecules. Because of its concentration the former prevented the

13
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latter disappearing too rapidly from the mixture due to water formation. Above
500 C more than 10 % of the hydrogen disappeared in one day, the time
necessary to reach a stationary state. Only could not tolerate another hy­
drogen carrier, because of the possibility of exchange reactions. It could, there­
fore, only be measured up to 250 C. He - could be measured on the mass
spectrometer by increasing the resolution. Although the resolution was not high
enough to discern between 3He and HD, it was nevertheless possible to measure
samples of the mixture by making use of the difference in the ionization potent­
ials. By decreasing the electron energy to 20 Volts, the He+ signal disappeared
and only the HD current was detected.

In the stationary state of a binary mixture the thermal diffusion factor is
defined by

T grad n.
*— ; n , + n = 1Hj  ng grad T 1 2 (1. 1)

where n^ and are the mole fractions of the two components and T is the ab­
solute temperature. To avoid complications as to whether the heavier or the
lighter component enriches at the cold side, we decided to determine the sign
of the thermal diffusion factor by always taking the atomic component as the
second. Rewriting the equation (1.1) and inserting n «  1 for the noble gas
component which is in bulk concentration :

grad In n = -  a grad In T, ( 1 . 2)

which upon integration becomes

(n l>H
In q = In--------

<n l>C

H

I
TH

a (T) d In T = -  a In
<3

(1.3)

where the subscripts H and C stand for the hot and the cold side of the gas vo­
lume. The last step in (1.3) holds when o does not depend on temperature. The
separation factor q is also introduced. The slope of the graph of In q against
In H/Tc  yields the thermal diffusion factor o . Fig. 1.1 and 1.2 are two
examples of such graphs, with a line drawn through the points, obtained by a
least squares fit. Fig. 1.1 gives the experimental points collected in four runs
with mass spectrometer analysis. Fig. 1.2 gives two runs with detection in
ionization chambers. Both lines go through the origin within the statistical er-

15
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Fig. 1.1 Therm al separation, In q, o f H -  H

m ixture as a  function of tem perature

(Eq. 1. 3). For each separate run dif­

ferent symbols are used. Analysis by

mass spectrometer.

e

Fig. 1 .2  Therm al separation, In q, of DT -  He

as a function of tem perature (Eq. 1 .3 ). For each

separate run different symbols are used. Analysis

with ionization chambers.
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ror, as they should, because no separation occurs when there is no temperature
difference.

1.3 DISCUSSION OF THE EXPERIMENTS

None of the mixtures measured showed any temperature dependence of the
thermal diffusion factor in this temperature range. Thus we could assign one
value to the thermal diffusion factor o, according to equation (1.3). In Fig. 1.3
and 1.4 the data are plotted for the different mixtures against the relative molar
mass differences (M  ̂-  M2) /  (M  ̂+ Mg) of the two components. This independent
variable has some theoretical background as the thermal diffusion factors that
we calculated with the Chapman - Enskog theory for mixtures in which the mass
of one of the components may be varied with isotopic substitution, can be ap­
proximated by

M -  M_
c ------------- + d (1.4)

Ml  + M2

This result is comparable with Waldmannfs )̂ for isotopic mixtures,
c and d are numbers which are dependent on the potential model and the tempe­
rature at which the experiments are performed. They are, however, independent
of the atomic masses. They no longer change in our temperature range and may,
therefore, be seen as constants. If the two components in the thermal diffusion
experiment are of the same chemical species, the constant d vanishes. The
agreement of the experimental points for the symmetric hydrogen molecules with
formula (1.4) is very good. The values of c and d are given in TABLE 1.4 for the
symmetric molecules.

The experiments show a significant discrepancy between the behaviour of
the symmetric and the asymmetric molecules, indicating some additional effect
with a negative sign. The deviations of the asymmetric molecules in isotopic
COg ), CO ) and Hg ,4) mixtures could be described reasonably well by a
formula derived by Schirdewahn et al. 3) on basis of a dimensional analysis

a =  r  Ml  M2 .  e l - ® 2
M M + M„ '■'e 0 + 0  ’ t1*®)i- Z l  z

17



-Q10-

-035-

- 020-

3 Therm al diffusion factors of the hydrogenFig. 1 .3
4

isotopes in  He, as a  function of the relative

m olecular m ass’differences. Theoretical c a l­

culations i •  , Buckingham exp^ 6  potential;

a , Lennard-Jones potential; a , Kihara core

potential; I , experim ental points. The

theoretical points are averages of the values

over the tem perature range concerned.

TABLE 1 .1 .
4

Therm al diffusion factors of the hydrogen isotopes in He (4.0039)

Isotopes
Molecular

weight
M -1 2 a exp.

® theor.

Lennard-
Jones

Buck,
exp.—6

Kihara
core

0L according
to formula (1 .7 )

M + M
1 2

H2 2.0163 -  0 .330 - 0 .1 2 9  + 0.003 -  0.171 -  0.1396 -  0 .169 -  0.141

HD 3.0228 -0 .1 4 0 -  0 .067 + 0.005 -  0 .063 -  0.0485 -  0.056 -  0 .059

Dz 4.0294 + 0.003 + 0 .023 +0.002 + 0 .032 + 0.0305 + 0 .044 + 0.035

HT 4.0251 + 0 .003 + 0 .000 + 0.001 + 0 .032 + 0.0298 + 0.049 + 0.003

DT 5.0317 + 0 .114 + 0.0723+0.001 + 0 .107 + 0.0921 + 0.126 + 0 .080

T
2

6.0339 + 0 .202 + 0 .152 + 0.006 + 0.168 + 0.1437 + 0.187 + 0.141

18
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Fig. 1 .4  Therm al diffusion factors of the hydrogem
. 3,.isotopes in H e. (Legend, see Fig. 1 .3 ).

TABLE 1 .2 .

Therm al diffusion factors of the hydrogen isotopes in He (3.0169)

Isotopes
Molecular

weight
M, -  M

1 2
°ex p .

^ th e o r .
Lennard-

Jones
Buck,

exp . - 6
01 according
to formula (1 .7 )M + M

1 2

» 2
2.0163 -  0 .199 -  0.071 + 0 .0 0 4 -  0 .097 -  0 .077 -  0 .078

HD 3.0228 + 0.001 + 0.021 + 0 .0 0 6 + 0.031 + 0 .029 + 0. O il

° 2
4.0294 + 0 .144 + 0 .096 + 0.002 + 0 .110 + 0 .112

HT, 4.0251 + 0.143 + 0 .068 + 0 .001 + 0.128 + 0 .110 + 0 .075

DT 3.0317 + 0 .250 + 0 .135 + 0 .0 0 2 + 0 .202 + 0.171 + 0 .155

T2
6.0339 + 0 .333 + 0 .206 + 0.008 + 0 .219 + 0 .217

19
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Fig. 1.5 Therm al diffusion factors of the hydrogen

isotopes in D , gathered from literature

(Legend, see Fig. 1 .3 ).

TABLE 1 .3 .

Therm al diffusion factors of the hydrogen isotopes in D .

Isotopes
Molar
weight

M. -  M
1 2 a

exp.

® theor.
Lennard-
Jones

Buck,
ex p .— 6

01 according to
formula (1 .7 )M +

1 2

H , 2.0163 -  0.333
__ 16

- 0 .1 7 9 + 0 .0 0 7  ) -  0 .190 -  0.171 -  0 .177

HD 3.0228 -  0.143
29

-  0 .090 + 0 .0 0 4  ) -  0 .080 -  0 .070 - 0 .0 9 7

4.0294 0 0 0 0 + 0 .004

HT 4.0251 -  0 .000 -  0 .028 + 0 .002 3) + 0 .000 + 0.0023 -  0 .027

DT 5.0317 + 0.111 + 0 .042 + 0 .002 3) + 0.063 + 0.057 + 0 .050

T2
6.0339 + 0 .199 + 0 .074 + 0 .004  4 ) + 0.123 + 0.112

20



where CM and C@ are constants, and 0 j and ®2 are the moments of inertia
of the two isotopic molecules. Such a simple formula was not derived for mixt­
ures of atoms and molecules. The formula suggested by Schirdewahn 3) in this
case, is  not directly applicable to the deviations of the asymmetric molecules.

4Reichenbacher and Klemm ) proposed a formula for isotopic mixtures,
based on the development into relative atomic mass differences in the molecule.
Up to the second power :

M l - M 2
Ml  + M2

<ma - mb >2
’ MA +M B =M1 (1. 6)

where the atomic masses in the second molecule are taken to be equal. From
their experimental values of the thermal diffusion factors of some hydrogen
isotopes in and D^, they calculated the coefficients c = 0.429 and f = 0.112.

Apart from a slight difference in c due to the differences in the interaction
potentials, there is a remarkably good agreement between the measurements in
Tie and the set of values which could be gathered from literature, measured in
D2 (Fig. 1.5). To a first approximation, it is, therefore, not an essential
feature of the problem, that the second component is a symmetric molecule or
an atom. The deviations of the asymmetric molecules in the two series may be
compared.

There are some remarks to be made concerning TABLE 1.3. The accuracy
is not everywhere the same. Some values were only given for mixtures of
rather large concentrations of the hydrogen isotopes and had to be extrapolated
to trace concentrations. The value of T2 -  D2 from Reichenbacher and Klemm *)
may be too low due to exchange reactions. This statement is justified by the good
agreement we obtained with the theoretical value both with 3He and 4He. Even in
this case it was not easy to avoid exchange reactions, because the glass and me­
tal walls are always contaminated with hydrogen. The apparatus had to be satur­
ated with T2 before the experiment was done and the Tg had to be drawn directly
from a metal container. Of course the same precautions had to be observed in
handling D2> but the concentrations could be taken higher. We took the value of
the thermal diffusion factor for H2 -  Dg from Slieker 16), because the measure­
ment was recently done in a swing separator in this laboratory, giving

o = -  0.179 + 0.007, in good agreement with the theoretical calculations
(TABLE 1.3). Murphey's value of 0.149 + 0.003 17) is probably too low.

21



TABLE 1 .4 .

Values o f the constants c  and d from formula (1 .4 )  for the sym m etric hydrogen isotopes.

Hydrogen isotopes

H2, D2 ,n d T 2

experim ental value of 0L theoretical value of Ct
(Buck pot)

c d c d

against He 0.521 0 .037 0 .530 0.034

against He 0.517 0 .029 0.556 0.032

against 0 .537 0 .000 0.543 0.004

We thought it justified to take the experimental slope c only from the thermal
diffusion factors of H2 -  Dg and V>2 -  Dg , which is of course, zero. Thus, we
obtain a value for c of 0.537 instead of Reichenbacher's 0.429 (TABLE 1.4).

Then, the deviations predicted by the correction term in (1.6) for the
asymmetric molecules HD, HT and DT, being resp. 0.012, 0.028 and 0.005,
disagree even with the measurements in Dg. The close resemblance between
the deviations in Dg and 4He, and the difference with He, indicate a dependen­
cy on M . The magnitude of the deviations is such that it has to be linear in the
atomic mass differences in the molecule. The experiments can better be des­
cribed by the following formula, which is an extension of Eq. (1.4):

a = M1 “ M2 „ e
c i ï ^ r M 2 + d - 2  m 1 + m 2

(1.7)

where e is a constant number. The formula is restricted to mass differences
which are not too large. It represents not only the experimental points in He
and 4He, but also those in Dg, when the latter is considered as an atom, which
is certainly allowed in this order of approximation. The thermal diffusion factors
obtained with (1.7) are listed in the last columns of TABLES 1.1, 1.2 and 1.3.
The constants c and d were the theoretical values of TABLE 1.4, from a
Chapman -  Enskog calculation with a Buckingham exp.-6 potential. For the
constant e we used the experimental value 0.258. We may conclude from the
value of e that the correction term is linear in the displacement of the center of

22



mass of the colliding system, due to the asymmetry of the molecule,

M + M

where p is the internuclear distance in the molecule. But also that it is linear
in the ratio p/o — 0.74/2.87, where o is the collision diameter, rather than
the quadratic dependence calculated by Triibenbacher 18) with the rough spheres
model.

1.4 THEORE TIC AL C ALC ULATIONS

On statistical considerations Enskog and Chapman 8) developed a theory
for the evaluation of the transport coefficients in gases of low density. They
assumed only binary elastic collisions between the molecules. The gradients
which are present as driving forces have to be so small as to be able to linearize
the hydrodynamic equations for the fluxes. They derive formulae for the trans­
port coefficients in terms of a postulated spherically symmetric potential model
for the molecular interaction during the collision. The first approximation to the
thermal diffusion factor developed by Kihara 19 ’ 20), is used here rather than
the original Chapman and Cowling approximation. Besides its relatively simpler
form, it has the advantage of being closer to the convergence value in its first
step than the next order approximation of Chapman and Cowling 21). For trace
concentrations of the first component, labelled 1, which we shall take to be the
hydrogenic isotope in all cases, the formula reads :

a (6 C» - 5) Mg1
X

A* ]

2 Cl
3

12 ( 8+1? . i))
1 A* VM21 ) }n2

(2. 2)* 2
a 2

23



where M express the relative molecular
M M

12 M j + M2 3110 M21 = Mx + M2

weights. The other symbols O* , A* and C* are reduced collision in­
tegrals or ratios of them, as defined by Hirschfelder, Curtiss and Bird ).

In order to have a comparison with the experimental values, the theoretical
thermal diffusion factors were calculated at two different reduced temperatures
T* = k T /  e =20 and 50, and averaged between them. This was done be­
cause the theoretical values showed a tendency to fall off slightly with higher
temperatures, a feature which was never verified in experiments.

Three kinds of potential models were used in the calculations. Firstly, the
Lennard-Jones 12-6 potential :

1 - 1 2  6 -,
V (r) = 4 e [ ( ? )  -  (-?) J , t1-9*

which has two parameters, e is the depth of the potential well, and a is the
internuclear separation r  at which V (r) = 0. Secondly, the modified Buckingham
exponential 6 model, which has three parameters :

]> G “)
V (r) = « r < r max (1. 10)

Again e is the depth of the potential well, r  is the value of r  at this min­
imum and s is the steepness of the repulsive part of the potential. The Kihara

22core potential )

12 6

is a Lennard-Jones potential, where a hard core of diameter yahas been
introduced, within which the potential is infinity. It has also 3 para­
meters.

24



TABLE 1 .5 .

Potential param eters used for the theoretical calculation of the therm al diffusion factors of the

hydrogen isotopes. The same set was used for a ll  isotopes, except for the Kihara core po tential.

Lennard-Jones
1 2 - 6  potential

Mod. Buckingham exp.-6
potential

Kihara
core potential

g / k (°k )
o

a  (A) e / k (°K) r  (A)m s Y

H
2 37.00 2.928 37.3 3.337 14.0 0.222

He 10.22 2.576 9.16 3.135 12.4 0.000
mixture 19.45 2.752 18.27 3.244 13.22

As a starting point we chose the parameters of the Buckingham potential
for the individual components, as they were calculated by Mason and Rice 23)
from the second virial coefficient and viscosity data from high temperature
experiments. The same authors give also the combining rules for obtaining
the parameters of the interaction potential of a mixture. Mason 24) has tabul­
ated the required collision integrals. The corresponding values of the parame­
ters for the Lennard- Jones potential were found by taking the previous values
of the Buckingham potential for the individual components. The parameter is
then calculated from the r  values at each value of the steepness parameter
s (p. 34 ref. 20). The simpler combining rules :

were used to obtain the mixture parameters. The required collision integrals
are also given by Hirschfelder, Curtiss and Bird 20).

In what concerns the Kihara core potential, the values of the parameter y
were chosen so as to fit the Lennard-Jones value of a for H^, For D and T
the same y was used. But for the asymmetric molecules HD, HT and DT,
some effect of the asymmetry of the molecule may be included. If the mole­
cules rotate fast enough a core may be assumed with a diameter corresponding

25



TABLE 1 .6 .
4 4

Values of the therm al diffusion factor of the systems H2 -  He and D2 -  He calculated  with

a  Buckingham exp.- 6 potential and w ith different values of the param eters of hydrogen and

deuterium*

4
-  He system a  (A) i  (A)m

e / ic ( 0 K) s a

23
Mason and R ice ) 2.9669 3.337 37.3 14.0 0.1396

6 -  5 % 2.9669 3.337 35 .4 14.0 0.1396

a  + i k 2.9966 3.370 37.3 14.0 0.1393

a  - 1 * 2.9372 3.303 37.3 14.0 0.1399

, 7
Knaap and Beenakker ) 2.928 3.293 37 .0 14.0 0.1400

4
D - He system

23
Mason and R ice ) 2.9669 3.337 37.3 14.0 0.03054

a  + i  & 2.9966 3.370 37.3 14.0 0.03194

0 - 1 * 2.9372 3.303 37.3 14.0 0.02921

, 7
Knaap and Beenakker ) 2.9758 3.347 35.63 14.0 0.03052

to the orbit described by the lightest atom round the center of mass, thus

4 « , 2 y and f  y„  respectively. The required
3 'H 2 T H2 5 tH2 h

25collision integrals are given by Barker, Fock and Smith ).

1.5 DISCUSSION OF THE THEORETICAL VALUES

The Kihara core model, did not cover the data. The values are too high
and the introduced difference between symmetric and asymmetric molecules is
too small and has the wrong sign (Fig. 1.3).

From the two other potentials, without exception, the Buckingham potential
fits the experimental data best for the symmetric molecules (Fig. 1.3, 1.4, 1.5).
This is the more true as it may be shown that the thermal diffusion factor is not
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at all sensitive to changes in the potential parameters. In the high temperature
range e could be varied with + 5 % without changing the value of the thermal
diffusion factor by more than 0.0001. This is because collisions tend to come
close to hard sphere collisions. The depth of the potential well is small with
respect to the thermal energy. Changes in o' up to + 1 % do not appreciably
change the values of a (TABLE 1.6). This means that the thermal diffusion
factor in this temperature range is more sensitive to the potential model as a
whole, especially to the repulsive part. It would have required absurd values
of the parameters to fit the potentials to  the experimental points, as was done

7for other transport properties. Knaap and Beenakker ) found that the differ­
ences between hydrogen and deuterium, amounting to a few percent in second
virial coefficients and in polarizabilities, could be consistently expressed in
shifts of the parameters he/ e = 0.045 and Act/  a = -  0.003.

Recently, Mason, Amdur and Oppenheim made the same comparison of
second virial coefficients with viscosity and diffusion. By an analysis of other
possible sources of deviations, such as inelastic collisions or anisotropy of the
potential, they could assign the difference between hydrogen and deuterium
unambiguously to a change in the spherical potential by Ae /e  =0.06 and

Act/ ct = 0.008.
26However, Reichenbacher, Müller and Klemm ) could not reproduce any

measurable difference between H_ and D„ in isothermal diffusion experiments.
Anyhow, shifts of this order will not show up in thermal diffusion. Therefore,
the conclusion seems to be justified that the same spherically symmetric
potential may be used for the symmetric molecules H^, and Tg. The fact
that the behaviour of the thermal diffusion factors of the hydrogen isotopes in

3
D as a second component, is nearly identical to that with respect to He and
He, is another argument supporting that conclusion.

The agreement between theory and experiment for the symmetric mole­
cules shows most clearly in TABLE 1.4, where the values of c and d from
equation (1.4), were found by fitting formula (1.4) to the a 's  calculated with
a Buckingham exp. 6 potential.

24.The second order calculations of the Kihara approximation ) yielded only
corrections of a by and amount of 0.001 to 0.005 which stays within experi­
mental error.

3
Deviations due to quantum effects, even with He, are not important in
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this temperature region. The quantum corrections to the transport collision
27integrals were calculated by Imam-Rahajoe, Curtiss and Bernstein ). Even

Q  J £

for the mixture Hg - He, with a reduced De Broglie wavelength A:^ = 2.32 at
T =20, the quantities A* and C* change only by 0.2 %. This gives a cor­
rection to a of 0.0014 or 1.5 %, which lies within experimental error. In dif­
fusion, heat conductivity and viscosity the interference of inelastic collisions
has to be taken into consideration. In a first approach only transitions between
rotational states may be of importance in the temperature range of our ex­
periments. In heat conductivity the effect appeared to be rather large and gave
rise to the so-called Eucken corrections. In diffusion and viscosity the effect is
less pronounced. There is a difference between symmetric and asymmetric

2molecules in that the former requires about 10 collisions to have a transition
induced, whereas the latter may already be excited after 10 collisions.

In viscosity the effect may be 0.003 and 0.03. In diffusion the effect is
much less, probably in the order of 0.001 for both symmetric and asymmetric
cases *). In thermal diffusion an explanation of the anomalous behaviour of the
asymmetric molecules cannot be expected to come from these rotational excit­
ations, according to Monchick, Yun and Mason 10). If the excitations are of
some influence, one would expect a change in the thermal diffusion factor, if
the probability of rotational excitation is changed. It is possible to make such a
test by making use of the difference in probability for excitation between sym­
metric and asymmetric isotopic molecules. This was done for and N
^®). Our experiments provide also an argument of this kind. The occupation
numbers of the different rotational energy levels and the excitation probability
change markedly from the two ends of our temperature range. Nevertheless, the
thermal diffusion factors remained constant within experimental error (Fig. 1.1
and 1.2).

Because of the sensitivity of the thermal diffusion factor to the molecular
interaction potential, it seems that the reason for the deviation of the asymmet­
ric molecules has to be sought in the anisotropy of the potential. The collision
process itself has to be investigated closer for changes in the scattering angle,
and for the effect of inelastic collisions on the distribution of the molecules over
energies and angular momenta, due to the excentric position of the centre of
mass 4). It seems encouraging that the assignment of a lower effective mass to
the asymmetric molecules sometimes could cover an extended range of thermal
diffusion factors ).

Such a feature lies outside the scope of the Chapman - Enskog formalism,
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unless the effect Is so small that it may be treated as a perturbation to a method
which is already an approximation itself. The asymmetry effect is indeed of

1 Oftsecond order, because it does not show in diffusion ’ ). Very small deviat­
ions in diffusion may, however, be important in thermal diffusion, as can be

30deduced from the recurrency relation ),

6 C* - 5 = 2  | 2 - j  (1.13)

The derivative of the diffusion coefficient D is usually near 2, so that (6 C* -5)
depends on small differences. This implies that small deviations may be still
important in the next order approximation.

1.6 EXPERIMENTS WITH Ar AND Kr

In order to check the validity of Eq. (1.7), the experiments were extended
to mixtures with the heavy inert gases (M2 >  M^), Argon and Krypton. The
condensation temperature of these gases being higher than that of He, the liquid
air trap had to be thermostated at some 30 degrees above the condensation point.
It was, therefore, not always possible to avoid some contamination of the ioni­
zation chambers with radioactive water, produced at high temperatures in the
thermal diffusion vessel. After each run, therefore, the mixture was allowed
to come to equilibrium at room temperature. If then the ionization chambers
showed an unequal signal, they were cleaned by heating, washing and pumping.
The run was started over again.

The case of a small concentration of a light gas in a bulk of the heavy
component, called a Lorentzian mixture, offers a greater risk for concentration
dependence of the thermal diffusion factor. Formula (1.8) reduces to

However, within experimental error, no concentration effect was detected in
the range 1% <  n^ ^  4% of the gases HD, Dg and H^. Another source of error
may arise from the fact that the thermal diffusion factor of these mixtures is
still not in the high temperature limit. We are measuring in the range 5 < T*< 10.
In order to make no mistake in the comparison between the separations of the
different mixtures, the set of top - temperatures in the apparatus was chosen to
be the same for each run. The results are shown in Fig. 1. 6 and Fig. 1. 7.
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TABLE 1 .7 .

Therm al diffusion factors of the hydrogen isotopes in Ar (39.944). Potential parameters for Ar:

Lennard-Jones, O = 3.405 X, 6 = 122 °K ; Buck. exp. -6 , a  = 3 .437 = 123.2 K, s = 14.

“ theor. (1* = 8)

Isotopes
M1 ‘  2 Buck.

M1 + M2 Jones exp .- 6

h2 -  0.9039 -  0 .285 + 0 .006 -  0.3206 -  0.2954

HD - 0.8593 - 0 .2 9 0  + 0 .004 -  0.3158 -  0.2907

d 2 -  0.8167 -  0 .277  + 0.005 -  0.3105 -  0.2856

HT -  0.8169 -  0 .264  + 0 .003 -  0 .3105 -  0.2856

DT -  0.7762 -  0 .229  + 0 .002 -  0.3046 -  0.2799

T 2
-  0.7375 -  0 .235 + 0 .003 -  0.2980 -0 .2 7 3 7

TABLE 1 .8 .

Therm al diffusion factors of the hydrogen isotopes in Kr (83.80).

Potential param eters for Kr : Lennard-Jones, C = 3 .597 A, 6 = 158 K; Buck, exp-6, O 3.562,

e  = 158.3, s = 14.

Isotopes
M. -  M„1 2 Ö exp.

a . (T* =the or. 6)

Lennard
Jones

Buck,
exp. -  6M1 +  M2

H -0 .9 5 3 5 0.263 ± 0.005 -0 .3 1 1 8 -  0.2962

HD -  0.9310 0 .290 + 0.003 -0 .3 0 9 7 -  0.2941

D , -  0.9091 0.281 + 0.003 -0 .3 0 7 6 -  0.2921

HT -  0.9091 0.278 ± 0.002 -  0.3076 -  0.2921

DT -  0.8876 0 .180 ± 0.004 -  0.3055 -  0.2900

T 2
-  0.8666 0.231 + 0.006 -  0.3032 -  0.2878
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Fig. 1 .6  Therm al diffusion factors of the hydrogen

isotopes in Argon. (Legend, see Fig. 1 .3).
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Fig. 1 .7  Therm al diffusion factors o f the hydrogen

isotopes in Krypton. (Legend, see Fig. 1 .3 ).
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The numerical values are tabulated in Tables 1. 7 and 1.8 together with the
theoretical values obtained from (1. 8) with a Lennard - Jones and a Buckingham
- exp 6 potential. The same parameter (M1 -  M2) /  (Mj + M2> was chosen as
an abscissa. The ideal Lorentzian case is not yet reached, because there is a
small dependence on this parameter. The values of (1.14) in our temperature
range are 0. 2952 < o T < 0. 3339 for a Lennard - Jones potential and 0.2763
< a <0.3108 for a Buckingham potential with steepness 14.

Experimentally, however, the thermal diffusion factors of the different
symmetric hydrogen isotopes, do not follow this predicted behaviour, nor the
linear dependence on the reduced mass difference, according to the empirical,
formula (1.4). This is one difference from the mixtures with helium. We have
to mention again that the values of Tg are possibly too low. The set of top -
temperatures could not be the same as for the other mixtures. For the moment
we have no answer to the question why the symmetric molecules deviate so
much from the expected values. We may have traced a difference in the symmet­
ric potentials, which then would appear more distinctly in the case of a Lorentz­
ian gas, because of the strong dependence on every deviation in C. . However,
a careful and more accurate investigation of the concentration dependence of

a must be performed previously to confirm this statement, this being the
most important source of error.

Now, whether the deviations of the asymmetric molecules HD, HT and DT
are defined with respect to the theoretical straight line, whether this is done
with respect to the second degree curve, drawn through the experimental points
of H , D and T , the qualitative behaviour does not change. It is clear that
formula (1.7) does not apply, because the deviations would have vanished. The
effect, however, remains of the same order of magnitude. There is a reversal
of sign in the deviations of HT and DT (compare Figs. 1.6 and 1.7 to 1.3, 1.4
and 1.5). However, this is not a true discrepancy. The thermal diffusion factor

o , according to formula (1.8) is odd for the interchange of component 1 and 2.
This has no physical meaning, as long as no statement has been made about
whether Mx > M2 or M2 > Mr  Usually this mathematical inconvenience is
circumvented by stating that the component 2 is the heavier one, obtaining thus
only positive values of From the examination of the whole set of figures,
we may now state that HT and DT have a smaller separation, whereas HD has a
larger separation compared with the expected value from the calculations with
a symmetric potential. Only 3He - HD seems to be an exception to this rule.

32



1.7 CONCLUSIONS

It could be established that in thermal diffusion in 3He and 4He, at high
T* the molecules H2> D2 and T2 behave like spherically symmetric potential
centres. The Buckingham exponential-6 model gives the best fit of the Chapman
- Enskog theory to the experimental values. In our calculations the shape of the
potential appeared to be more relevant that the exact value of the parameters.
To a good approximation the thermal diffusion factors are linear in the relative
mass differences of the molecules, both theoretically and experimentally (Eq.
1.4).

The deviations for the asymmetric molecules HD, HT and DT could by no
means be fitted in the usual Chapman — Enskog theory. Higher order corrections,
quantum effects, or inelastic collisions can not be responsible for thesedeviations.
It is felt that the angular dependence of the potential may have an exceptionally
large effect in thermal diffusion, which cannot be accounted for by the usual col­
lision integrals. This asymmetry may be correlated with the excentricity of the
centre of mass. For small mass differences between the component molecules of
the mixture, the deviations are linear in the shift of the centre of mass of the col­
liding system (Eq. 1.7).

Thermal diffusion in helium - hydrogen mixtures is completely analogous
to that of hydrogen isotopes ).

From the experiments with mixtures of the hydrogen isotopes with Ar and
Kr, one can conclude that, contrary to Eq. (1. 7), the deviations of the asymmet­
ric isotopes remain of the same order, even with heavy second components. As
a rule, HT and DT give smaller separations, whereas HD gives larger separat­
ions in comparison with the equivalent case with mono-atomic gases.
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C H A P T E R  2

CLASSICAL SCATTERING OF AN ATOM FROM AN ASYMMETRIC
MOLECULE

2.1 INTRODUCTION

In recent years there has been a considerable theoretical effort to calculate
collision cross sections for diatomic molecules involved in inelastic scattering.
Special attention has been given to rotational transitions, as they occur in the
range of therm al velocities, which is the region most investigated experiment­
ally at present. The need for such calculations is obvious, because of the many
anomalies found for molecules in transport properties, sound dispersion and
collision broadening of spectral lines.

Advanced computing techniques perm it the integration over large numbers
of calculated trajectories, since this is the only way of having a test for a
proposed interaction potential between particles. This potential manifests itself
through a statistical number of collision events.

The quantum mechanical calculations, which sta rt with the SchrSdinger
equation for the collision problem, suffer from the inaccessibility of the scatter­
ing m atrices. The solution is usually initiated with a distorted wave approximat­
ion, which then limits the range of validity to the weak coupling case, i. e . , in

31 32v
general to the lowest rotational transitions or to heavy incident particles ’ ).
There is a second restriction in that the calculations may only be performed for
small perturbations of the spherically symmetric potential which governs the
interaction between atoms. Usually, for symmetric molecules, the perturbation
term  arises from the second term  in the development of the potential into Legend­
re  polynomials. It contains the angular dependence of the potential in the form
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V (r, y) = Vo(r) + V2(r) P g (cos y), (2 . 1)

where r  is the distance between the centres of mass of the particles and Y is
the angle between r  and the molecular axis (Fig. 2.1). One still has to make an
assumption about the values of the expansion coefficients. From first principles,

33.Roberts ) performed a theoretical calculation of the potential between He and
Hg, restricting himself to the repulsive part. A fit of his numerical topography
of the potential field to formula (2.1), which was possible within 3 % error, of­
fered the chance of an evaluation of the quantum mechanical inelastic cross

33.sections of the transition between the lowest rotational levels of H_. Roberts )
34, ‘and Davison ) also calculated the same cross sections in pure hydrogen, based

again on a potential of the form (2.1). The reliability of their assumptions and
calculations can be examined by the comparison of their results with data on
collision numbers. These are obtained from the relaxation times, measured by

35sound dispersion in gases at low temperatures ). The discrepancies establish­
ed in this way between experiment and theory necessitate an adaption of the
development coefficient Vg(r) by over 30 % of its value. Of course, the calculat­
ions may suffer from an error by the neglection of the attractive part of the
potential, which is important at low velocities.

36»Cross and Herschbach ) performed a classical calculation which at least
has the advantage of being exact. They computed deviations in the elastic scat­
tering angle for the collision of an atom and a diatomic symmetric molecule with
an angular dependent potential of the form (2.1). However, the results which
they communicated are too poor to allow a comparison with other theories or
with experiments, or to evaluate cross sections. Moreover, in a classical cal­

culation the necessity of an approximation like (2.1) decreases, so that such a
calculation seems extremely well suited to the study of cross sections of a
molecule with an asymmetric mass distribution like HD or HT. For such mole-

3 1
cules the quantum mechanical approximations fail ), because the departure
from the spherically symmetric potential is too large to be dealt with by time
dependent perturbation methods which have to be applied in the velocity range
which is of interest.

The deviations which were found experimentally in thermal diffusion for
asymmetric molecules (preceding chapter) greatly exceed the possible results
of calculations using some small prolate elongation of the potential. The same

may be stated in another way. If one attempts to find parameter values which
are able to fit the spherical potential to the experimental data, one surpasses any
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reasonable value.
We therefore intend to calculate, using the methods of classical mechanics,

the cross sections for transport phenomena and rotational transitions occurring

2.2. THE ROTATING POTENTIAL MODEL

To a good approximation the intermolecular potential field in gases of
homonuclear diatomic molecules can be considered to be spherically symmetric
(preceding chapter). The results achieved with such a potential in the theoretical
treatment of transport properties indicate only very small deviations from this
model. We assume that the intermolecular potential of a molecule with an asym­
metric mass distribution, like the isotope HT, does not differ from that of a

symmetric one like H2 or D . The interaction is mainly governed by the electron
cloud, which is scarcely or not influenced by a change in the mass of the atoms.
We stress, however, that the symmetry centre of the potential stays at the ge­
ometrical midpoint of the molecule (Fig. 2.1), which rotates at a distance

from the centre of mass and perpendicular to the angular momentum of the mole­
cule. If the diatomic molecule, with atomic masses and m3 and internuclear
distance p , is considered to be a rigid rotator, this distance & is fixed. The
interaction potential is then represented by the full generating function, as
compared to (2.1) :

in collisions between S le  and the isotopic hydrogen molecule HT.

* - ml ' m3 P
m + m 2mi  + m3

V (r,y) = V (R) ; (2 . 2)

R 2 r  6 COS y .r  + 6 (2.3)

For V (R) we can choose a Lennard - Jones 12-6 potential (1.9)

V (R) (2.4)

36



where e is the depth of the potential well and a  is  the intermolecular distance at
which V (R) = 0 . For the interaction between He and HT, upon which we focus
our attention, the constants are taken from the fit of the potential to experiment-

/  o  ®al data on viscosity (e/K =19.446 K, a = 2.7515 A). In Fig. 2.2 the vari­
ation range of V (r) is plotted for different values of y .  The solid lines are the
energies at the same fixed orientation for all distances, the broken line is the
spherically symmetric potential, plotted for comparison. We can also choose a
Buckingham exponential potential modified with a sixth power attraction for the
long range forces (1.10) :

V(R) e
1 -  (6/s) )}- (t)exp -i s R > Rmax’

V(R) = °° R < Rmax (2.5)

Both potentials are realistic models of the interaction over a wide range of
velocities. The Buckingham potential is expected to improve the results, because
of its  better fit to experiments (e /«  =18. 27 °K, R =3.244 A, s =  13.22,
from TABLE 1.5).

Since no other forces act except those derivable from the above mutual po­
tential of the three bodies, the centre of gravity of the system moves in a
straight line with uniform velocity. After the transformation which eliminates
this motion, the system is represented by the equivalent two body Hamiltonian
with respect to the centre of mass being at rest. The firs t body represents the
rotator with reduced mass + m„). The second representative body
with reduced m ass m2 (mj + m3)/(m 1 + m2 + m3) moves in the rotating potential
field V(R). The magnitude of the total experienced force in the plane of the

three particles

dV
dR cp (R)

can be separated into a modified acceleration

5 V
a r ^  ^  (r -  6 cos v )

(2 . 6)

(2.7)

and a torque
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Fig. 2 .1  Co-ordinate system for the collision of an
atom  and a  m olecule. The diagram  shows
the plane of the three particles.

aoio-

Fig. 2 .2  Variation range of the Lennard
Jones potential (2 .4 ) for different
values of y .  For the system of
units we refer to  the tex t. (1 energy-a
unit  — 6 .5 5 7 .1 0  a .u .  ).
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av
a y CP (R)

R r  6 sin y . (2 .8 )

The latter may cause the most important correction to the orbit, if the phase of
the encounter is such that the molecular axis p is perpendicular to the trajecto­
ry in the region of closest approach (Fig. 2.3).

2.3 THE EQUATIONS OF MOTION

The most general system of 18 differential equations pertaining to the pro­
blem of three bodies, can be reduced to the 6'th order by use of the known in-

37variables of the problem (see for instance Whittaker ). Each reduction, using
the integrals of motion of the centre of m ass, of the angular momentum and of
the energy, involves a contact transformation of the initial variables, conserv­
ing the Hamiltonian form of the equations. We prefer not to eliminate the total

energy H but to introduce the rigid rotator approximation, thereby arriving at a
set of 7 differential equations, which read in the Hamiltonian form :

where
P  2 P  2

W A _L
(P + P J *

+ V + — V I—  +
2M 2Mr 2 up

2 2sin (y -t) sin i)

2 UP 2Mr

(k2 - P * 2)
. 2sin y

+ V (R) .

(2 . 10)

q. = r  , the separation between the centres of mass of the molecule
and of the atom.

q_ = V , the angle between p and r.
qg = <l> , a phase angle between p and the x-axis.

q^ is  an angle which does not occur in the Hamiltonian and can
therefore be ignored, being an angle of the transformation between the x-axes
of the moving and the fixed co-ordinate systems. The corresponding integral is
k, the total angular momentum, which at infinite separation consists of the

rotational angular momentum J  of the molecule and the orbital angular moment­
um L of the impinging atom.
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(2 . 11)L + J k .

Pj = P r> the momentum along r.

Pg = , the angular momentum conjugated to y .

Pg = P^ , the angular momentum conjugated to (r .

P4 = k-

M = mg (mj + mg) /  (m^ + m + mg), the reduced mass of the molecule and
the atom.

U>= m m /  (m + m_), the reduced mass of the molecule.1 u X o

The co-ordinate system in which the differential equations (2.9) are formulated,
36was suggested by Cross and Herschbach ). It differs from the final co-ordi­

nate system of Whittaker only in that the origin is shifted from its place in one
of the particles, to the centre of mass of the molecule and in that polar co-or­
dinates are used. It is characterized by a z-axis perpendicular to the instantane­
ous plane of the three particles and it is rotating during the trajectory, the x-
axis being the line of nodes with the fixed plane determined by the resultant an-—*
gular momentum k (Fig. 2.4). In quantum mechanics it was also observed that
the use of a rotating co-ordinate system can make the computation of cross

38»sections more tractable ). The transformed Hamiltonian exhibits separate
terms for the contribution of centrifugal and Coriolis forces.

The choice of the initial co-ordinate system is influenced by the necessity
of applying an averaging procedure to a multitude of calculated collision pat­
terns. The initial Z-axis will be along the initial angular momentum L of the
atom. The atom is located in the XY-plane at a distance r  from the origin, the
centre of mass of the molecule, and at a distance b, called the impact para­
meter, from the X-axis which is parallel to the initial relative velocity g. In
this co-ordinate system the position of the rotator is determined by its angular
momentum vector J , which has polar angles 0 j  and 0  j  and by the phase angle
a) between the line of nodes of the rotator plane and the molecular axis p .

Let p! and ql (j = 1...........  6) be the initial generalized co-ordinates and
impulses of the atom and the molecule in this system, then the contact trans­
formation to the fixed co-ordinate system is defined by
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Fig. 2 .3  The torque experienced by the
m otion of the representative body
of mass M in the potential field
(2 .4 )  a t  different orientation angles
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Fig. 2 .4  In itia l, invariant, and rotating co-ordinate systems pertaining to
the three body problem .
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(2.12)aw
"j

aw
aq<

where the superscript o indicates the fixed co-ordinate system and where

W* = •£ p* cos u) + pi sin u>(L cos O + J) + p„ sin o)L sin Ot
1  Z  (J ü  cl

+ (q^ sin 0 j  - qjl cos 0j) (2.13)

The transformation to the rotating co-ordinate system then becomes

a Wo a w
oa p

t/.

Sqj
with 2 2 2

w = pr (q̂  + qg + qe > +

q3 (qi q5 " q2q4> (GOa V
-1

O / O O  O O y ,  0 / 0 0  O Oy

ql  (qi q6 -  W  + q2 (q2q6 -  W

(2.14)

~ P y tg-1  K  <qK  -  q2qJ  <cos V '

Lq4 (qi q6 '  q3q4> + q5 (qX  “ q3q5 )

(2.15)

where

cos qa

z o O Ô Ov
<q2q4 ~ W (2.16)

Here q l  is the angle between the fixed and the moving z-axis and 0  is twice6
the area of the triangle described by the three particles.

The inverse transformation is again a contact transformation and is applied
at the end of the trajectory in order to have a comparison with the original input
quantities. In this case

W = P £(p° cos q5' + Pg sin q5') cos *
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-  (p° sin qg -  p° cos qg ) sin i  cos qg + p° sin f  sin qg ]  +

+ r  [  (P4 008 Qg + Pg sin Qg) 008 <Y"t) +

+ (p° sin q^ -  p °  cos q^) sin (y -* ) cos qg -  p °  sin ( y - f )  sin  qg 1 ,

(2.17)

where q_ is  obtained from  the differential equation B H /dk = d q ./d t.
» 5  ’

q is  the angle between the x-axes of the moving and the fixed co-ordinate sys­
tem . The transform ation to the in itial, o r ra th e r final, co-ordinate system  now
is  achieved by

Wf = q° (p* sin 0  j  -  p* cos 0 j)  +

C on
L + J  cos 0 T J  sin ©

2 k - -  q3 r  ■ ̂  ^ 1 cos 0 j  + p 2 sin 0 j > +

. s  J  sin 0 T L + J  cos 0 .  n f  t

P3 ^ q2 “ k + q3 -------k-------  q4 <P4 8in 0 J  '  P5 COS 0 J> +

,  L + J  cos ©T J  sin ©T n f f
( q g  ------- k-------  -  q6------k ^  >  * 4  COS 0 J  + P5 Sin V  +

- J  sin Or L + J  cos 0 Tf s  o J  . o J
p6 ( q5 k + q 6 k ) •

(2.18)

where the superscrip t f indicates final quantities.
As a special case  we want to discuss separately the two-dimensional col­

lision , which occurs when J  is  perpendicular to the XY -  collision plane. The
Hamiltonian then sim plifies to

P  2 P , 2
—2 M 2Mr

P*

2 PP
+ V(R) (2.19)
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where £ = ♦ -  y . The system of differential equations derived from (2.19)
f

is now of the 6 th order, and is greatly simplified as compared to (2 .9 ). The
three moment equations

can be reduced using the relationships

_ | V = | V = | V  k = p p = Mr 2 £ ♦ HP2 *’ ,
d£ d t  dy c »

where the dots indicate the tim e derivatives. Then

M r
2 .

“ P y
9 2UP + M r

_ r  -  8 COS V rp (R) .
R

(2. 20)

(2. 21)

(2. 22)

UP2V- k \6 _ / J_ + 1 \
M 2 + M r2 I I UP 2 M r2 / ■6 sin V- cp (R) . (2.23)

XV

These second order differential equations are sim ilar to the equations for a
pendulum with quadratic or with viscous damping. In the attractive range of

the potential there is a motion of the rotator towards small angles y , where­
as in the repulsive part the opposite motion is induced.
The deviation of the scattering angle x •

cos x (2.24)

and the excitation or de-excitation of the rotator, resulting from this oscillatory
movement, are strongly dependent on the collision tim e, that is on the time spent
in the region where the potential has a significant value. It  also depends on the
position of the axis p during this tim e, this being a function of the in itia l phase
angle <u . F in a lly , the angular momentum is most important as it determines

the sign of the angular momentum transfer between the two collision partners.
For instance, at large velocities g, most of the collision time is spent in the

“* —* 2
repulsive region of the potential. Then, if  L . J > J , the repulsion centre
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withdraws, the molecule is excited to higher angular velocities i  , whereas
the scattering angle is smaller as compared to the atom-atom collision. If L .
-* 2
J < J , the molecule rotates many times during the collision and imparts a per­
pendicular motion to the trajectory of the projectile, while it is itself slowing
down. Due to the distance 6 and the rather large radius of the repulsive core,
the change in the scattering angle will persist over a large interval of impact
parameters.

In quantum mechanics the limiting cases of very high and very low veloc­
ities have their appropriate perturbation treatment, respectively the sudden ap­
proximation and the adiabatic treatment. However, in the case we want to exam­
ine, i. e. the collision of He on HT at velocities which occur in thermal gases,

one may easily evaluate that the rotational period is of the same order as the
collision time. The deviations will appear to be so large as to nearly exclude a

perturbation treatment. This argument makes a classical calculation preferable,
at least as long as a suitable quantum mechanical theory has not been worked out
for the scattering of a particle from an oscillating potential. The full develop­
ment of such a theory has been an object of research for many years. There is

a wide range of application in the treatment of the interaction between electro­
magnetic radiation and matter.

The validity of the classical treatment may be estimated from the require-
—> —♦ [  —♦ £

ment that the net momentum transfer A p = p -  p has to be much larger than
h /2b .

1
Ap = |  2MAe j  + 2Mg* (g* -  g c o s / ) }  2 > >  Jj/2b, (2.25)

where A 6 j = e ! - 6 . i s  the energy loss of the rotator in the state j. In our
case the classical treatment only breaks down at the lowest velocity, together

o
with impact parameters smaller than 1 A.

The same is true for the angular momentum transfer. The quantum mecha-
31 33 34nical calculations of excitation probabilities ’ ’ ), thus far concerned H

which is a typical quantum gas with respect to the large energy amounts of the
rotational jumps. The moment of inertia of HT being much larger than that of H„,
the energy gaps between the levels are much smaller. The jumps with A j = + 1
are now also more probable (compare A j = + 2 for Hg). Nevertheless, we are
still close to the limit of the applicability of the classical criterion. Only when
the energy involved in excitation does not exceed the energy gap between two
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levels, the above requirement will be fulfilled. It will be seen from the results
of our calculations, that the major part of the asymmetry effect of the HT mole­
cule is to be found already outside the quantum region. We expect that, dealing

with heavier molecules, the reliability of the classical cross sections will be
improved.

2.4 THE CALCULATIONS

The integration of the differential equations was performed on the EL - X8
computer of the Mathematical Centre of Amsterdam and on the TR-4 computer

Fig. 2 .5 W eight functions g exp(-g /T *)

and g exp(-g  /T  ) a t T  = 20.

of the Mathematics Department of the Technical University of Delft. We first
performed a comparative test between some integration procedures, a simple
step-by-step method, and Adams procedure, a Runge - Kutta procedure and an
IBM procedure MILNE (which required 2 secs for the XY-case on the IBM-7094
computer). We chose a fourth-order Runge - Kutta procedure, developed by
Zonneveld 39) in a somewhat more rapid version. In this procedure the indep­
endent variable is selected after each integration step in a subroutine which com­
pares the step length to the variable with the maximum change within its partic­
ular awarded accuracy. The average time needed for the calculation of one orbit
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was about 20 secs for a two-dimensional case (the XY-plane) up to 120 secs for
a three-dimensional collision. The input quantities were selected to give a
representative set of points in the range of the parameter values of importance.
This was done in order to avoid integration over a generated set of random va­

lues, which would require more orbits to calculate without giving more infor­
mation about the details of the collision.

In classical mechanics the rotational energy of a molecule is not discrete.
We chose, however, to make use of the knowledge of quantummechanics, introd­
ucing as initial values of the angular momentum only those which correspond to
the different quantum numbers j. In view of the temperature range of the gases

ar
for which we wanted collision integrals with a reasonable accuracy, T =KT/e
fa 20, we confined ourselves to j = 0......... , 4  and to initial relative kinetic

jg 2 £ 2 2
energies 1 < g < 180, where g = Mg /2 s (Fig. 2.5). The variation over
the initial phase angle 0 0 < <u < 360° is a typically classical feature of the
problem, and as a first step towards a measurable physical quantity, we felt
entitled to average over this angle with a variational step of A id = 20°. The

O
calculation of the orbit was taken up at a distance r  = 20 A, where the input
quantities were calculated from the atom-atom scattering of comparable masses.
This gave an accuracy in the scattering angle of 0.0005 rad. In order to confine

0
the computing time, we reduced this distance to 10 A in the three dimensional
case, the scattering angle then being accurate to 0.005 rad. The input quantities
were transformed from the initial co-ordinate system, described in the fore­
going section, by a procedure "enter" to the co-ordinate system of the Hamil­
tonian (2.10). It is clear from the equations of motion that the system is not
invariant under space inversion, due to the asymmetry of the potential (2.2).
Therefore, the final scattering angle x (2.24) cannot be found from

X = tt -  2 0 ,m
where @ is the angle between r  and the X-axis at the distance of closest ap­
proach. This would be true for the case of a central force, such as is usually
assumed in the atom-atom collision. In our calculation the orbit has to be fol-

O
lowed until the asymmetric interaction is negligible again, i. e. r  = 20 A.
The resulting values, then, were transformed back to the original centre of
mass co-ordinate system by a procedure "exit", and fed again into the equivalent
atom-atom collision.

The system of units was also chosen to be suitable for the numerical cal­
culations. In this system the unit of mass is the proton mass, the unit of length
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o _ o _ 1 4
is the Angstrom = 10 cm, and the unit of time is 1000 a. u. or 2.4189 . 10
sec. Then Planck's constant h = 0.15366 and Boltzmann's constant k = 0.4866 .
10 . For the particular case of He - HT we used the internuclear distance
p = 0. 74146 A from spectroscopie measurements, 6 =0.1854, up = 0.415578
and M = 2.00723.

Fig. 2 .6  Deviations A Xi*11 ra<iians) of the
scattering angle (XQ = 1» 290 r a d .)
as a function of the in itia l phase
angle (1), for in itia l j = 0, 1 and 2,
with orientation of J perpendicular
to the collision p lane . The + sign
indicates the configuration J and L
paralle l, the -sign stands for an ti-
para lle l, b* = 0.727; g*2= 20.417.
The curves have been shifted by a
phase angle to make them  coincide
a t  (JU = 0 ° . A Lennard Jones potential
(2 .4 )  was used.

Fig. 2 .7  Deviations A x  0 n radians) of the
scattering angle (X = 1.1523 r a d .)
as a function of U) for j = 2.
Curve 1: J along Z; curve 2 :  J along Yj
curve 3: J along X. b* = 0.700;
g* = 20. A Buckingham potential
(2 .5 ) was used.

2.5 THE TRANSPORT CROSS SECTIONS FOR INELASTIC SCATTERING

In this section we shall calculate the transport cross sections for the mole­
cule HT in collisions with He. As a consequence of the classical theory every
collision is inelastic, showing a smaller or larger amount of exchange between
rotational and translational energy. For this reason we use the term "inelastic
scattering", which is to be understood as the total scattering arising from both
elastic and inelastic collisions. However, in the system He - HT, only a few
collisions will reach the necessary amount of energy exchange to be qualified as
inelastic in the quantum mechanical sense. This will be shown in the next section.
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As for the transport cross sections the average scattering angle over all col­
lisions will be close to the elastic limit. Nevertheless, to take proper account
of every contribution to the displacement in the classical scattering theory, we
shall use the inelastic formulation of the cross section.

In Fig. 2.6 an example is given of the deviation of the scattering angle x
from X , obtained with 8 = 0 ,

AX is plotted for some initial rotational states, as a function of g o ,  the initial
orientation angle. J  is along the Z-axis. In Fig. 2.7 ax is shown with initial
j = 2, for different orientations of J  in space, along the X-, Y- and Z-axes.
Because of the torque of the potential (2.8), which behaves like a sine function,
we meet a positive and a negative maximum of aX in the interval 0 < go <360°.
As a rule, positive aX coincides with de-excitation of the molecule to lower
j-sta tes, and, inversely, excitation is coupled with negative aX. The deviation
is seen to depend strongly on id . The largest contribution to the scattering angle
comes from the part of the potential in the region of closest approach. However,
the foregoing history of the collision, the pre-orientation in the attractive and the
early repulsive part of the potential, strongly influences the phase angle Y. This is
seen when the calculation of the orbit is started at distances closer than 10 A.
The true average over all phase angles has, therefore, to be taken with phase
angles m  at infinite separation, which all have equal a priori probability.

According to Monchick, Yun and Mason 10) the collision integrals Cl ^
and n 2’2  ̂ for inelastic collisions are extensions of the classical ones for sym­

m etric potentials and without internal states. The possibility of the change of
translational energy into internal energy is taken into account by the introduction
of the final relative velocity g , which is unequal to g. In the integrands of ^

AX = X -  X (2.26)o '

(2 2)and C l '  ’ '  the quantities

d Q ^  -  g2 (1 -  cos x )

dQ(2) = g4 (1 -  cos2 x ),

(2.27)

(2.28)

are changed into
( 1 ) 1

dQjm = S (g -  g cos x )

dQjm = g2 (g2 -  g 2 co s2  X  ) -  |  ( Ae)2 ,

(2. 29)

(2.30)
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where Ae = (g2 -  g 2). The subscripts j and m indicate that such an integ­
rand exists for every initial rotational quantum number j , and every magnetic
quantum number m. Of course, in our classical calculations, m is no quantum
number, but it indicates the projection of J  on the orbital angular momentum L
at the onset of the collision:

m = J z /  | J  | (2.31)

Because we are interested in the departure of the molecule HT from the
behaviour of a particle with a symmetric potential, we decided to integrate the
difference between dQ.m and dQ separately . So we calculated the differences

II

8
 JL
< r x , * '*[g  (g -  g cos X) -  g*2 (! -  cos x j l

J  av.

= r  * ,  x[ g  (g cos Xq - g * COS x) ]  (2*
av.

(2) _
A jm

F x2 , x2 'x2
Lg (g -  g

2 . 1 , x2  '*2.2
cos x) -  g (g -  g )

-  g (1 cos X0) J

T x2 x2 2 'x2 2 v 1 , x2 'x2.2 "1 /0= I g (g cos xo -  g cos x) -  g (g -  g ) J  (2.33)
av.

The quantities and A'2̂  have been averaged over the initial phase angles
ou . We remark that we have used g* = Mg /2  e , instead of g . Most tables

of transport cross sections for atom-atom collisions to which we want to compare
our results, are computed as a function of this reduced parameter ).

We next have to integrate the curves over the impact parameters and aver­
age over the available m-numbers. Thus, we will obtain the corrections to the

/  ft \  » 2 0
transport cross sections Q' ) for ©nch rotational state.

‘ (g*2) r, i  i  + (-Dgi  ƒ
\ L  " 2 1 + 2  J °

A<*>
jm
x2 2g

bK dbK . (2.34)
av.over m
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LEGEND
o j « 0
x j . 1
•  j  *2
a j . 3
f j  . 4
a j  «5
A j  . 6

Fig. 2 .8  A (Eq. 2 .32) as a function of im pact

param eter for different in itia l rotational
states j ,  averaged over in itia l phase angles U).
On the left hand side we have m  = -1 , on the
right hand side m  = + 1. g*2 = 81.666.

Fig. 2 .1 0  See caption Fig. 2 .8 ; g*^ = 1.021.
The line of reference dQ^ '  (2 .27)
has also been drawn.

x2Fig. 2 .9  See caption Fig. 2 .8 ; g = 20.417.
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The superscript * indicates that the cross section has been reduced by its
20value for the rigid sphere, as is done by Hirschfelder, Curtiss and Bird ).
( D *From the same reference we note for comparison that the cross section Q
x 2for atom-atom collisions decreases from 1.0 to about 0. 6 in our range of g

x2 i {Now, there are five relevant integration variables (: g , b, j, 9  ̂ and 0.)
at the beginning of the collision, the influence of which will be examined through
a series of diagrams sampled from the computed data.

1°. Variation of b. In Figs. 2.8 to 2.13 A a n d  A® are plotted versus
x2 “  -----------------  k2 Jm Jmb for different values of j , m and g . Also instead of b we rather use the

dimensionless impact parameter b* = b/a . The figures are each divided into
two parts; on the right hand side we have curves with m = + 1, and on the left
hand side we have the corresponding curves with m = - 1. These curves were
calculated with the Lennard - Jones potential (2.4). The curves with equal j and
|m| values coincide at b = 0 , because an inversion of J  is equivalent to an

inversion of L. Only at the lowest velocity, g =1 (Figs. 2.10 and 2.13) the
deviations A were so large, that it was possible to insert the reference curve
dQ, without blowing up the figure. dQ® is a decreasing curve with value dQ®=
2 gK̂  at bK = 0 ; dQ® increases from 0 to a maximum, dQ® = gK̂  and
decreases afterwards.

2°. Variation of j. The results demonstrate the physical behaviour of the
asymmetric rotator under the influence of the collision. For small quantum num­
bers j one finds an excitation to higher j-values and therefore, for small impact

f

parameters, the two effects g < g and cos x < cos X both contribute in the
same direction, due to the negative sign of the cosine function (Eq. 2.32 and Eq.
2.33). A® is negative as it depends on cos x > A® is positive as it dep­
ends on cos^ x •

For high quantum numbers, which have stored energy much larger than the
translational energies which we are using, one finds de-excitation to lower quant­
um numbers. At small impact parameters, the two effects again reinforce one

I Q\ (2)
another, g > g and cos x >  cos x Q, so that A' '  is positive and A'
is negative. At large impact parameters the cosine function is positive and the
deviation aX produces an opposite change in the cosine function. Both effects
will now tend to compensate each other.

o x2 t  «3 . Variation of g .A t  very high velocities the corrections almost decrease
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Fig. 2.11 A (Eq. 2 .33). See caption fig . 2 .8 .

g*2 = 81.666.

Fig. 2 .12  See caption Fig. 2 .1 1 . g = 20.417.

Fig. 2 .13  See caption Fig. 2 .1 1 . gX = 1.021.
The line of reference d Q ^  (2 .28)
has also been drawn.
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to zero. The collision time becomes so short that the details of the potential are
no longer experienced by the colliding particle. We then enter the case which is
adequately described by the sudden approximation. We did not investigate the
case of very low velocities. There is, however, one remarkable feature which

»2 *we met at g =1 . Some trajectories showed a final ® (Fig. 2.1), which con­
tained some multiple of 2 n . The collision time was also some multiple of the
usually encountered values. These must have been so called orbiting collisions,
even though, for atoms, they occur at lower velocities.

4°. Variation of 0 Ï. If there is no preferred axis in space, all initial
orientations of J are equally probable. This statement is only true if the angular
momentum distribution in space is  isotropic. There are, however, recent de­

l l  12. , ,velopments ’ ), dealing with anisotropic distributions and the consequences
to the calculation of transport properties. From our calculations it will also be
possible to see if, over a larger number of collision patterns, some preferred
orientation arises in the vector position after the collision. We have not yet in­
vestigated this from our data.

In Fig. 2.14 and Fig. 2.15, and in Table 2.1 and Table 2.2 we show the
/1 \ 9 x2

deviations AQ;^ for initial relative energy g =20  and initial rotational
quantum numbers j = 1 and j = 2, respectively. The results of these three di­
mensional calculations were obtained with a Buckingham potential (2.5), which
yielded almost the same AQ* as the Lennard -  Jones potential (2.4) in the
corresponding cases. There are some symmetry properties which reduce the
number of required trajectories. From the transformation of the co-ordinate
system (2.13) and (2.16) it can be derived that, with constant O*, the symmetry

«J
of the scattering angle cos x is mainly determined by

cos^ -  sin^ 0^ (2.35)
tJ J

The curves of equations (2.32) and (2.33) will, therefore, have a symmetry of
0 1 + n tt (n = 0, 1, 2 ......... ). From (2.35) we also remark that AQ*
oscillates as a function of 0 * in a nearly symmetric way around an averageJ 8
value, the amplitudes having opposite sign for 0 j  + n tt/ 2  (Fig. 2.14 and Fig.
2.15). The oscillations are strongest for ©j = tt/ 2 .  This may be understood
from the observation that the J vector is then in the scattering plane and all
torque contributions are now perpendicular to that plane. The departure from
the spherically symmetric potential model is therefore enhanced with the full
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( 1 ) *
Fig. 2 .14  Asymmetry corrections AO, '  forlm

in itia l j = 1 as a  function of the
in itia l orientation o f J in space (polar
angles Q  and© 1 relative to the

J J
XYZ system). The curves shown in the
diagram  are for different values^ of
0* . g“ 2 = 20.

j

ao2s-

Fig. 2 .15  AQ2m for in itia l j = 2. See caption

Fig. 2 .1 4 .

Q07S

55



TABLE 2.1

AQ,(1 ) * 0 2
(in A ). Dependence on the orientation of J a t g = 20 .

-  0.0210 + 0.0095- 0.0463 -  0.0595 - 0.0478

+ 0.0041- 0.0506 - 0.0672 -  0.0648 -  0.0379

-  0.0646

- 0.0502 -  0.0422 - 0.0183 + 0.0115-  0.0475

-  0.0216 - 0.0024 + 0.0177-  0.0382 - 0.0340

+ 0.0167-  0.0370 - 0.0243 - 0.0038-  0.0378

for O = 0 we have

G 1 = 180° " "
J

-  0.0447

+ 0.0202

TABLE 2.2 .

(in A ). Dependence on the orientation of J a t g

+ 0.0772+ 0.0336+ 0.0004+ 0.0004 -  0.0105

+ 0.0024 + 0.0633-  0.0738-  0.0372-  0.0090

-  0.0401

+ 0.0744-  0.0057 + 0.0285-  0.0128-  0.0005

+ 0.0832+ 0.0328 + 0.0647+ 0.0215+ 0.0107

+ 0.0616 + 0.0862+ 0.0348+ 0.0173+ 0.0042

for J
e 1

J

0 we have -  0.0003

180° " " +0.1073
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out-of-plane scattering.

5°. Variation of Qj .  In Fig. 2.16 we show the © j-dependence of
averaged over the variations with 0 lT , and weighted with sin ©* in order to meet

« J
the requirement of equal a priori probability for every orientation of J. We selec­
ted the two cases with initial j = 1 and j = 2, because they have the highest occiq>-

u2
ation numbers at the temperature where g = 20 is the most probable translati­
onal energy in the gas mixture. A striking feature in Fig. 2.16 is that the dep­
endence of A QY^ on ©j is not symmetric about 90°. The corrections to the

(D *  iFig. 2 .16  AQ sin 0  for in itia l j = 1 andjm j
j = 2, averaged over the -values.

*2 I
g = 20.

transport cross sections arising from negative m-values are more positive (or
less negative) than the corrections from positive m-values. The configuration
m = -  1 appears also to be more effective in de-excitation than m = + 1. This can
be understood from the mechanics of the collision. In the configuration with J
and L anti-parallel a head-on encounter with the rotating potential centre is more
frequent and more effective as compared with parallel positions. Thus, our re­
sults indicate a polarizing effect of the orientation of J  on transport or relaxation
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phenomena based on inelastic scattering. It becomes of importance as soon as a
preferred axis is introduced in space, which may be the direction of the particle
velocity in a beam, but a temperature gradient in a gas as well. Therefore, the
assumptions of equal probability for J  - orientation as well as the effect of the
collisions on the orientation distribution have to be re-examined.

Because of the very long time used in computing the integration over all J
- orientations

2 tt tt .

A Q (.C)* = ƒ  ƒ  AQ s i n © j  d©1 d t f  (2.36)
J O O  ̂ d d d

and because we wanted to have insight in the results of variations over a large
x2range of g and j, we decided to make do with

AQ m *
j . - l

-,(«)*
jj,+ l (2.37)

as an approximation. With (2.37) the much more rapid two-dimensional version of
the calculation can be used. The error introduced by this approximation is rather
large as may be seen from the following comparison:

AQ*1)* = with (2.36)
for j = 1 -  0.0414
for ] = 2 +0.0177

with (2.37)
-  0.0123
+ 0.0535

We remark that the two-dimensional approximation gives higher results, because
it does not account for the asymmetric shape of the ©* - dependence. However,

from sample calculations we found an improvement for higher j -  numbers. Some
results of the two-dimensional calculations have already been exhibited in Figs.
2.8 to 2.13 and discussed above. We integrated the curves over the impact pa­
rameters according to (2.34) and averaged over the m = + 1 and m = - 1 values
according to (2.37). The results are tabulated in Tables 2.3 and 2.4 and shown
graphically in Figs. 2.17 and 2.18. For comparison we repeat that the cross

/ i \ ^  x 2section Qv ; for atom-atom collisions in this range of g decreases from
1.0 to about 0.6. (Ref. 20, p. 558). On the average our cross sections are 20%

/o \ *
larger. The corrections to the Q' are smaller, about 10 %, except at very
low velocities where they reduce the older values by 30 % and more.
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( 1 )*
Fig. 2 .1 7  Asymmetry corrections A Q, for different

j x2in itia l values of j ,  as functions of g
according to (2 .37 ). The reference quantity

( 1)*Q varies from 1 .0  to  about 0 .6  in  this
energy range for an atom -atom  collision.

a ( 2 ) *  ,Fig. 2 .18  Asymmetry corrections AQ. for
different in itia l values of j ,  as functions of

x2
g according to (2 .37 ). The values
still have to be m ultip lied  with the
num erical factor 3 /2  occurring in front
of the integration (2 .34) (Compare
Tabel 2 .4 ).
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TABLE 2 .3 .
_ ^  ( 1) *  ®2

Asymmetry corrections on the diffusion cross section Q (in  A ) for the m olecule
_  . 4

HT colliding with He.

x2
g i  = o j -  i j = 2 j = 3 j -  4

1.021 -0 .0 4 3 + 0.753 + 0.761

5.104 -  0 .058 + 0.0803 + 0.2518 + 0.2614 + 0.2065

20.417 -  0 .044 -0 .0 1 1 2 + 0.0526 + 0.1207 + 0.1677

51.042 -  0.0019 + 0.0074 + 0.0398 + 0.0665 + 0.1152

81.666 -  0.0068 + 0.0032 + 0.0194 + 0.0402 + 0.0670

127.60 -  0.0069 -  0.0016 + 0.0045 + 0.0174 + 0.0347

183.75 -  0.0001 + 0.0001 + 0.0008 + 0.0020 + 0.0033

TABLE 2 .4 .
( 2 )*  ° 2

Asymmetry corrections on die viscosity cross section Q (in  A ) for the m olecule

HT colliding with ^He.

x2
g J = 0 j  - 1 j = 2 j  = 3 j -  4

1.021 + 0 .748 -  4 .735 -  9 .039

5 .104 + 0.0514 -0 .3 0 7 9 -  0.9466 -  1.0228 -  0.6429

20.417 + 0.0243 -  0.0158 -  0.1211 -  0.2584 -  0.4104

51.042 + 0.0743 + 0.0846 -  0.0089 -  0.0351 -  0.1376

81.666 + 0.0594 + 0.0534 + 0.0353 + 0.0111 -  0.0584

127.60 + 0.0750 + 0.0658 + 0.0524 + 0.0355 + 0.0096

183.75 + 0.0615 + 0.0600 + 0.0473 + 0.0321 + 0.0143
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2.6 THE CROSS SECTIONS FOR EXCITATION AND DE-EXCITATION

In comparing the initial and final rotational angular velocity of the mole­
cule, one meets a characteristic feature of classical mechanics. That is , the
angular velocity is a continuously varying function. In Fig. 2.19 an example is
given of the dependence of t  , the time derivative of the angle ♦ (see Fig. 2.1)
after the collision, on the initial phase angle V _ q= w . The curves are given

\  \  \
\  \  V

Fig. 2 .1 9  Final rotational angular velocity ( a s  a
function of the in itia l phase angle (I),
for different in itia l rotational velocities
(left hand ordinate) or quantum numbers
j (right hand ordinate). See caption of
Fig. 2 .6 .
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fordifferent initial values of t|r , corresponding to quantum numbers j. = 0, 1,
2, 3 and 4. The starting values with m = - 1 have been indicated by -  1, - 2, - 3
and -  4. The phases w of the curves have been shifted in order to have them
starting at the same point, jf = j{. The left hand ordinate is scaled for values of

t  , the right hand ordinate shows the corresponding j values. The curves are
seen to be nearly symmetric with respect to inversion of the orientation of the—*
initial J  vector, which in Fig. 2.19 is parallel or anti-parallel to the Z-axis.

We now make use of the equal a priori probability of all angles u> to determ­
ine the probability of excitation to a certain level. Each energy level is artific­
ially defined by a broad band. The separation between the levels is arbitrarily
taken at half the energy distance between the levels. It can be shown that the
final answer (the macroscopic measurable relaxation time) is not very much in­
fluenced by a shift of this boundary even to a quarter of the energy difference.
Except for very low velocities, we found as a rule that the scattering angles for
the trajectories, which resulted in a definite change of energy level, were
grouped closely together around an average value. We used this average value
X in the evaluation of the cross section. It may be remarked that this inelastic
scattering angle associated with the process of excitation or de-excitation differs
greatly in most cases from the scattering angle used in the previous section.
There, we took the average over all phase angles w, because both elastic and
inelastic scattering phenomena were concerned. This time we use the fraction of
all angles u> which gave rise to a definite transition from level i to j, as the pro­
bability f.j of that particular transition. The differential excitation cross section
a is then defined by

fy (b) b db = -  o.j (x, Ö , g) sin x d x (2.38)

x  2In Fig. 2.20 the o .. are shown at g = 1. In Fig. 2.21 the a„. are shown
x2 ”  ‘1for g = 20, as an example. The curves exhibit two kinds of maxima. All have

local maxima at X = it i corresponding to back scattering in the centre of mass
33system. This is a general property of inelastic scattering processes ). A sec­

ond maximum occurs at lower scattering angles, sometimes so small that it
only distorts the curve a little. This second maximum often exceeds the first,
and is largest for the lowest quantum jumps A j =+ 1, where it is shifted to
forward scattering, even to n /4 . The curves are strongly energy dependent go­
ing through a maximum when the orbital and rotational angular momenta are of
the same magnitude. Thereby the differential excitation and de-excitation cross
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2.1/  /

Fig. 2.20 Differential cross sections
for rotational transitions at
g®= 1.021 in the two-
dimensional scattering sys­
tem. The numbers indicate
the transition from i -* j.

a  (X.g)

# - 2.-1
Fig. 2.21 See caption of Fig. 2.20.

g*2 =20.417.
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sections follow the behaviour of the potential energy and show the properties of
the rotating model. In Figs. 2.22 and 2.23 we show the total inelastic cross
section

2 T T  TT

CT.. (g2) = -  ƒ  ƒ  a.j (x  . ©J. g) sin X d X d O j (2.39)
o o

for excitation and de-excitation respectively. We plotted them as a function of
x2the reduced relative energy g in the centre of mass system. Again the integ­

ration over the angle ©T has been replaced by the average over the available
orientations of the J vector, m = + 1 and -  1 (compare formula 2.37). Sample
calculations for other orientations of J  showed that the transition probability al­
most vanishes for m = 0. This is understandable, because an impact perpendic­
ular to the plane of the rotator cannot induce a change of rotational velocity_,  —»

(J along X), whereas the excitation process for the position of J  along Y, is
limited to very low impact parameters. In quantum mechanical language, this
implies that the major contribution to the transition process comes from the
highest magnetic quantum numbers with respect to L.

The numerical accuracy of the cross sections plotted in Fig. 2.22 and Fig.
2.23 is rather poor, because the calculations were performed for only a few
impact parameters, widely spaced. Another, more fundamental error arises
from the arbitrarily defined boundary between classical energy regions, to which
a quantum was assigned. The appearance energies of the excitation curves in Fig.
2.22 do not coincide exactly with the values we have to expect from the rotational
energy diagram, known from spectroscopic data. The appearance energies were
indicated by vertical arrows in the figure. A shift of the artificial boundaries be­
tween the energy levels towards the energy of the level j (2.39) would improve
the results. The same can be said of the de-excitation cross section curves
(Fig. 2.23) where the expected position of the resonant maxima is again indicat­
ed by vertical arrows. Now, we should shift the boundary downwards to the level
i. The behaviour of ct. q and ct01 diverges both in the height and the shape of
the curves. Nevertheless, it is remarkable that a purely classical mechanical
calculation could produce such a reasonably correct description of a quantum
event, especially for the transitions A j =+ 1. Quantum jumps higher than

A j =+ 1 have a comparatively small, although not negligible, probability. At
high energies even A j = - 4 is observed. It is conceivable that these higher
transitions are responsible for the distortions of the curves of the lower transit-
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Fig.

02 \

2 .22  T ota l cross sections for rotational
excitation of HT in collisions with
^He, as functions of energy, avera­
ged over m = +1 and m  = -1 . The
vertical arrows are the appearance
energies expected from spectroscopi-
ca l data. The 02-arrow is not shown.

------ ► «V
(MO 0J5

’  ► g.2 »

Fig. 2 .2 3  Total cross sections for rotational de-
excitation of HT in collisions with4

He, as functions of energy, averaged
over m = +1 and m = -1 . The vertical
arrows are the expected resonant ener­
gies.

------ - «V
aw ais

— ► , . 2
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TABEL 2 .5

Sem i-classical cross sections CT„ (in  A ) for rotational transitions,

induced in  HT by the collision with H e.

81.66651.04220.4175 .1041.021

3 -  1

4 — 0

0 - 1
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ions. From quantum mechanics we know that such transitions are, at least op­
tically, forbidden and they seldom have been taken into account in calculations.
Violation of this selection rule, however, can occur in collisional excitation.

In view of the fully separate calculations of the excitation and de-excitation
cross sections, the application of the general relation between them 31^

2
(with gj -  g. = (E. - E.) /e  for the exchanged energy):

2 2 2 2
(2 i+ l)g*  a .. <gj) = (2j+l)g* a .. (g*) (2.40)

may provide some information about the internal consistency of the results. We
then observe rather good agreement. The compared values differ by a factor 2.

TABLE 2 .6 .
0 2

Rotational transition cross sections 0^ (in  A ) and transition

probabilities, com pared for different colliding m olecules.

A . Excitation. In itia l relative energy 0 .06  eV.

Colliding

pair <T..
ij ^  kin P

ij

33H -  H )
2 2 33

a  02 = 0.00735 20 .6 = 0.00036

He -  Hz 33) a  m  = 0.0148 17.85 PQ2 = 0.00081

He -  HT a  01 = 1.416 17.35 P = 0.0814

He -  HT a l2  = ° .335 17.75 = 0.0188
12

B. De-■excitation. In itia l relative energy 0.0259 eV.

Colliding

pair a ..
ij ® kin

0
?

33H -  H )
2 2 9

.  33 °  20 = 0*02° 22 .0 P20 = 0.00091

He -  H )
2 9 a  20 = ° -2 1 ‘5 19.0 p20 = 0.0111

He -  HT
a  21 "  1-41 21 .9 K *  = 0.064521

He -  HT a  j 0  — 0.95 19.5 P = 0.0487
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It is not possible to compare our values with other theoretical or experim­
ental results. In the literature, there is only a rather poor approximative treat-

31
ment of the a., in HD by Takayanagi ), who obtained transition probabilities

™ 33
per collision larger than 1. From quantum mechanical theory Roberts ) comp­
uted transition cross sections for the collision of Hg with He and with Hg. In
Table 2.5 we compare his results with ours. We have also given a rough estim­
ation of the transition probability per collision P„ = a .j/a  kin> where a^in
is the elastic scattering cross section as it occurs in viscosity measurements.
The large differences between the probabilities in He -  Hg and the Hg -  Hg sys­
tems arise from the differences in the V„(r) s, which were employed by Roberts
in the potentials underlying the calculations. A comparison with data from sound

35dispersion measurements ) shows that the theoretical values for H„ -  H_ are
wrong by a factor 3. The value of V_(r) is to be multiplied by 1.5 to obtain bet­
ter agreement, which is not very pleasing because the potential was a theoretical

33one, derived from first principles ). The errors in our classical data being of
the same order of magnitude as in the quantum mechanical case, we feel less
reserved in exhibiting the results of our calculations.

2.7 CONCLUSIONS

The classical mechanical calculation of the orbit of a He atom colliding
with a rigid rotator molecule HT, shows deviations from the scattering angle of
the corresponding atom-atom collision, when the central symmetric potentialis
replaced by a potential which is still spherically symmetric about the geometrical
mic^ioint of the molecule but which rotates together with the molecular axis
around the centre of mass. The equations of motion exhibit separate terms for the
contribution of centrifugal and Coriolis forces. The computer calculations of the
cross sections derived from inelastic scattering show strong dependence on the
initial orientation of the rotator axis and of the angular momentum, and on the

relative angular momentum and energy of the particles.
An analysis of the effect of the space orientation of the angular momentum

of the rotator shows a considerable polarization of the deviations of the cross
sections. This point, as well as the effect of the collision on the position of the
angular momentum, deserves further investigation in view of the anisotropy which
they may introduce in the statistical distribution function. For the moment we
took as an approximation to an orientation averaged cross section, the positions
of J  perpendicular to the collision plane as representative, which permitted a
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simplification of the collision problem to only two-dimensional equations of mo­
tion.

Because of the long computing times the number of calculated orbits is only
a test sample with respect to the required number for an accurate integration.
The results, thus, show with a restricted accuracy that the transport cross
sections for the different rotational states increase by some 20 %. The transition

Q  _  O

probabilities increase from 10" to about 5. 10 . These results are in qualita­
tive agreement with the values which are to be expected from experiments. It is
remarkable how correct a calculation based on classical mechanics can describe
such a quantum phenomenon as the collision induced transition between rotation­
al states.
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C H A P T E R  3

DIFFUSION AND THERMAL DIFFUSION IN GASEOUS MIXTURES WITH
INTERNAL DEGREES OF FREEDOM

3.1 INTRODUCTION

There have been many excellent recent review articles on diffusion ) and
2thermal diffusion ) in gas mixtures with polyatomic components, in particular

the hydrogen isotopes. We therefore feel that it is not necessary to give a gen­
eral introduction to the subject. Thermal diffusion appears to be very sensitive
to the characteristics of the collisions and the intermolecular potential. Apart
from some subtile discrepancies ), the theory of Chapman and Enskog ’ ),
using a spherically symmetric potential, succeeds very well in predicting the
transport properties of s y m m e t r i c a l  molecules. They behave approximat­
ely like atoms as we could confirm in Chapter 1.

The anomalous behaviour of a group of molecules with an a s y m m e t r i c
distribution of the atomic masses is therefore very interesting. The measured

4 5thermal diffusion factors depart so far from the calculated values ’ ) and
Chapter 1), that any improvement of the symmetrical potential theory fails to
explain the discrepancy. On the other hand the special properties of the asym­
metric molecules do not show up in the measured diffusion coefficients, which
lie very close to those of the symmetric molecules ^ ). The introduction of
assumptions about the perturbation of the symmetry and inelastic collision ef­
fects, unfortunately will lead to values of the diffusion coefficients departing
very much from the experimental values. It was a challenge to many authors to
find an answer to this problem and thus we could make use of several theoretical
treatments available.
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Wang Chang, Uhlenbeck and De Boer ) developed a formal kinetic theory
for transport properties in gases, which includes the existence of internal deg­
rees of freedom and inelastic collisions. Taxman *) did the same, but on a
purely classical basis, considering the internal energy as a continuous quantity.
New formulae were introduced for the collision integrals. A new characteristic
time appeared connected with the relaxation of internal energy into translational
energy. Monchick, Yun and Mason  ̂ ) extended this theory to mixtures of gases.
An attempt to evaluate the thermal diffusion factors was made by Monchick,

42.Munn and Mason ). They expressed these factors as far as possible in terms
of known experimental quantities, which were assumed to be insensitive to the
potential model, but also used some data from theoretical calculations on atom-
atom collisions. The calculations are based on the usual "semi-classical" as­
sumption, which precludes any correlation between the internal state energy and
the relative velocity (or scattering angle). The results are completely inadeq­
uate and, therefore, raise doubt about the validity of the expansion of the thermal
diffusion factor into powers of the relaxation time, thereby assuming the ine­
lastic terms in the collision integrals to be small. Waldmann *) and McCourt

12,and Snider ) removed the restriction from the Wang Chang - Uhlenbeck theory,
which consists in the fact that it does not account for the possible degeneracy of
the internal states. This is the case for the rotational levels of hydrogen mole­
cules, which we want to study in particular in view of our own experimental re­
sults. Although this improvement is of great theoretical significance, we have
reasons to expect that the resulting corrections will not be of the required order
of magnitude. They introduce merely second order effects on the transport
properties due to angular momentum anisotropy.

From quite another point of view, systems with internal degrees of freedom
can be treated with thermodynamics of irreversible processes (Ref. 43, p. 221).
This may be done by the introduction of a continuous internal configuration

44,space ) (in analogy with the classical model of Taxman). It may also be ap­
plied by considering the internal quantum states as separate components of a

43.chemically reacting mixture ) (which corresponds more to the Wang Chang -
45Uhlenbeck treatment). Meixner ) proved the great value of this kind of ap­

proach, by deriving macroscopic expressions for the heat conductivity of gases
with rotational states, which account for the deviations introduced by the influ­
ence of additional heat transfer and transitions between quantum states. We
intend to show that the chemical reaction concept introduces an additional mass
and heat transfer mechanism in diffusion and thermal diffusion of hydrogen.

9
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The influence of chemical reactions on the distribution of the components of a
46, 47mixture in a temperature gradient has been described a long time ago ).

At least this influence is of the first order.

3.2 THE DIFFUSION COEFFICIENT

Let us consider a mixture of two gases, or and P , one of which, say (3,
consists of atoms with a spherically symmetric interaction potential, for in­
stance an inert gas. The first component, a  , consists of diatomic molecules
with internal degrees of freedom, which may be rotational or vibrational states.
Such a molecule, when colliding with an inert gas atom, does not have a spher­
ically symmetric potential, but as long as it is homonuclear, this is a good
approximation.! For heteronuclear molecules, however, the centre of the po­
tential rotates around the centre of mass of the molecule, or vibrates about the
equilibrium position, which is no longer the geometrical midpoint of the mole­
cule. As was shown in the preceding paper, considerable deviations follow for
the scattering and rotational excitation cross sections. These deviations depend
strongly on the quantum number involved. For these molecules, where the dif­
ferent scattering for each of the internal states becomes of importance, a modi­
fication is required of the equations underlying the calculation of the transport
coefficients. The new feature is conveniently described in terms of chemical
reactions, which can be said to occur between the internal states, under the
influence of collisions:

°i -  V  ai  *  “ 3 ’ etc-

In these reactions translational energy of the particles is transformed into in­
ternal heat. The reaction also changes the identity of the particle. On the other
hand the identity of the particles does not appear in the macroscopic measure­
ment, where only the concentration of a as a whole is measured. The formal­
ism for the latter aspect of the measurement, was developed by Prigogine and
Buess 46) to calculate thermal diffusion coefficients in mixtures where a true
chemical reaction was involved. Their case was the particular case of chemical
equilibrium, i.e . very high reaction velocity. Now, the hydrodynamic relaxation
times involved in transport properties are mostly large with respect to the re­
laxation times which occur in the establishment of the stationary state of an
equilibrium distribution between the internal degrees of freedom. Thus, the
chemical equilibrium is not a bad assumption. If, however, the reactions are
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very slow, the treatment can be refined according to De Groot and Mazur ) ,

who conserved the dependency of the phenomenon on the reaction velocity.
The phenomenological equation for the diffusion flow of component a in a

binary mixture with p , reads

J = -  p 2) grad n , (3.1)of K ° a

where is  the mass flux of component or, defined by

J = p c (v -  v), (3.2)of K or '  a ”  '

43

TABLE 3 .1

Notation

p =  mass density of the i 'th  component ; Z  p . = p ;
i  . - 1

p = to tal mass density o f the mixture ;

c. = p ./P  = mass fraction ; Z  c  = 1 ;
1 1 1=1

N( = m olar density o f the i th  component; Z  N. = N;
1 i= l  1

N = to ta l m olar density.

n = N ./N  = m olar fraction or concentration ; Z  n. = 1 i
1 1  i= l

P = M N ; M = m olar weight of the i 'th  component ;
i i i  i

M = reduced mass o f the colliding particles ;

K. = Boltzmann's constant.
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Here v is the centre of mass velocity of the mixture and v^is the flow velocity of
component o . From (3.2) we have

The coefficient 2) is the measurable binary diffusion coefficient. The other
symbols are defined in Table 3.1. Let the component a consist of a finite set
j = 1...........  n-1 of internal states. Then, the measured grad n equals

n-1
grad n = grad ( 2  n.), (3.4)

“ j=l J
f

Let the component 3 be the n th component,

grad n „ = grad nn .

The mixture is now to be considered as a multicomponent mixture of n compon­
ents, and the diffusion equation becomes

P c„
n-1

2 (D
j=l ”

D ) grad n.,nn j (3.5)

where the D.^ are the multicomponent diffusion coefficients (Waldmann ).
Let us now assume local chemical equilibrium between all pairs of comp­

onents of a .  The chemical equilibrium condition for unimolecular reactions,
i .

I
±r Qf. , is given by

(3.6)

where p. are the thermodynamic potentials of the components, i, k = 1.........
n - 1 .  Now, for ideal mixtures, we have by definition,

Pj = —  In n. + C. (T), (3.7)
i

where R is the gas constant, and C depends only on the temperature. Taking
the gradient of equation (3.6) at constant temperature and pressure, we obtain
(n -  1) (n -  2) /  2 relations between the n -  1 components of a in the mixture:

ck grad n. -  c. grad n. ; (i /  k). (3.8)
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This relation is equivalent to the statement that the local equilibrium distribut­
ion of the components of or is conserved, independent of the gradient in the total
concentration of or. On purpose we wrote Eq. (3.8) in the present form, using
the unimolecular character of the reaction, M = because the summational
relations apply :

E c, D.,
1=1 1 11

0 . (3.9)

We then get from (3.5), for every i

n
j

or, summing over all components,

grad Q

P —— D grad n.,v c, nn 6 ii

n-1
S n )

' 1=1 1

1 -  c
pc D nn nn

(3.10)

(3.11)

The expression for the measured diffusion coefficient 2) is obtained from a
comparison between (3.1) and (3.11), using (3.3)

1 -  c nnn
(3.12)

In order to be accessible to calculations the multicomponent diffusion co­
efficient D has to be expressed in terms of the cross sections for the binary
collisions between atoms and molecules in different internal states. To this end

8 14 20a solution is required of the Boltzmann equation ’ ’ ), which describes the
microscopic space-time behaviour of the singlet distribution function f.(u.; r, t),
where u. is the velocity of the particles of state i. A modification of the Boltz-

l  9
mann equation given by Wang Chang, Uhlenbeck and De Boer ), takes into ac­
count the existence of internal degrees of freedom and transitions between them.
This treatment, which pertained to a single gas component, has to be extended
to mixtures. Monchick, Yun and Mason 10) and Waldmann and Triibenbacher )
performed a formal extension of this kind. We note that in these extensions as
well as in the main body of ref. 9, the transition rate between translational and
internal degrees of freedom is supposed to be high. This is why these forma­
lisms are all based on a zero order Maxwell distribution function f. , multi­
plied by a Boltzmann distribution over the internal states based on the same
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temperature T. This implies that the state of the gas can be described by only
one temperature for both translational and internal degrees of freedom.

Now, from a comparison of the treatment of Waldmann and Triibenbacher
4&

) with the older simple solution of the Boltzmann equation in the case of atom-
14

ic collisions ), it can be seen that the transformation of the multicomponent
diffusion coefficients in terms of the development coefficients A of the diffusion
part of the Chapman - Enskog perturbation function 0  , or in terms of the
binary diffusion coefficients between the components remains of the same ma­
thematical form, wether there are transitions or not. The development coef­
ficients describe vectorial phenomena and thereby cannot depend explicitly on
the scalar rates of transition. So far we can proceed with our theory. Next,
these coefficients have to be expressed in terms of new collision integrals
which contain the inelastic cross sections for diffusional phenomena.

However, these treatments are inconsistent with the fundamental require­
ments of our phenomenological theory which stems on thermodynamics of
irreversible processes. We considered every internal state to be a separate

— 8entity, reaching the local Maxwell distribution within microscopic times (10
sec.) which are short with respect to the establishment of equilibrium between

-6internal states (10 sec.). The reaction rate still can be said to be infinite
from the macroscopic point of view, where the hydrodynamic relaxation times

_ o
are of importance ( > 10 sec.). The number of collisions involved in rotational
transitions with hydrogen isotopes fits into this scheme. The exchange of energy
and the existence of a different internal temperature have already been accounted
for in our treatment by the use of the concept of chemically reacting components.
Therefore, we stay with the solution of the Boltzmann equation in the early

14 20fashion ’ ) and the simple collision integrals developed in this treatment.
A kinetic theory which would parallel our treatment, has to be developed along
the line of a "slow, but not negligible exchange"- case (App. ref. 9), which dis­
cerns between a translational temperature and an internal temperature. The
expressions for the transport coefficients would still contain terms depending
on a finite transition rate or relaxation time.

There is an objection against the use of the multicomponent theory of
20Hirschfelder, Curtiss and Bird ). Their definition of the transport coefficients

cannot be used for extension to systems with reaction between the different spe-
49cies ). If such systems are to be treated with the formalism of thermodynamics

of irreversible processes, full symmetry of the coefficients is required in the
14sense of Onsager's relations. Following the treatment of Waldmann ) which
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meets this requirement, we have

Dnn
! _ i
2 v (3.13)

(kiwhere A' '  are the coefficients of the development in Sonine polynomials of
i. 0the diffusion term in the Chapman - Enskog distribution function, v is the total

particle number density. The coefficients A may be expressed as a function of
the collision integrals n , by obtaining them from the relations (in Waldmann's
approximation) :

n
E

j=l
11 O, C •

1 ] i,0 A » )J.0
N « T  (M. + M.) 6i k " ni

(I ,  k = 1,

(3.14)

Because the set of equations (3.14) is not independent, one has to take into ac­
count

£ c. A® = 0. (3.15)
j=l J h  u

Fortunately, the set of equations (3.14) and (3.15) breaks down into n different
sets for each i. Each has the same Cramer-determinant, the elements of which
are :

n

*u - t s, °k <>- v  “ S ' 11 /  'M, +K—1

a.. = -  c. n f.1* /  (M. + M.)ij i ij i j
(3.16)

a. = 0, a . = c., a = 1 ,in nj j nn

leaving out the constants.

For example, for n = 3 (i. e. two internal states of the a particles)
equation (3.13) then becomes
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<°1+ «g> „ (1 .1 )*■*—  o » " " *  ♦ C. n « ; 1) * tc„ t)!1' l >*
3N kT 3 ' r  23 2 13

D2 c q (1 , 1>* q? ' 1)* + c O(1' 1)* n(1>1)* + c  n(1- 1)*n(1’1)*Cl“ l2 13 C2W12 “ 23 c3 “ l3 ll23

where, for brevity 0 ^ '^  stand for 0 ^ ’ ^  /  (M. + Mj).

The generalization to more internal states is straightforward.
In view of the application we want to make in section 4 of this chapter , we

also require the component a to be in trace concentration:

N. «  N
j P

N .

Then, using again the equality of the molecular masses,

j J =  1 . n -  1

equation (3.12) becomes

m  3N k T
16 p2 <*or + V  S

n-1
Z

i=i
J lrui (3.18)

where the are the normalized occupation numbers for the internal states:

(3.19)

As Cl we take the usual collision integrals defined by Waldmann ^ , but
now every internal state has its own fl . The transport cross sections for
ne a r l y  elastic scattering on which these Cl - integrals are based were de­
fined and calculated in section 2.5. Because of the necessity of maintaining the
effect of inelastic collisions on the scattering, we integrated the differential
cross sections over all scattering angles including those arising from inelastic
collisions. Also we took into account various differences in relative velocity
before and after the collision. The number of collisions which deserve to be
called inelastic in the quantum mechanical sense is small, so that the cross
sections will be close to the elastic limit. The cross sections being averaged
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over all space orientations of J  fulfil the symmetry relations with respect to
space and time inversion, such as are required in the solution of the Boltzmann

.. 48,equation ).

<tn
3.3 THE THERMAL DIFFUSION FACTOR )

A treatment similar to that of the preceding section can be given if the
system is subjected to a temperature gradient. Equation (3.5) is replaced by

_ _  n-1 T grad T n-1
J 0 = J = p 2 c.D, z; - p c  2 (D , -  D ) grad n., (3.20)P n j=1 j j T K n j=1 nj n n 's  j ’ '

Twhere the D ̂  are the thermal diffusion coefficients of a multicomponent mixture.
Equilibrium between the internal degrees of freedom is again assumed and from
(3.6) we obtain

grad n.
nt.p

grad T

The (n-l)(n-2) /  2 auxiliary relations now are vp

grad n,

grad T. (3.21)

n.M. n.M
grad n. = grad g- (h( - l y  grad T, (3.22)

f
where h. is the enthalpy per unit mass of the i th component, (h. -  h^), con­
sequently, is the difference in heat content between the two internal states i and
k. In other words, it is the translational energy, which may be set free in the
de-excitation reaction.

The stationary state reached by the thermal diffusion process is now not
necessarily characterized by

because, due to the switch in identity of the particles in the chemical reaction,
it is possible that they move as component i in the direction of the temperature
gradient and come back as k. The stationary state is, however, still adequately
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described by the condition that the m ass flow of the in ert component vanishes,

J = 0 .n

From  (3.20), (3.22) and (3.23) we obtain, using 2 c. D
j= l j }

-.T grad T
n T

n-1

n-1 n M,

2 (Dkn ‘  Dnn) I T T r  grad a* '1

nk ^
2 <Dkn -  Dnn>k-1 RT 2 Sra d  T >

(3.23)

(3.24)

and

grad n. u n
»T grad T \ Mk

+ JL . (Dkn" Dnn) _ ^ 2 - ( \  * hi> &rad  TRT
n. M.i i 2 (D. -  D ) n, M,kn nn k k

(3. 25)

With help of the definitions of Table 3 .1  and the relation

2  cj Djk = ° ’
j= l

(3.9)

th is  may be sim plified to
m n-1

Ci D n + 2 (Dkn " Dnn* NET ck ci (hk hi) grad T
grad n. (3.26)

Applying again the principle of form ula (3.4), we obtain

- T

2 grad n. = grad n
i= l 1 “

(1-c ) D n-1 D. -  D.n n p „ kn_____ in_
D -  N R T .r .  Dnn k>i nn

ck ci (hk -  V
grad T

(3.27)

We now introduce the sam e sim plifications which led to  equation (3.18) in the
case of diffusion. Thus, for trace  concentration of oi in p
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T grad n____ a
n n . grad Tï  p

bin

n— 1N M M„ i j ,g  p y
p r t

'  Q (1*1)kn in

,(1.1) ( 1 , 1)
^k^in kn

•(V V’

(3.28)

where a and a , .  are the thermal diffusion factors at chemical<*> bin
equilibrium and for the equivalent b i n a r y  mixture of atoms, respectively.

T
The identification of a , .  withbin

(1 -  c ) Dn' n (3.29)
bin

is justified only when Dnn does not differ much from the binary coefficient, oc­
curring when no reaction takes place. Then

_TDgrad T ggrad n = -  <* . n. n® g  bin p g Daar" DPP
grad T

T

Ca grad T
DPP T

(3.30)

3.4 COLLISION INTEGRALS AND CALCULATION OF THE COEFFICIENTS

/  O g j
The calculation of the collision integrals Q is accomplished by

20means of the well known formula )

( » ,s)
(s + 1) ! T:x s+2 I -  k * 2 / T

g* 28+3 Q(jnS) dgK, (3.31)

where g =M g /2  e is the reduced relative kinetic energy and T = k T/e
is the reduced temperature. We prefer to work with quantities T* and g , re­
duced with respect to the depth e of the potential well, because most numerical
tables make use of these units. Using the combining rules for e , the transport
coefficients for every pair of atoms can be calculated from the reduced n*(T*).
However, in the case of molecules with internal degrees of freedom, this ad­
vantage is lost because each internal quantum state j has a characteristic ro-
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tational energy and a characteristic rotational temperature. This makes it
impossible to generalize the calculation of the scattering cross section of section
2.5 so as to find the values for other molecules from the calculation of one "re­
duced" molecule. For convenience the collision integrals are divided by their
rigid sphere values (indicated by * ), as was done by Hirschfelder, Curtiss and

20 ( p ) .Bird ). From the scattering cross sections Q;* > which were calculated
with the rotating potential model in section 2.5, we evaluated the collision inte-

/ £ s) *grals Cl \ n ’ of equation (3.31). The results are shown in Tables 3.2, 3.3
and 3.4. In Fig. 3.1 and 3.2 the deviations are shown between the former colli-

(0  g jft
sion integrals and the OJ ̂  values for a spherically symmetric potential
model (compare Ref. 20, p. 1126). The latter are also given, in the first rows

TABLE 3 .2
_ ^  . 4

Collision integrals for the diffusion of the rotational states of HT in He.

T* a  *< *P oE1» *On
n ( M >  *

In ° r * n ‘1,1> *3n
(1»1) *o '  14n

3 0.9490 0 .842 1.053 1.314 1.402 1.322

4 0.8836 0.781 0.941 1.163 1.264 1.259

5 0.8422 0.7464 0.8752 1.0680 1.1761 1.2101

8 0.7712 0.6981 0.7790 0.9189 1.0270 1.1077

10 0.7424 0.6825 0.7469 0.8662 0.9669 1.0567

20 0.6640 0.6363 0.6690 0.7363 0.8035 0.8833

30 0.6232 0.6048 0.6270 0.6706 0.7187 0.7786

50 0.5756 0.5651 0.5771 0.5983 0.6249 0.6589

80 0.5352 0 .530 0.535 0.545 0 .557 0.573

TABLE 3 .3
4 .

Collision integrals for the therm al diffusion of the rotational states of HT in H e.

T* n% 2) *
Of 0

Q (1,2> *
On

n (1,2) *
In

n (1 ,2 > *
2n 3n Q 4n

3 0.8640 0.708 0.922 1.247 1.402 1.441

4 0.8167 0.675 0 .837 1.103 1.274 1.370

5 0.7847 0.6590 0.7895 1.0157 1.1901 1.3143

8 0.7260 0.645 0.7257 0.8863 1.0364 1.1864

10 0.7013 0.6409 0.7048 0.8399 0.9706 1.1178

20 0.6293 0.6028 0.6367 0.7055 0.7819 0.8802

30 0.5909 0.5723 0.5943 0.6334 0.6828 0.7465

50 0.5459 0.5369 0.5463 0.5609 0.5821 0.6103

80 0.5075 0.504 0 .507 0.512 0 .519 0.529
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TABLE 3 .4
,  ¥w  . 4

Collision integrals for the viscosity of the rotational states of HT in He.

X
T n (2,2 )  *

n ‘2’2> ‘On n < 2 ' 2 > *
In

n ( 2 , 2 )  *
2n n ( 2 , 2 )  *3n

n ( 2 ,2) *
4n

3 1.0390 1.074 0.906 0.581 0 .426 0.512

4 0.9700 1.002 0 .897 0 .669 0.515 0 .497

5 0.9269 0.9604 0.8892 0. 7129 0.5724 0.5018

8 0.8538 0.8991 0.8729 0. 7597 0.6625 0.5442

10 0.8242 0.8759 0.8619 0.7681 0.6901 0.5716

20 0.7432 0.8043 0.8011 0.7575 0.7212 0.6423

30 0.7005 0.7576 0.7533 0.7297 0.7066 0.6571

50 0.6502 0.6865 0.6832 0.6736 0.6622 0.6412

80 0.5973 0.613 0.611 0.608 0.603 0 .596

- 0.1 -

Fig. 3 .1  Correction on the collision

integral for
HT,He

different rotational states

of HT.

1 10 100

-0 l5-

Fig. 3 .2  Correction on the collision

integral Q (2 ,2 )  * for
HT, He

different rotational states

of HT.
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of Tables 3.2, 3.3 and 3.4. The Lennard -  Jones 12-6 potential has been used
throughout this paper. There are some comments to be made with respect to
the accuracy of the new collision integrals. We wanted to have scattering cross
sections, averaged over all magnetic substates of the rotational levels. This
implied averaging over all possible orientations in space of the rotational vector
J in the HT molecule. It was impossible to fulfil this requirement because of the
computing time, which would have become excessive. We confined the calculat­
ions to m = + 1 and - 1 with respect to the orbital angular momentum L of the
colliding atom (Section 2.5). Test samples of other orientations of J  showed that
this is not a bad approximation. The second restriction pertains to the fact that
the calculations of section 2.5 were performed on the basis of classical mecha­
nics. The results, therefore, suffer from the approximate character of classical
mechanics at low velocities and small impact parameters. With light molecules,
such as helium and hydrogen, quantum mechanical corrections start to be im-

x 27 xportant at T <5 ). On the other hand, the velocities g for which the scat­
tering cross sections were calculated, were chosen so as to cover the velocity
distribution of equation (3.31) as well as possible in the range 10 < T* < 30. The
data for higher and lower temperatures must be considered as extrapolations.

Finally, we have to mention the integration method, used to obtain the
numerical values of (3.31). A machine procedure was designed, which interpol­
ated between the available data with the Lagrange formula. The coefficients were
determined for a second degree curve through as many groups of points as were
needed to converge to a final value. The accuracy is limited by the total number
of points. After that, the integral could be obtained analytically, because of the
form of (3.31).

Then the diffusion coefficient was calculated according to formula (3.18),
using the normalized occupation numbers of the rotational levels of HT, shown
in Table 3.5. The pressure was assumed to be 1 atm. The results are shown in
Table 3.6, together with ©(or, 8), the diffusion coefficient for a symmetric potent-

20ial model without internal degrees of freedom ). Also the thermal diffusion fac­
tor a was calculated according to formula (3. 28) and listed in Table 3. 7. We
neglected quantum jumps larger than A j = + 1 , because of the small probability
of such transitions. The assumption of chemical equilibrium would break down.
The first row of Table 3.7 again gives the value of a for a symmetric potent­
ial and without internal states (section 1.4).

84



TABLE 3 .5 .

Normalized occupation numbers of the rotational

levels o f HT.

T* < O
'

y2 Y3 Y4

3 0.7053 0.2859 0.0087 0 0

4 0.5798 0.3877 0.0321 0.0005 0

5 0.4892 0.4416 0.0667 0.0025 0

8 0.3306 0.4682 0.1739 0.0256 0.0016

10 0.2714 0.4467 0.2240 0.0518 0.0060

20 0.1459 0.3241 0.2963 0.1685 0.0652

30 0.1050 0.2579 0.2881 0.2212 0.1277

50 0.0754 0.2006 0.2630 0.2568 0.2042

80 0.0607 0.1688 0.2421 0.2707 0.2577

TABLE 3 .6 .

Diffusion coeffic ient of trace HT in He.

T* 2 ) 2 > 2 >
( a , p ) Mason this paper

3 0.0815 0.0757 0.0863

4 0.1348 0.1253 0.1408

5 0.1976 0.1826 0.2038

8 0.4367 0. 3935 0.4346

10 0.6340 0.5643 0.6184

20 2.0048 1.7405 1.8632

30 3.9243 3.3763 3.6352

50 9.1276 7.8774 8.6242

80 19.883 17.606 19.261

85



TABLE 3 .7 .

Therm al diffusion factor of trace HT in He.4

T*
“ bia

a Mason ^  this paper

3 0.0262 0.0065 -  0.0673

4 0.0286 0.0129 -  0.0525

5 0.0296 0.0181 -  0.0411

8 0.0294 0.0292 -  0.0227

10 0.0309 0.0357 -  0.0133

20 0.0317 0.0408 + 0.0077

30 0.0318 0.0377 + 0.0172

50 0.0318 0.0322 + 0.0257

80 0.0280 0.0265 + 0.0259

I experiment
•  Kihara
°  Mason
A van dc Ree

0.06 -

- 0.02-

„  4
Fig. 3 .3  Therm al diffusion factor for HT -  He.

Note added in proof: Recently, the experimental value a = 0.001 was found by
us, at T* = 10.
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3.5 DISCUSSION OF THE THEORETICAL RESULTS AND COMPARISON WITH
EXPERIMENT

So far as the diffusion coefficient is concerned, no asymmetry effect could
be detected experimentally. Both groups of experiments, the older ones of Ma­
son , discussed again in a paper by Mason, Amdur and Oppenheim ) ,  and the
more recent work of Reichenbacher, Müller and Klemm °), give relative values
of the quantities V M ©  for symmetric and asymmetric hydrogen isotopes,
very close to 1. The fact that our theoretical values, in spite of our more com­
plete treatment, stay so close to the older values ©  (a, f3), is a remarkably
negative confirmation of the theory. It is due to the compensation of the negative
deviations of the omega integrals of the lower quantum states, by the positive
deviations of the higher quantum numbers. The population of these levels is de­
termined by the temperature distribution function. On the other hand, the thermal
diffusion factors are in good agreement with the experimental values measured
by ourselves (Fig. 3.3) and with the experiments of Reichenbacher and Klemm 1,
where the second partner is a spherically symmetric D  ̂ molecule. At high temp­
eratures the agreement is not so good, but we must remark that, as can be seen
from Table 3.5, the effect of the quantum numbers higher than 4 is very large in
this region. The positive deviations in Cl ^  for j = 5 or 6 are still higher than

those for j = 4. The resulting correction on the thermal diffusion factor will lower
the theoretical curve in the high temperature region. The statement of equation
(3.29) may now be justified, as the quantity D appears to differ so little from
the value for a binary mixture which does not have the complication of internal
degrees of freedom and asymmetric mass distribution in the molecules. If this
assumption was not valid, this part of formula (3.28) should have been calculated
separately, using the new values of the collision integrals.

At this point of the discussion a serious objection rises against using an
|  £ s)

o ’ averaged over all rotational states, as suggested by Monchick, Yun and
“ P 10.Mason ). The averaging procedure

( *  » s ) (« ,s)
i  eXp (- e qi>

“ exp (- e. ) Q** *f>i qv ql,q’

2  Yi O
(* ,s)
in (3.32)

is a simple arithmetic mean which applies only in the limiting case that the inter-
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change of translational and rotational energy is very easy on the microscopic
scale, that is when the energy distribution can be defined by only one tempe­
rature (Section 3.2). In this case the effect of a difference between the kinetic
and the rotational relaxation times is blurred. The calculation of the diffusion
coefficient or the thermal diffusion factor of HT - ^He with formula (3.32), in­
serted in the expressions given by the same authors, give erroneous results even
when the new collision integrals of Tables 3.2, 3.3 and 3.4 are used. The dif­
fusion coefficients obtained in this way depart from the experimental value by a
considerable amount. The thermal diffusion factor is only influenced by a small
deviation, which furthermore, is in the wrong direction (Tables 3.6 and 3.7,

42,Fig. 3.3). In a more recent paper, Monchick, Munn and Mason ) derived cor­
rection terms for the effect of inelastic collisions by introducing relaxation
times and energy exchange corrections into their previously derived relations.
The thermal diffusion factor of the D„ - HT mixture was only improved by
0.00018. From the possible reasons for the failure of the theory, indicated by
these authors, we now believe on basis of our calculations, that for asymmetric
molecules, the intermolecular potential is indeed strongly dependent on the
orientation. The result of this is the combined effect of the inelasticity of the
collision and the correlated deviation of the scattering angle (section 2.5). There
have been calculations of cross sections with simplified models, rough spheres,

5Lspherocylinders and loaded spheres ). The last one is perhaps closest to the
model we chose, which we wanted to be as realistic as possible. However, these
models were only applied to the evaluation of heat conductivity and viscosity in

53»pure gases. On basis of the loaded sphere model Sandler and Dahler ) calculat­
ed in a recent paper the thermal diffusion factor for Dg - HT, a system which
has a close analogy to He - HT. For the first time a reasonable value was ob­
tained, 0.052 (neglecting the contribution of the polarization of molecular angular
momenta), which has to be compared to the experimental value 0.028.

42»The third reason indicated by Monchick, Munn and Mason ) for the failure
of the previous calculations, is that it may not be allowed to take degeneracy

12»averaged cross sections, as shown by McCourt and Snider ). Using the ideas of
C O

Kagan and Maksimow ) these authors took into account the possibility of an
anisotropic angular momentum distribution of the rotating molecules. But the
corrections arising from this modification of the treatment will also not be suf-

53ficient, as is shown in the recent paper by Sandler and Dahler ). It amounts to
only 15 % of the value which they obtained with the loaded sphere model.

The phenomenological treatment of the problem in the first two sections of
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this paper indicates that another generalization of the Boltzmann equation must
first be performed. The production of particles of a component, due to the
reactions in the multicomponent mixture, has not been taken into account in the
derivation. We can state this more precisely by a comparison between the mac­
roscopic entropy production, and the entropy production derivable from the
kinetic theory. The two should be identical in the first approximation of Chapman
and Enskog. Thermodynamics of irreversible processes give the following for­
mula (ref. 43, p. 181) for the entropy production of reacting mixtures in which
concentration gradients may build up and a thermal gradient is applied:

grad -= - IT
i=l i

- pl 1grad — -  y
r
2

j=l
J .  A .,J j

(3.33)

where J . and A . are the reaction rates and the affinities which characterize the
1 'j

r  reactions. is the heat flux. The last term of (3.33) is missing in the ent­
ropy source strength, derived from the kinetic equations of the authors mention-

10 12 48ed ’ ’ ). For the same reason the balance equation for each individual
component has to be extended with a source term, expressing the production or
destruction of the component over all reactions

9 P,
TTL= ~ div Pi Vi + 2

j=l Vij J j ‘
(3.34)

Because of the conservation of mass in every chemical reaction the coefficients
of the reaction equation, Vjj/M. , have to vanish according to

n
2 v.. = G. (3. 35)

1=1 J

Therefore, the law of total mass conservation stays the same

= -  div p v.o t (3.36)

The discrepancy arises .in the transition from the Boltzmann equations for the
individual components, which may be the internal states (leaving out external
forces)

a f i  ^= -  v. .
n

af.
+ 2 C (f., f.) ; (i = i ,  . .d t i b r j=1 I

(3.37)
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to the Boltzmann equation of the system as a whole, t.e . in our calculations the
binary mixture of a and g. In (3.37) the collision term C (f., f.) now contains
a part which accounts for the change in the number of i-particles, becoming j-
particles, due to inelastic collisions. The summational property of the collision
term part is no longer invariant for the properties i |r  ., which are concerned in
the chemical reaction

C (f. f .) dv. i  0 ,
1 1

(3.38)

for instance for (r being the internal energy or the angular momentum of the
molecule.

E J C (f., L) dv. = b. ^ 0 (3.39)
j=l

is  now the non-vanishing number of molecules i produced per unit time and per
unit volume by all the transitions. Therefore

n-1
E

i=l

a f.
a t1 * (3.40)

It now seems important to us to proceed with the solution of this new type of
Wang Chang -  Uhlenbeck equation in order to obtain kinetic expressions of the
diffusion and thermal diffusion coefficients, preserving the terms which depend
on the rates of transition between the internal states. These will provide a
rigorous check for the expressions obtained in our theory.

3.6 CONCLUSIONS

In order to avoid a rather laborious extension of the treatment of Wang
g

Chang, Uhlenbeck and De Boer ) to mixtures where the rate of transition be­
tween translational and internal energy is slow with respect to the establishment
of kinetic equilibrium, we developed a phenomenological treatment based on
thermodynamics of irreversible processes. We made use of the concept, which
considers the internal degrees of freedom as chemical components reacting
among each other. Thus we were able to introduce new expressions in diffusion
and thermal diffusion coefficients, which account for the production of compon­
ents in a system, when simultaneously undergoing gradients in the concentration
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and in temperature. We could confine the expressions to the chemical equilibri­
um case between the internal states, because from the macroscopic point of
view local equilibrium is maintained, the rate of energy exchange being still
rapid with respect to the establishment of hydrodynamic equilibrium.

The second feature of the problem which we took into account is that the
macroscopic measurement cannot discern between the different internal states.
The transition of the multicomponent system of reacting internal species to a
quasi binary system is, however, not a simple summation. We indicated the way
to make this transition in both kinetic and phenomenological theories.

The actual calculation of the transport coefficients from our theory requir­
es the insertion of the simple kinetic expressions for the binary diffusion coef­
ficients in a multi component mixture or the simple collision integrals for which
we chose the expressions derived by Waldmann ). We applied our theory to the
evaluation of the diffusion coefficient and the thermal diffusion factor of the He -
HT mixture. The HT molecules have rotational degrees of freedom and an asym­
metric mass distribution. Therefore the transport cross sections for elastic
scattering on which the collision integrals depend have to be calculated with a
potential model as realistic as possible. This was performed in section 2.5,
where an inelastic formula was used in order to take proper account of every
contribution to the displacement in the scattering, but the transition probabilities
in HT at room temperature are so small that the cross sections are close to the
elastic limit.

The agreement with experiments is much improved as compared to earlier
attempts.
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S U M M A R Y

The thermal diffusion factors a for small concentrations of all possible
hydrogen isotopes in inert gases were measured between 100 ° C and 600 °C,
and compared with the values from the Chapman - Enskog theory. It appeared
that a Buckingham exp.-6 potential model with parameters derived from meas­
ured viscosity and second virial coefficients could fit the separations of the sym­
metric molecules Hg, D„ and T„. It was, however, impossible to fit the values
of the asymmetric molecules HD, HT and DT into this theory. An analysis of
possible sources of deviations, such as higher order approximations, quantum
corrections or inelastic collisions indicated no way to improve the theoretical
values. The overall behaviour is thus very similar to that found in mutual ther­
mal diffusion of hydrogen isotopes. In Chapter 1 an empirical formula was
derived which could describe the series of experiments with the lighter inert
gases. This formula suggested a linear dependence of the deviations on the
displacement of the centre of mass of the colliding system.

Focussing our attention on the deviation between the thermal diffusion fac-
4 4»tors of He-D0 and He-HT, we have calculated the cross sections for inelastic

4
scattering of the He atom in collisions with the HT molecule considered as a
rigid rotator. The set of coupled differential equations arising from the classi­
cal mechanical formulation of the three body collision problem was solved num­
erically. We introduced the rotating potential model, involving a potential field
spherically symmetric about the geometrical midpoint of the molecule, which
rotates around its centre of mass. The results show large deviations from the
cross sections obtained with a simple non-eccentric spherical potential. These
deviations depend strongly on the orientation and the angular momentum J  of the
molecule. An analysis of the effect of the space orientation of J  reveals a con­
siderable polarization. A reasonable approximation to an orientation averaged
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cross section can be obtained by taking the position of J  perpendicular to the
collision plane as representative, which permits simplification to a two-dimens­
ional collision calculation. There is a positive increase in the cross section
which can be as much as 20 % for low relative velocities and high values of J.
It is possible to calculate the probability for change of the rotational state,
showing how correctly a calculation based on classical mechanics can describe
a quantum phenomenon. The new calculations predict an increase in the transit­
ion probabilities from 10 to about 5. 10 . This is in accordance with the
value expected from experiments.

In order to avoid a rather laborious extension of the treatment of Wang
Chang, Uhlenbeck and De Boer to mixtures where the rate of exchange between
translational and internal energy is slow, we developed a phenomenological
treatment based on thermodynamics of irreversible processes. We introduced
new expressions for the thermal diffusion and diffusion coefficients which ac­
count for this exchange in the case of a local equilibrium distribution between
the rotational states of HT. We made use of the concept in which the internal
degrees of freedom are considered as chemically reacting components. The
multicomponent diffusion coefficients occurring in the new expressions were
related to the newly calculated collision integrals based on the transport cross
sections obtained in Chapter 2. The agreement between the theoretical diffusion
and thermal diffusion coefficients and the experiments for a 4He-HT mixture is
much improved as compared to earlier attempts.
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S A M E N V A T T I N G

In het eerste hoofdstuk worden metingen vermeld van de thermodiffusie-
factor a tussen 100° en 600° Celsius voor mengsels van edelgassen en kleine
concentraties van alle bestaande waterstof isotopen. De resultaten worden ver­
geleken met de waarden uit de theorie van Chapman en Enskog. De grootste
overeenstemming wordt bereikt door het gebruik van de Buckingham exp.-6 po­
tentiaal met parameters verkregen uit metingen van de viscositeit en de tweede
viriaal coefficient. Dit geldt voor de symmetrische moleculen H2> D2 en Tg,
maar het blijkt onmogelijk de waarden van de asymmetrische moleculen HD, HT
en DT op deze wijze te verklaren. Correcties voor hogere orde effecten, quan-
tum-effecten of inelastische botsingen, brengen hierin geen verbetering. De­
zelfde problemen doen zich voor bij de thermodiffusie van mengsels van water­
stof isotopen onderling. Wij hebben een empirische formule opgesteld, die in
staat is de waarden van de mengsels met lichte edelgassen redelijk te beschrij­
ven. Deze formule wijst in de richting van een lineair verband met de verleg­
ging van het massazwaartepunt in het systeem van de botsende deeltjes.

Wij hebben ons voor het vervolg beperkt tot het verschil tussen de thermo­
diffusie factor van 4He-D2 en 4He-HT mengsels. Daartoe hebben wij in hoofd­
stuk 2 de botsingsdoorsneden berekend, die optreden bij de inelastische botsin­
gen tussen het 4He atoom en het HT molecule, opgevat als starre rotator. Uit de
klassieke mechanica volgt een stelsel van gekoppelde differentiaal vergelijkingen,
die dit drie deeltjes probleem beschrijven. Dit stelsel werd numeriek opgelost
met behulp van een rekenautomaat. Om de wisselwerking te beschrijven, hebben
wij een roterend potentiaal model ontworpen, dat bestaat uit een bolsymmetri­
sche potentiaal waarvan het centrum ligt in het meetkundig middelpunt van het
molecule, dat op zijn beurt draait om het massazwaartepunt. Wij vonden grote
afwijkingen in de botsingsdoorsneden vergeleken met die, waarvoor een bolsym-
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metrische potentiaal zonder meer was gebruikt. Deze afwijkingen hangen sterk
af van de oriëntatie en van het impulsmoment J van het molecule en vertonen
polarisatie, afhankelijk van de stand van J in de ruimte. Het gemiddelde van de
beide standen van J loodrecht op het vlak van botsing, vormt een goede benade­
ring. De berekeningen vereenvoudigen dan tot een twee-dimensionale baanbere-
kening. Voor lage relatieve snelheden en hoge waarden van J, zijn de diffusie
botsingsdoorsneden 20% hoger dan vroeger. Wij kunnen ook overgangswaarschijn-
lijkheden berekenen tussen de rotatie toestanden door een kunstmatige grens
tussen de energie niveau's aan te nemen. Het is dan opmerkelijk dat klassiek me­
chanische berekeningen een dergelijk quanteus verschijnsel goed kunnen benade-

_  O

ren. De overgangswaarschijnlijkheden in HT zijn van de orde 5.10 , te verge-
_ q

lijken met 10 voor D„. Deze getallen stemmen overeen met wat experimenteel
te verwachten is.

Een passende kinetische theorie voor de transport verschijnselen in een
dmengsel van He en HT, zou gevonden moeten worden door de theorie van Wang

Chang, Uhlenbeck en de Boer uit te breiden tot mengsels waarin de overdracht
tussen kinetische energie en de energie van de inwendige vrijheidsgraden lang­
zaam verloopt. In plaats daarvan hebben wij in hoofdstuk 3 een phenomenologische
behandeling van het probleem verkozen aan de hand van de thermodynamica van
irreversibele processen. Daarbij vonden wij nieuwe uitdrukkingen voor de ther-
modiffusie en diffusie coëfficiënten, die deze uitwisseling in rekening brengen.
Wij konden ons beperken tot het geval van plaatselijk evenwicht tussen de rotatie
toestanden van HT. Hierbij zijn de interne vrijheidsgraden opgevat als chemisch
reagerende componenten. In de nieuwe uitdrukkingen komen multicomponente dif­
fusie coëfficiënten voor, die wij in verband gebracht hebben met de kinetische
botsingsintegralen en de diffusie botsingsdoorsneden, die in het tweede hoofdstuk
werden berekend. De overeenstemming tussen de theoretische en experimentele
thermodiffusie factoren en diffusie coëfficiënten van het He-HT mengsel, is nu
veel beter geworden.
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S T E L L I N G E N

1

Sinha en Müller hebben in een veldionen-microscoop beschadigingen waargeno­
men aan het oppervlak van Wolfram-kristallen bij beschieting met Helium ato­
men van 20 keV. Him conclusies over de oorzaak van de roosterdefecten en de
lengte van de focusserende stoten serie zijn echter niet consistent.

M.K. Sinha en £'.W. Müller, J. Appl. Phys. 35 (1964) 1256.

2

De verwachting van Martin et a l . , dat bij het ionisatieproces bij hoge botsings­
energieën (> 1 MeV) He opgevat kan worden als een projectiel met effectieve
lading 1 < <2, is theoretisch onjuist.

D.W. Martin, R .A. Langley, D.S. Harmer, J.W. Hooper en E.W. McDaniel, Phys. Rev. 136
(1964) A 385. ----

3

De door Gibson et al. gemeten anomalie t. o. v. de theoretische Born-benadering
in de hoekafhankelijkheid van de door botsingen met atomen geïnduceerde excita­
tie van H2 ionen, duidt op de vorming van een intermediair botsingscomplex
met het doelwit atoom.

G.W. McClure, Phys. Rev. 140 (1965) A 769;
D.K. Gibson, J. Los en J. Schopman, V International Conference on the Physics of Electronic
and Atomic Collisions, Abstracts of Papers (Publ. House NAUKA, Leningrad 1967) p.594;
G.H. Dunn, Phys. Rev. Letters^ (1962) 62.

4

De interpretatie die door Yates en Garland wordt gegeven van het infrarood
spectrum van koolmonoxyde, gechemisorbeerd op nikkel-catalysatoren, is on­

volledig en gedeeltelijk onjuist.
J.T . Yates en C.W. Garland, J. Phys. Chem. 65 (1961) 617.

5

Bij de interpretatie van N. M.R. spectra van geprotoneerde, asymmetrisch ge­
substitueerde benzophenonen is de mogelijkheid van belemmerde rotatie om de
C-O binding ten onrechte buiten beschouwing gelaten.

Th.J. Se kuur en P. Kranenburg, Tetrahedron Letters 1966, 4793.



Het optreden van ionen als tussenproduct in de reactie tussen alkali atomen en
halogeen moleculen, kan worden bewezen met atomaire bundel-apparatuur in het
eV gebied.

D .R. Herschbach, Advances of Chem. Phys. 10(1966)319.

7

De berekeningen van Cross en Herschbach voor de strooiing van een atoom aan
een starre rotator zijn misleidend en waarschijnlijk foutief, omdat te weinig
aandacht is geschonken aan de betekenis van het geihduceerde impulsmoment.

R .J. Cross en D .R . Herschbach, J. Chem. Phys. 43(1965) 3530.

8

Het falen van de theorie van Monchick en Mason in de berekening van de thermo-
diffusiefactoren van mengsels van edelgas-atomen en meeratomige moleculen van
ongeveer dezelfde massa, berust op meer ingrijpende gronden dan de door de
auteurs genoemde oorzaken.

L. Monchick, K.S. Y unenE .A . Mason, J. Chem. Phys. 39 (1963) 654j
L. Monchick, R .J. Munn en E.A. Mason, J. Chem. Phys. 45 (1966) 3051;
dit proefschrift.

9

In de toelichting op de prijsvraag van Teyler's Genootschap van dit jaar is de
definitie van typografische poëzie niet adequaat.

Prijsvraagprogramma van Teyler's Tweede Genootschap te Haarlem (1 januari 1967).

10

Naarmate de technische mogelijkheden in de verschillende experimentele gebie­
den zich uitbreiden, verliest de fysica steeds meer van haar empirisch karak­
ter.

J . van de Ree oktober 1967.






