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CHAPTER I
Scope of Research
It is proposed in the present thesis to investigate the static and dynamic
interactions of polyions and their counterions by non-thermodynamical
means. Descriptions of these interactions will be in terms of linear-
response theory (and mainly in terms of the oldest application of that
theory, viz. the nuclear magnetic relaxation rates) rather than in terms
of thermodynamic parameters. It is hoped that in this way a more clear-cut
distinction can be made between static and dynamic aspects than is
usually done. In this introductory Chapter an outline of this approach will
be sketched without details; more extensive discussions and appropriate
references will be found in the Introduction and Discussion sections of
the individual Chapters. A review of experimental and theoretical tech
niques used will be found in Chapters II and III.

A polyelectrolyte then, is defined as any polymeric substance in which
the monomeric units of its constituent macromolecules posses ionizable
groups. In contrast to simple electrolytes, in which the sizes of the
oppositely charged ions are similar in magnitude, a polyelectrolyte is
always composed of a macroion in which the charged groups are inter
connected by chemical bonds, together with an equivalent number of
small oppositely charged counterions. The high charge of the macroion
produces a strong electric field that attracts the counterions, and from this
strong interaction virtually all of the unique properties of polyelectrolyte
solutions result. Since, for suitably chosen counterions, the nuclear
magnetic relaxation rates, which can be measured by spin echo methods,
are determined by electric field gradients at the position of the counterions,
these quantities provide a fairly direct insight in the electrical interaction
and in the distribution of counterions around the polyion. In favorable
cases also the selfdiffusion coefficient of the nuclei may be measured
by the spin echo method: this possibility will be exploited to find the
selfdiffusion coefficient of the polyion (for the counterion, results
obtained by radiotracer methods are available in the litterature).

CH3

-  CH2 -  CH - -  CH2 -  C - -  CH2 -  CH -

COOH COOH

SOjH

poly(acrylic acid) poly(methacrylic acid) poly(styrene-
sulphonic acid)

Fig. 1. Repeating units of some polyacids.
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Most of the results in the present thesis have been obtained on solutions
of poly(acrylic acid), the structure of which, together with those of two
other polyacids that have been used, is shown in Fig. 1. The degree of
dissociation of the carboxyl groups of poly(acrylic acid)r and poly-
methacrylic acid) is small in pure water. On the addition of alkali, e.g.
sodium hydroxide, the carboxyl groups are dissociated and the macroion
gains an increasing number of negative charges, which to a good
approximation is equal to the number of sodium counterions. So the
charge on the macroion can be regulated by the amount of added alkali.
The third example shown, poly(styrenesulphonic acid) is a strong acid,
always completely dissociated into highly charged macroions and
hydrogen ions when dissolved in water. In the following we consider
specifically solutions of poly(acrylic acid), partially neutralized by sodium
hydroxide.
Today’s interpretations of experiments on polyelectrolyte solutions are
mostly based either on the cylindrical solution of the Poisson-Boltzmann
equation, or on the ion condensation concept (in fact the latter has been
shown to be an asymptotic result of the former). Both take as starting point
that the charged macroion can, at least sectionally, be described as a
straight line charge, or as a uniformly charged cylinder (the so-called
rigid-rod model).
The Poisson-Boltzmann equation states that the probability to find a
counterion of charge e at a certain position r relative to the polyion is
determined by a Boltzmann factor exp (— e y> (r)/kT) that contains the
average electric potential y  at r, which in turn is connected to the
probability distribution via Poisson’s equation. The distribution function
probably is a more useful quantity than the average potential found in
this way, in the sense that the distribution function can be expected to
predict correctly the average of certain properties of the counterion (e.g.
the nuclear magnetic relaxation rates) that depend on the relative
positions of the counterions with respect to the polyion, while the force
derived from the average potential may not be very useful to determine
the motion of the counterion with respect to the polyion.

The analytical solution of the Poisson-Boltzmann equation with
cylindrical boundary conditions has a very remarkable property: it shows
a quite different behaviour for low charge on the macroion than for high
charge. This dependence of the behaviour of the charge distribution
upon the charge of the nacroion can also be deduced without explicitly
solving the Poisson-Boltzmann equation: the phenomenon is usually
called counterion condensation and manifests itself as a non-vanishing
probability to find a large fraction of the counterions relatively near to
the polyion if the charge of the latter exceeds a certain critical value,
even if the dilution is increased beyond all bounds. Experimental results
are often described as being caused only by the ‘free’ part of the
counterions, the ‘condensed’ part being regarded as effectively ‘taken
out of the solution’. As we will show, the nuclear magnetic relaxation
rates of the counterions may be looked upon as caused by the condensed
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part only, the contribution of the free ions to the observed result being,
under certain assumptions, negligible.
It is important to realize that the Poisson-Boltzmann and ion condensation
theories are predictions about the average distribution of the counterions
around a polyion; even if it is found that most of the counterions reside
on the average very near to the polyion, this not necessarily implies that
each individual ion stays there for a ‘long’ time (e.g. compared to the
tiirie that a sodium ion stays ‘close to’ a chloride ion in a NaCl solution).
The assumption that will be made in the development of our theory of
counterion nuclear magnetic relaxation in polyeiectrolyte solutions is
that the counterion stays in the ion cloud of a certain polyion for 10“10
seconds or longer. A sodium ion in a dilute solution of a simple salt
travels (rootmeansquared) less than 10 A in such a time.
We also investigate the nuclear magnetic relaxation rate of truly ‘bound
counterions’, the counterion being deuterium in a heavy water solution
of poly(acrylic acid) partially neutralized by NaOD. From comparison of
the results of the sodium and deuterium nuclear magnetic relaxation we
conclude that no association of sodium ions to specific carboxylic groups
with a life time of the order 10”8 second (or longer) occurs.
To distinguish the concept of ‘condensed’ and ‘bound’ counterions, we
might say that the former means ‘being together’, while the latter means
‘moving together’. Usual interpretations of transport quantities (self
diffusion, transference, conductance) do not make a clear distinction
on this point. To find out what can be said about the polyion-counterion
interaction as far as their motions are concerned, we develop a description
based on the linear-response theory, rather than describing macroscopic
flows of associated and non-associated species.
Within the framework of the linear-response theory clear connections of
the Nemst-Einstein type exist between electrical and mass transport
parameters. It is possible to derive from results available in the litterature
the value of the selfdiffusion coefficient of the polyion, of which no
direct experimental determination was available. The dependence of this
latter quantity on degree of neutralization so predicted, is qualitatively
confirmed by spin-echo measurements of the polyion’s selfdiffusion
coefficient. From these considerations it is concluded that the usual
assumption of a ‘bound’ fraction in the treatment of conductivity and
electrophoresis data is not generally justified.
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CHAPTER II
Experimental Method
In the first part of this Chapter the interaction of the magnetic moment
that is associated with non-zero spin, with external magnetic fields will
be described. For more ample discussions of these interactions and
actual descriptions of apparatus we refer to the literature. In the second
part various aspects of experimental accuracy are discussed.

a) Basic Spin Echo Technique
The rate of change of the quantum-mechanical expectation value of an
isolated nuclear magnetic moment in a magnetic field can be shown to be
given by an equation that has the same structure as the classical equation
of motion of a magnetic moment p that has angular momentum p = y~l p,
in that magnetic field. We will therefore restrict ourselves to the classical
description. In pulsed nuclear magnetic resonance techniques, the radio
frequent field during the pulse is so intense, that all other interactions
of the nuclear magnetic moment may be neglected, so that the spin is
effectively isolated. The classical equation of motion is

This motion is a precession of p around H, with angular velocity u = -  y H.
If the field H is the static (Zeeman) field Ho, the precessional frequency
6)0 = -  yH„ is called the Larmor frequency. So if we look at the motion
of the magnetic moment from a coordinate system that rotates with
angular velocity <u0 around H0, the magnetic moment effectively stands

If, in addition to the magnetic field H0, we have a second magnetic field
Hj perpendicular to it, and rotating around H0 with exactly the Larmor
frequency, this field Hi is static in the rotating coordinate system, and
within this coordinate system again Eq. (2) applies with H replaced by Hi.
Thus, in the rotating coordinate system, the magnetic moment processes
around Hi, and is turned away from H0, since Hi is perpendicular to H0.
If we apply Hi only for a certain time r such that
o>i r = - y  H i  t = \ n  (3)
(which is called a $n  pulse) we have, as seen in the rotating coordinate
system, turned the magnetic moment to right angles with respect to H„,
and it stands still after the removal of Hi. This means that in the laboratory-
fixed coordinate system we see the magnetic moment at right angles to
H0, rotating around it with the Larmor frequency.
This is a non-equilibrium situation in two respects: firstly, each individual

p x H ( 1)

which gives

^ r = ii X ( y H ) (2)

still.
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magnetic moment in a sample containing many nuclei is not aligned
along H0, which does not minimize energy; secondly all individual
magnetic moments rotate in phase with each other, which indicates an
ordering that does not maximize entropy. Due to various possible inter
actions on the molecular level, some of which will be described in the
next Chapter, the system of magnetic moments can be considered to be
in a weak contact with a thermal reservoir (i.c. the molecular motions)
that brings the system back to equilibrium: in principle at different rates
for energy and for entropy. These processes are called longitudinal (or
spin-lattice) and transversal (or spin-spin) relaxation respectively.
In a practical experiment there is still another reason why the observed
rotation (a rotating magnetic moment can be observed by the voltage that
it induces in a coil) does not persist: if the sample under study is so large
that different parts of it sense slightly different Zeeman fields, due to
imperfections of the magnet, the magnetic moments in the different
parts rotate at slightly different rates, some faster than the average and
others slower. Since what we observe is essentially the vector sum of the
magnetic moments in these different regions, the voltage induced in
the coil gradually decays to zero as the individual magnetic moments
‘fan out’ further and further. This is usually the reason for disappearance
of the signal from liquid systems. It can be made to reappear however
by a technique due to Hahn.
We consider the following sequence of events in the rotating coordinate
system, with axes x, y, z and H0 along z:
a) Initially the system is in thermal equilibrium, and the magnetic
moments are all parallel to H0.
b) We apply the field H! along the axis x  for the time r determined by
Eq. (3). r is assumed short, so that relaxation and fanning-out during this
time can be neglected: at the end of the pulse all magnetic moments are
parallel to the y-axis.
c) Due to the inhomogeneity of H0, the magnetic moments at a certain
position in the sample rotate (in the x, y, z system) with an angular velocity
A(o = -  y AH0 (4)
If they do not change their position in the sample (i.e. if there is no

thermal motion of the molecules which contain the nuclei under study)
the angle a (t) between the direction óf the magnetic moments at time t
and the y-axis is given by
a(t) = - y A H 0t (5)
d) Now we* appiy the field Hi along the axis y for a time 2 r, so as to
rotate all magnetic moments through an angle it; then the phase-angle
with respect to the y-axis of the above-considered magnetic moments is
a (t + 2 t)  = + yA H01
and they continue to rotate (in the x,y, z system) with the angular velocity
of Eq. (4).
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e. Thus we have for times t' > t, neglecting r with respect to t:
a ( t ' ) = y A H 0t - y A H 0 ( t ' - i ) (6)
which for t' = 2 1gives a (21) = 0. Clearly at time 2 rail magnetic moments
are again aligned along the y-axis: their vector sum is no longer negligible
and again a voltage is induced in the coil. This phenomenon is called a
spin echo.
There are two reasons why the amplitude of the spin echo is less than
that of the decay-signal after the first pulse: firstly, the relaxation effects,
and secondly the diffusional motions of the spin-bearing molecules,
due to which the ‘refocusing effect’ is not complete. Thus spin echo
techniques can be used both to measure nuclear magnetic relaxation and
selfdiffusion.
In the steps a) -  e) described above, we have a method to measure the
relaxation of the magnetization that is transversal to the Zeeman field
during the time 2 1 after creation of a non-equilibrium situation (in
equilibrium the transversal magnetization is zero). By repeating the
experiment with different choises for 2t, a complete ‘transversal
relaxation curve’ can be obtained.
Of course the | j t  pulse at the beginning of the experiment also creates
a non-equilibrium situation for the component of the magnetization that
is longitudinal to the Zeeman field. The longitudinal magnetization
cannot induce voltages in a coil, since it does not precess. Its magnitude
can only be measured by applying a second pulse, a time t after the
first; this second pulse creates a transversal magnetization, whose value
is equal to that of the longitudinal magnetization immediately before
the pulse. Again by repeating the experiment for different values of t, a
complete ‘longitudinal relaxation curve’ is obtained.

Further details on spin echo techniques may be found in:
E. L. Hahn, Phys. Rev. 80 580 (1950)
C. P. Slichter, Principles of Magnetic Resonance, (Harper and Row, New
York 1964) Chapter 2
A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press,
Oxford 1961) Chapter III
W. G. Clark, Rev. Sci. Instr. 35 316 (1964)
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b) Signal averaging in pulsed low-resolution NMR

Introduction

Signal averaging as a means to improve sensitivity in CW and pulsed
high-resolution NMR has received a thorough theoretical description,
especially in the work of E r n s tA l t h o u g h  in low-resolution work the
problems are comparatively simple, we are not aware of any more or less
complete description of the theoretical optima for the .various experi
mental parameters, and it was thought worthwile to pay some attention
to this problem. The qualification ‘low resolution’ is taken to mean that
the shape of a decay after a RF-pulse is primarily determined by the
inhomogeneity of the magnetic field, and not by transversal relaxation
or by the structure of a spectrum. An important consequence of this is
that the time-dependence of the decay can be described as the product of
an amplitude-factor, determined by pulse length and relaxation, and a
shape-factor, determined solely by the distribution of the field-
inhomogeneity over the sample and the gyromagnetic ratio of the nucleus
under study.
The objective of our measurements is the determination of the magnitude
of the spin-magnetization as a function of the time elapsed since the
application of a disturbance. We will consider only sequences of two
RF-pulses; the first serving as the disturbance, the second for monitoring
the magnitude of the spin magnetization. There are essentially three
(sets of) experimental parameters in these measurements:
1. The integral over the decay (or echo) is proportional to the amplitude-
factor: it is therefore preferable to measure the integral over (a part of)
the signal, instead of its maximum value only. Surely, extending the
integration over too long times will only add noise; there should be an
optimum value for the length of the integration-interval.
2. The signal-to-noise ratio can be further improved by determining
the average value of the time-integral over several repetitive meas
urements, instead of performing a ‘single shot’ measurement. This will
however considerably increase the total time needed for the experiment.
3. Since our objective is not the determination of the time-integrals
themselves, but of their variation with RF-pulse spacing, we should make
a proper choice for the range of pulse spacings used, in order to obtain
the relaxation rates as accurate as is possible in a given total experimenting-
time.

Principles of Operation
It is well known that an operational amplifier can be used to compute the
time-integral over an input voltage2). The basic configuration is shown in
fig. 1. At the start of the computation switch S2 is closed, and 51 is
connnected to ground. Clearly then Pout = 0 and this stays so as long as
the switches are left in that position. When both switches are toggled, the
integration starts. This can be most easily explained by referring to the

16



Fig. 1. Basic operational-amplifier integrator circuit.

well-known property of an operational amplifier with feedback that it
tends to keep its inverting input at (virtual) ground potential. Therefore
no net current flows into the inverting input, and such current as flows
through R  must also flow ‘through’ C, which implies

t

■ ■ Q(t) Ï K m r  , /
Vou, ( 0  = - ^  = ---- = -  j -  ƒ Kin ( f )  dr' (1)

Now, if after a certain time T we connect switch 51 to ground again,
leaving 52 open, the output voltage will remain constant. If furthermore
we choose RC  such that RC  = T, we have actually computed the average
value of the input voltage. Of course, subsequently we might wait until
the next signal of interest arrives, then connect 51 again for a time T to
Kin, and have as output the average of two time-integrals (if we had taken
from the beginning RC  = 2 7); and so on. This is the way a classical
boxcar3’ integrator (more clearly called: a gated 7?C-integrator) works4’.
For slow repetition rates, or averages over a large number of integrals,
this scheme puts heavy demands on stability and leakage of the electronic
components, especially of the (semiconductor) switches and integrating
capacitor; in practice it is very hard to have RC  exceed one second, and
total measurement time is limited to a few hours. Therefore we prefer
to bring Kout to digital form, and add the successively found values for
the time-integral in a digital register. Between each pair of signal-integrals
we perform an integration of ‘baseline plus noise’ over the same time
interval and subtract this result in the register: therefore the average
register contents are proportional to the amplitude of the signal with
respect to the baseline. To do this with a classical boxcar, a dual system
is needed5). In our setup the maximum value of RC  needed is of the
order of 10“2 seconds, which is very easy to achieve, while the holding
time of the binary register is essentially infinite.
The functional block diagram of an apparatus developed in our laboratory
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for signal/noise improvement in the measurement of longitudinal and
transversal nuclear spin relaxation rates, is shown in Fig. 2. The
instrument has, in principle, only two controls (denoted by ‘select’ in the
diagram): one to choose the length of the analog integration interval,
and the other to determine the number of averagings to be taken at
each pulse-spacing. It has three inputs: one for the detected signal from
the pulse spectrometer, and two trigger inputs, into which triggers,
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derived from the program generator in the pulse spectrometer are fed.
The first trigger starts the ‘signal integral’, and controls the binary
register to add it to the register contents already present; the second
trigger starts the ‘baseline integral’ and makes the binary register
subtract it. The triggers also advance a binary sweep counter that, upon
completion of the preset number of sweeps, triggers the transfer of the
binary register contents to the output. During this transfer the register
contents are divided by the number of sweeps (‘normalised’), and
converted from binary to binary-coded-decimal (BCD) format. The BCD
output is shown on a display, and printed on paper tape. The analog output
is fed to a logarithmic plotter, that products the usual half-logarithmic
relaxation plots. The output ‘end of measurement’ can be fed into the
program-generator of the pulse spectrometer in order to increase the
pulse-spacing by a certain amount; then the binary register and the sweep
counter are reset, and a new measurement is started. Thus the instrument
can record a complete relaxation curve without any attendance.

Choice of the integration-interval
If we always take RC  = T, the input-output relation of our integrator is

1 rVou, (t) = —  ƒ  Vin(t')d t' (2)
1 t - T

this may also be written as a convolution:
+  oo

Kou. (t) = ƒ  Kin (t’)  h ( t  - 1‘)  d f  (3)

Where h (t) is a gating function such that

h ( t ) = l r  f ° ro  (4)
10 otherwise

If the input voltage contains white noise up to a frequency <uc that is high
compared to 2 T~' and having a Gaussain distribution, it can be shown
that the ratio of mean-squared input noise to mean-squared output noise
is given by6)

flout

n  in
f -  T # m t

6>C - o o  J

Jt
0)c T (5)

If we add the noise-output of the integrator 2 N  times in a digital register
of sufficient resolution (see next) the mean-squared noise in the digital
output is
„ 2  _  -  w  2 _  J t  2N  2
fl dig Z fy ft o u t -------------------Win

0)c
(6)

After N  measurements of the ‘signal’ integral and N  measurements of
the ‘baseline’ integral (that is, for simplicity, assumed to be zero on the
average) the average register contents are
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(7)

T

Séig ~ N  5out = ƒ  5jn (t*) d f
i  O .

and the signal-to-noise ratio in our register is

I » -  ( i f m!. ) 'V r +  fs .(o < tr  (8)
(It can be shown that a classical boxcar performs nearly as well, provided
its time constant RC  is chosen equal to 0.77 NT.)
Thus, in order to get a maximal signal-to-noise ratio we must choose T
such that
1 t

-= , ƒ  S in  ( f)  d f  = 2 S i„  (T) (9)
1 0
(which can be shown to be the optimal choice for a classical boxcar as
well).
Since the shaps Sin (t) of the signal is independent of the particular
sample used, the time T may be determined with the aid of a sample that
contains a large quantity of the nuclei of interest, so that the signal
Sin (t) may be observed directly on an oscilloscope and compared with

1 rthe readout — ƒ  Sin ( f )  d t' of the averaging device.
1 o

Digital resolution.
If the digital averaging of subsequent time-integrals is to work properly,
the data handling has to fulfill certain requirements with respect to its
resolution. Specifically, the digitizing process itself should not contribute
to the noise in the digitized result. This problem has been considered
by Ernst7’. There is however another, and more severe, requirement
on the resolution of the analog-to-digital converter (ADC) if it is desired
to have the average value of the register output after 2"*) averagings
independent of N. Then we will have to divide the register contents
by 2n prior to readout, and care should be taken that no significant
information is lost by ‘rounding-off errors’ in the division. This implies
that a relation exists between N  and the number of bits M  of the ADC,
which of course is equal to the (maximum) number of bits in the final
result after division. In the following, input voltages to the ADC will
be measured in unities of the analog voltage corresponding to one count
of the ADC.
Let the average value of the signal input voltage be 2s. Let the rms noise
voltage be 2". If we are willing to accept four chances in 105 that a single
voltage is so large that it cannot be properly processed by the ADC,
we must amplify (or attenuate) the total input voltage in such a way that

*) In this section only all numbers are in binary notation.
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2s + 2" ( 10)+  2 _

(of course these considerations apply to the largest signal that occurs
during the determination of a relaxation rate; in this section we neglect
the measurement of the baseline, which is taken to be zero).
Let the desired signal-to-noise ratio after 2N measurements be 2P, then
the input voltage has to fulfill the condition:
f / 2 "  = 2p/(2N)Vl
or N
2s = 2p + n~2 (11)
and, from the fact that the total input is adjusted so as to use the full
analog range of the ADC
2" = 2"  ( / "  2 + 22)"1 (12)
After 2n averagings, the rms count in the register due to noise is

N N
2 b+ 2 = 2n (2p ~m + 22~m+ 2)-1 (13)
If the division by 2s  of the total register contents is not to introduce
rounding-off errors, the noise-count in the register has to be greater
than 2n, or
2p - m +2  2 + y - ^ <1  (14)

This condition will certainly be met if we have simultaneously
p — M  < — 1 and 2 + — - M <  — 1
which can be written as
M > p + 1 and M  > 3 + y  (15)

For ‘single-shot’ measurements the former condition will prevail, and
for multiple averagings the latter. In our machine AW,* = 13 and M  = 10.

Choice of RF-pulse spacings
The minimal number of measurements required for the determination
of a relaxation rate (assumed exponential) are: Two measurements of the
amplitude of the magnetization at different pulse-spacings, plus a
determination of the ‘baseline’, i.e. the value of the magnetization for
very long times. If we measure these amplitudes at times t\ and ti after
the disturbance, how should the interval T = h -  ti be chosen, in order
that the relaxation rate R', determined from

lo g ^ 1  06)1 A t.
where A\ and Ai are the measured voltages with respect to the baseline,
is as accurate as possible?
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If the amplitudes At consist of a signal part Mh and a noise part that is
independent of M, and has a Gaussian distribution with variance n2, we
have for the variance l] in (log A,) due to the variance n2 in the A,
themselves
/; = A fi2 n1 (17)
provided that n is small compared to Mh since in that case
log (Mt + n) = log Mi + M i1 n (18)
The variance n'1 in (log A x -  log A2) is then
n'1 = /i + l\ = (Mi1 + M i1)  n2 = M i1 n2 (1 + exp 2RT) (19)
where the last equation comes from the observation that M2 = Mx exp
( -  RT) due to the assumption of exponential relaxation rates. If we want
to minimize the uncertainty in R', determined according to Eq. (16) we
should minimize the ratio n '/R T  at a given value of n (T  is a very
accurately known quantity).
It is required to determine the time T such that

W  *  m Tr t  (1 + exp 2 R n “  W
is minimal. The figure of merit clearly is the quotient of the relative
error in R and the noise-to-signal ratio of the first point

q = { j f )  {m )  1= (RTyi1 (1 +  exp 2 RT)1/2
The dependence of q on RT  is shown in fig. 3; it has a minimum value
q = 2.9 (or RT=  1.1.
If the noise-to signal ratio is too high, we will have to use time
averaging in order to improve this figure. Now if we are allotted a total
measurement time of N  shots, performing in each shot an ‘amplitude’
and a ‘baseline’ measurement, how are we to divide these shots over
the various RF-pulse spacings? In order to keep the distribution'of the
noise in each averaged result identical, we must perform an equal
number of shots for each RF-pulse setting. It is easy to see that the
relative error in R, as determined from any pair of RF-pulse spacings
other than as chosen above, is worse than in this ideal case. But clearly
the advantage of the use of several RF-pulse spacings is the possibility
to detect systematic errors and/or non-exponential behaviour: we will
now see what price in accuracy we have to pay for this additional
information.
Let us therefore perform measurements of the amplitude (with respect
to the ‘baseline’) at 2ATdifferent, equally spaced time points. (We restrict
ourselves to equal spacing, since the commercial instrument that is
most widely used for spin-echo measurements has a possibility of
automatically increasing the pulse distance by constant amounts.) We
wish to determine what time T 2 K d  these points should span, in order
that the relative accuracy in R,  at constant K, be maximal. Now of course
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relative error
noise to signal

Fig. 3. Relative error in determination of R, divided by the noise-to-signal
ratio of the first measured point, as a function of time-span of measured points.
Upper curve: series of equidistant points. Lower curve: two points only.

the relative accuracy is a property of the data that is independent of how
the results are extracted from them. We will use the following procedure8):
We form the sum Si of the first K  amplitudes, and the sum Si of the
second K  amplitudes:

K 2 K

Si = 2  A, S2= Y  Ai
i= l i =T+ 1

Because of the equal spacing we have for the averages, denoted by a bar:
& = Si exp ( -  Kd)
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The mean-squared noise in each of these sums is K n2 and thus log (S) has
a mean squared error due to noise of K  n2 S~2. Then the mean squared
error (AX)2 in log (Si) -  log (Si) is
(AX)2 = K tt2 Si~2 (1 +  exp RT) (22)
while its average value X  is
X  = $RT  = K d R  (23)
Thus we have
A X  _  n (1 +  exp R T )'/2
x  K h dR Si (24)

The average value of S\ is given by
K

S i=  2  Mi = M \( l  -  exp ( -  ±RT)) (1 -  exp ( -  Rd))~' (25)
/ » l

and if R d  is sufficiently smaller than 1:
Si = (Rd) 1 Mi (1 -  exp ( - |/?7 ))
The figure of merit for this type of /«-determination is

, = ( A X \  / , .  n \ - '  = (1 +  ex p R T)h
\ X j \ l d M i )  1 -  exp (-4 /?7 )

From fig. 3 this can be seen to be minimal if
T  =  1.62 R~*

(26)

(27)

(28)
and in that case

(29)

It is seen that this optimal accuracy is only two-thirds of what would
have been obtained if we had performed K  measurements on each of the
amplitudes of the ‘optimally spaced pair’.
Now if we are to perform N  sweeps, and thus N /2K  sweeps per point:
A X
X

6.25— 1̂
Mi N h

(30)

where n0/M i is the single-shot noise-to-signal ratio in the first point.
So, if n0/M i equals 1, the final error in R  is 1 percent after 3.9 x  105
sweeps in total, or e.g. 97 points, each averaged 212 times, and spanning a
time of approximately 1.6 R~l.
Our result for the optimum interval disagrees with that of Moore
and Yalcin8), apparently because they treat the noise as decreasing with
the square-root of the time-interval, instead of with the square root of the
number of points taken in that interval. This would only be the case if the
spacing d  could not be freely chosen; consequently their attainable
accuracy is not given in terms of the same ‘first point noise-to-signal ratio’
as ours.
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CHAPTER III

Nuclear Magnetic Relaxation and Selfdiffusion in Liquids

Introduction 1~5)
In spin echo6) work the quantity of interest is the expectation value M
of the net nuclear magnetization mjv of a sample containing nuclei of
non-zero spin in a magnetic field
M  - T t < pn mN > (1)
where ps  is the density matrix for the A-particle system under study.
In liquids the coupling between different nuclei and the coupling of
the nuclei with their molecular surroundings are usually weak compared
to their Zeeman energy and we may write
M  = Tr <p m> (2)
where p is a single-spin density matrix and m a single-spin magnetic
moment operator (in some cases it is necessary to consider two- or three-
spin systems), and the brackets indicate a classical ensemble average
over molecular surroundings.
By applying an external disturbance (i.c. a pulse of radiofrequent
radiation) we can drive M away from its equilibrium value. Still, in that
case the deviation from equilibrium of the total system (nuclear spins
plus their molecular surroundings) is very small, and the return to
equilibrium of M obeys simple linear laws. In typical experiments the
changes in energy of the spin system are smaller than 10"5 NkT. In most
cases the return to equilibrium can be described by two transport
parameters, the longitudinal and transversal relaxation rates. That we
have two rather than a single transport parameter can be appreciated
from the fact that the time evolution of the component of M that is
parallel to the Zeeman field is not necessarily the same as that for the
component transversal to the field, due to the commutation rules for
the spin.
The interest of transport parameters usually does not lie simply in
their values, but in the possibility of relating them to models for
behaviour on the molecular scale. From the very fact that the spin system
may be driven far away from equilibrium without affecting the
equilibrium of the total system to any extent, the nuclear magnetic
relaxation rates and selfdiffusion coefficient are ideally suited for this
purpose.
After the disturbance has been switched off, M will return to its
equilibrium value via the (weak) coupling of m (the single-nucleus mag
netic moment operator) to its molecular surroundings. In most cases the
time evolution of the transversal component has also a part due to the
strong coupling to the Zeeman field, which is seldom perfectly spatially
homogeneous over the collection of N  spins. This part can, by suitable
techniques, be separately measured and in fact yields the nuclear self-
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diffusion coefficient.
In first instance we will consider only the weak interaction with the
molecular surroundings. Due to the rapid molecular motion this inter
action will vary in time, and at any moment be different for each member
of the ensemble, while the ensemble-average is zero (for the more usual
types of interaction, that depend on orientation of the molecules, this
follows from the isotropy of a liquid system). It turns out that in all cases
of interest the interaction Hamiltonian Hi may be written as a sum of
products of a spin operator with a (classical) ‘lattice’-function, that
contains time-dependent coordinates.
By approximation of the time evolution of M due to Hi up to the second
order (the first-order contribution being zero, since H\ vanishes on the
average) we will find the time evolution enclosed in the timecorrelation
of the ‘lattice function’; more precisely: in the components of the power
spectrum of the lattice function at zero, one and two times the Larmor
frequency, the restriction on the number of frequencies arising from
the fact that we consider an approximation up to second order. Although
it often occurs that the power spectrum is essentially flat over the
frequency range of interest, this is by no means the general case, and
generally the observed relaxation rates depend on the magnitude of the
Zeeman field.
From the wide variety of possible couplings of the nuclear spin with
its molecular surroundings we will encounter only two types: the electric
quadrupolar and the magnetic dipolar coupling.

The Quadrupole Hamiltonian 7)
The electric multipole expansion of the charge distribution in nuclei
with spin I >\contains more terms then the point charge (monopole)
term only. From parity considerations it can be shown that only the even
multipoles can have non-zero values; so the first (and, in practice, only)
correction to the point charge is the electric quadrupole term. Let us
suppose that such a nucleus is placed in an electric potential V due to
charges outside the nucleus. By expansion of V in a Taylor series at the
position of the nucleus, whose center is assumed to be in the origin:

and we can neglect the higher order terms since their contribution to the
electrostatic energy of the nucleus in this potential can be neglected. We
may write the last term as

ri rk V j k = % Y j  Vik ( r j f k - ^ r 1 S j* ) (4)
J . k  j k

because the potential has to obey Laplace’s equation. Here Vj * has been
used to denote the second partial derivatives in the origin. If we were to
consider the nucleus as a classical charge distribution, the electrostatic
energy would be given by
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E  = K(0) ƒ  / > d r + i 2  V / k f  P ( rJ rk ~  i * 2 sjk )^ r (5)

the second term being the quadrupole energy E q. Actually the nucleus is
to be described by quantum mechanics; defining a set of operators Qjk by

where the index / runs over all protons in the nucleus, the rj are position
operators (x, y, z), and e is the protonic charge, we have

where the angular brackets denote an expectation value.
Now the Qjk are elements of a symmetric traceless tensor as can readily
be verified from Eq. (6): hence only five of them are independent. To
bring this out more clearly, we will determine the quadrupolar energy in
a spherical coordinate system instead of in Cartesians, as was done in
Eq. (7). Let us define an operator Q with elements Qm, where m = 0,
± 1, ± 2, as follows:

It can be seen that the components Qjk can be expressed in the Qm as

eQjk = e 2  [(rj)t M i ~3 M i  fyk] (6)

EQ = \ e  Z  Vjk<Qjk> (7)

Qo =7 2  (3z? -  r?) = 2  *■/ OW/
1

Q±i = + H t f  J  z' ( x ±  W  = ( x )  ^  (Y2±i)>
i \  J  /  i

(8)

Q± 2 = i  (6)* 2  f a  ±  iyif  =  ^  (Y2±i ) i

where we have used the normalised spherical harmonics8)

i  (3 cos2 (5-1)

-  Yi-1 = Yi\ = “ ^-(6)^sin <5 cos d exp (i g>) (9)

( ^  S*n2  ̂6XP ^

Qxy = Qyx = Ï (6)^ (Q-2 ~ Q+2)
Qxz = Qzx = (6)4 fö-1 -  Q+O

Qyz = Qzy = i (6)^ (Q- 1 + Q+l>)
Ozz =^Qo ( 10)

Qyy = -  (6)"1 (Q-2 + Ö+2,) “ TÖ0
Qxx = (6)^ fö-2 + Q+2) - ^Qo
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For the field gradient tensor we proceed in a similar way and define the
components Fm as follows:
Fo ~^V ZZ
F±l = +  (6)4 (Vzx ± i Vzy)
F±2 = l(6 )4  (Vxx ~ V„ ± 2  i Vxy) (11)
which can be shown to be the irreducible representation of the field
gradient tensor.
Then the quadrupole Hamiltonian is given by

+ 2

HQ = ^  (" !)m F~m Qm (12)
m * - 2

and its expectation value yields the quadrupolar energy according to
Eq. (7).
Now, from the definition of the Qm it can be seen that they transform
under rotation as the second rank spherical harmonics. Then the set Qm
forms by definition an irreducible tensor operator of rank two, and,
according to the Wigner-Eckhardt theorem7 8), the matrix elements of
the Qm are proportional to those of the second-rank irreducible tensor
operator Am formed from the components of the total nuclear angular
momentum operator I (usually called the spin operator of the nucleus; it
is, however, composed of spin and orbital momentum of the nucleons).
From the similarity of the commutation relations of components of I and
r, with Ix, Iy and Iz:
[Ix, y ]  =  /  zi

[Ix, Iy] =  ƒ Iz (13)
(which is another way of stating that I and r have similar rotation
properties) it follows that thev4m can be formed from the Qm by replacing
x  by Ix, y by Iy, and z by Iz, and multiplying by a constant. Denoting the
proportionality constant by Q /I  (2 1 -  1) we have
Ao = [ e Q /2 I ( 2 I - \ ) \ [ l l l~ p ]
A±\ = (6)̂  [eQ/21 (21 -  1)] [I21± + /± /z] (14)
A±2 = t (6)* [eQ/21 (21 -  1)]/ |
where I± = Ix ± ily. The quantity eQ is called ‘the’ quadrupole moment
of the nucleus. Eq. (12) becomes

2

Hq = 2  (-1 )mF-mAm (15)
m * — 2

The Dipolar Hamiltonian11
Nuclei of non-zero angular momentum I possess a magnetic moment p.
that is collinear with I. The basic reason for this collinearity is again
explained by the Wigner-Eckhardt theorem: since both form an irreducible
tensor operator of rank one, their matrix elements are simply related
by a proportionality constant, which, measured in units 7f, is denoted
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by y, and called the gyromagnetic ratio.
We consider the energy E'd of a magnetic moment p in the field of a
second, similar magnetic moment p

a ®

where r is the vector from the position of p to the position of p'. This
equation may be rewritten as

E'd = ~ f 5 (3 2  IV V'k rJ  rk ~ Z  IV 1l 'j (17)
j k  j k

where the indices j ,  it denote Cartesian components. Defining two tensors
B and M by
Bjk -  rjTk -  W  6jk MJk = py pV (18)
we have
E'd = - 3 r - 5 X  BJkMJk (19)

Jk
The total dipolar energy of this system of two magnetic moments is
Ed = 2 E'd.
Clearly the Bjk are elements of a symmetric traceless tensor; in fact
they are the same as those for the tensor Qjk defined in Eq. (6), if there
the summation index / is left out. Thus, by comparison with Eq. (8) the
irreducible representation of B is found to be

fib = ( - )V 372o
b± 1 = ( ^ ) V 3 r2±1 (20)

fi±2 = ƒ  r~3 Y2±2

With the irreducible representation of the tensor M, using the Wigner-
Eckhardt theorem to replace p with yfi I:
M0 = - y 2ft2[3/z/ i - /•ƒ']
M±\ =  ± y 2 ti2 $ (6){ [h I'± +  4 4] (2D
M±2 = - y 2 fi1 [4 I'±]

The total dipolar energy is given by the expectation value of the dipolar
Hamiltonian

Hd = %  (-1  )mB - mMm (22)
m = — 2

The main reason for writing the Hamiltoninas H q and H d as a contraction
of a classical irreducible tensor (V resp. B) and an irreducible tensor
operator (Q resp. M) lies in the fact that the rotation properties of their
components are well known8) and relatively simple. For the tensor
operators this implies that their commutation rules with the components
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of I are simple: this is an advantage because we are interested in the time
evolution of the expectation value of the components of I. The irreducible
representation of the classical tensors is particularly suitable in those
cases where their values with respect to a laboratory fixed coordinate
system are changed by rotational motion of the molecular surroundings.
From a proper model for these molecular motions the changes in the
values of the tensor components may be computed with the aid of their
known rotation properties.

The Lattice Functions
The coupling Hamiltonians Hq and Ha for each spin (or spin pair) vary
in time due to the fact that the spin-part is space quantized (by the strong
coupling to the Zeeman field) while the molecular part contains coor
dinates that, as seen from a coordinate system that is fixed with respect
to the Zeeman field, are changed by thermal motion.
According to the general theory of nuclear magnetic relaxation in
liquids, that we will not describe here, the return to equilibrium of the
nuclear magnetization after a disturbance is governed by the power
spectra of the random lattice functions Fm (Eq. (11)) for quadrupole
relaxation or Bm (Eq. (20)) for dipolar relaxation. Furthermore it can be
shown9) that in the case where the main Hamiltonian, that governs the
molecular motion, is invariant under rotations, the power spectra of
lattice functions with different m are equal to each other. Thus the
nuclear magnetic relaxation is determined by

+ oo

J M  “ i  ƒ  < F0 ( f ) F0 ( f  + t)> exp ( lo t)d t  (23)
— oo

for quadrupole relaxation, and
+  oo

J(<o) = \ ƒ  < B0 (t')B 0 ( f  + t)> exp (i<tit)dt (24)
— oo

for dipolar relaxation.
These functions can be calculated with the aid of suitably chosen models
for the molecular motion and for the character of the interaction; this
will now be illustrated for the intramolecular dipolar relaxation of
protons in H2O and the quadrupole relaxation of deuterons in D2O. If,
for simplicity, we assume that for the dipolar interaction of protons in
H2O only the coupling with the other proton on the same molecule is
important (which is, actually, a rather bad approximation; this mechanism
accounts for approximately two-thirds of the observed relaxation rate),
we see that the time dependence of the Bm is contained in the Ŷ m, while
the factor r~3 is constant, and is determined by molecular geometry. The
arguments of the Yim specify the orientation of the proton -  proton vector
with respect to a laboratory-fixed coordinate system, whose z-axis is
along the Zeeman field. Modulation occurs through molecular reorienta
tion, assumed to obey a diffusion equation. In the most general case
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the diffusion is anisotropic, and this motion is only easy to evaluate in a
molecule-fixed coordinate system, that has its axes along the principal
axes of the diffusion tensor. If we distinguish quantities evaluated in this
coordinate system by adding a prime, we have, by the rotation properties
of irreducible tensor components

2

Bo(t)= X  Doin (a (0) B'm (25)
m -  -  2

where the Z)’s are elements of a Wigner rotation matrix; their argument
Q (t) describes the orientation of the molecular frame with respect to the
laboratory frame at time t. Thus we have

< Bo ( f)  B0(t' + t)> = X  < ° 2om &  (O) D2J  (Q ( f  + 0) > B'm B'nt (26)
mm'

It has been shown that correlation functions of this type consist in the
general case of a sum of five exponential decays10); a considerable
simplification is achieved if the rotational diffusion is isotropic. Then we
may choose thè primed coordinate system as having its z'-axis along the
proton -  proton vector, so that
B'm = r 3ö0m (27)
and we need only the simplest of the rotation matrix elements, whose
explicit form a given by

£& = (4ji/5)* T2o (28)
so that
r~6 < Doo (t')Doo ( f  + 1) > = (4ji/5) < T20 ( f )  Y20 ( f  +t)>

= }r 6 exp ( -  t/x) (29)
where r is the rotational correlation time for the second rank spherical
harmonics.
The deuterons in D20  possess a quadrupole moment, that couples to the
field gradient that arises from the non-spherical electron density in the
chemical bond. As a simplification we assume that the charge distribution
in the bond has cylindrical symmetry. We choose a (primed) coordinate
frame, fixed in the molecule, with the z'-axis along the bond. Clearly
in this coordinate system the tensor F, given by Eq. (11), has only one
non-zero component
F0 = \  K ,, (30)
It is customary in such cases to denote the field gradient by eq = K//
so we have
< Fo (f) F0 ( f  + 1) > = < Dw (Q (f)) Doo (Q ( f  + t)) > \(eq)2 (31)
where the Q denote the orientation of the molecular z'-axis with respect
to the laboratory frame; from the similarity of Eqs. (29) and (31) it is
seen that molecular rotation has the same influence on intramolecular
quadrupole and dipolar relaxation: for the case of isotropic rotational
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diffusion we have

< F0 (t‘)  F0 ( f  + 1) > = — (e®)2 exp (32)

The Relaxation Rates
In many instances it is found that the return to equilibrium of the nuclear
magnetization after a disturbance is given by simple exponential
decays U)
d Mz (t) _  Mz (t) -  M0

dt Tl (33)
d M yf t )  _  Mxy

dt T2

where 771 and 771 are called the longitudinal (or spin-lattice) and
transversal (or spin-spin) relaxation rates; Mz and are the expectation
values of the longitudinal and transversal (with respect to the Zeeman
field) nuclear magnetizations, and M0 is the equilibrium value of Mz.
Such equations are obtained for relaxation through pair-wise dipolar
interactions between similar spins, with the relaxation rates given by2,3)

771 = |  ƒ O + V  (y2 tl)2 [ /  M  + 4 / ( 2  a j]

TV  = -  /  ( /+  1) (y2 tl)2 [ f / ( 0 )  + |/(< y 0;  +/(2<y0; l  (34)
where u„ denotes the Larmor frequency, /th e  spin quantum number, and
/  (to) is given by Eq. (24).
Such simple decays are also found12) for quadrupolar relaxation of spins
with I  = 1:

TV = |  (eQ/ti)1 [J (ü)0)  + 4 /  (2 coj]

TV  = |  (eQ/ti)2 [ f / ( 0 )  + | / (co„) + / a  (35)

and for quadrupolar relaxation of all nuclei in the case /  (2 <ya) = /  (<y0) =
/(0 ), commonly denoted as ‘extreme narrowing’:

TV  = TV  = |  (eQ/ti)2 [(21 + 3) / I 2 (21 ~ V] /(0 ) (36)

For quadrupolar relaxation of nuclei with I  > 1, outside the extreme
narrowing region, the return to equilibrium is more complicated: an
example of this situation will be described shortly.
For the moment we restrict ourselves to quadrupolar relaxation in the
extreme narrowing region. For the mechanism described in the derivation
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of Eq. (32) we have finally:

7T1 = 71' = —  (eqeQ/A?  [(27+ 3)/72 (2 7 - 1J] r (37)

where (eqeQ/fi) is called the quadrupole coupling constant; in the solid
and gas phases its value can be determined by other experimental
techniques. For spherical ions in aqueous solution field gradients may
arise from the electric dipoles (and higher multipoles) of the water
molecules, and the charges on all other ions. Such relaxation mechanisms
have been extensively studied in solutions of simple electrolytes13,14).
A basic assumption in the theoretical description so far, has been that
the motions of these charges with respect to the nucleus under con
sideration are mutually uncorrelated. Then of course the field gradient
autocorrelation in a A  -  charge system equals A  times the single -  charge
field gradient autocorrelation. The validity of these assumptions is
subject of discussion, to which some attention will be paid in the
introduction to Chapter IV.
To facilitate comparison of different relaxation mechanisms, we will
use Eq. (37) as a formal expression, bringing the results derived by
Hertz and coworkers to a similar form by defining
t ■ 7(0) /  < F2 ( f )  > (38)
Then their result14) for the relaxation rates caused by the point charges
of the other ions can be expressed as

q* 7 l - ( a / b )  A
40 jt 7) \  1 -  ( a /b f  )

eq = S n ze  T—  (a“3 -  b~3)  j (I -  y*,) 2 * *  3

(39)

(40)

where a is the distance of closest approach, b is a measure for the
thickness of the ionic cloud, D is the (average) diffusion coefficient, ze
is the charge of the ions, N /V  their number density, e the dielectric
constant, and (1 -  y») is a factor to account for the shielding of the field
gradient by the charge distribution of the ion under consideration.
For the effect of the electric water dipoles on the relaxation, we have
as correlation time the rotational correlation time of the dipole in the
hydration shell, and for the field gradient14)

/ 4tt N '\^  n  . 2 c +  3
5 e (41)

where m = 1.85 x 10“18 esu cm is the value of the water dipole, a' is the
distance of closest approach, and N’/V  the number density of the water-
molecules.
To give an impression of the order of magnitude of the nuclear magnetic
relaxation parameters of 23Na, which has 7=3/2 ,  in various systems, we
have collected in Table I the relaxation rates, and the quadrupole coupling
constants and correlation times derived from them by regarding Eqs. (37)
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and (38) as formal definitions. Not too much significance should be
attached to the individual values; they often have been obtained as crude
estimates, and are meant merely as an illustration.

system eqeQ/h T rV Ref.

crystal NaCl • 2 H2O 1 - - a)

very dilute aqueous solution 0.75 8 18 b)

ion-ion contribution in
5 M NaCl solution 0.25 1 1 b)

Na-caprylate dissolved in
caprylic acid 0.7 2 x  103 5 x  103 c)

NaCl in RNA-solutions - - 200 d)

NaCl in HEEDTA-solutions 4 10 600 e)

PAA solutions polyion
contribution 0.85 20 70 f)

MHz psec sec-1

Table I: Typical values of 23Na nuclear magnetic relaxation parameters in various
systems.

References:
a) H. Rockelmann and H. Sillescu, Ber. Bunsenges. Phys. Chem. 74 1002 (1970)
b) H. Versmold, Dissertation, Karlsruhe 1970
c) B. Lindman and P. Ekwall, Kolloid Z. u. Z. Polymere 234 1115 (1969) (Note:

here the ‘extreme narrowing’ condition is not met. The value shown under
7 7 'is at v0 = 16 MHz.

d) T. L. James and J. H. Noggle, Proc. Nat. Acad. Sci. (USA), 62 644 (1969)
e) T. L. James and J. H. Noggle, J. Am. Chem. Soc., 91 3429 (1969)
f) This thesis, Chapter IV

Nonexponential relaxation of 23Na
For spins I > 1, outside the extreme narrowing region, the return to
equilibrium of the nuclear magnetization after a disturbance is no longer
simply exponential; Hubbard ~2) has shown that for 7 = 3 / 2  the Eqs. (33)
et seq. have to be replaced by

Mz (t) -  M0 =M 0 (cos <5-l) T j  exp ( -  a it)  +  \  exp ( -  ai t) 1
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(42)
f3 2Mxy (t) = M0 sin d I -  exp ( -  b \t)  + -  exp ( -  bi t)

Here d is the angle through which the equilibrium magnetization has
been suddenly rotated by the disturbance at time zero, and the coefficients
a and b are given in terms of the spectral densities of Eq: (23) by
oi = 2 ( e Q /b f  J  (lao) 02  = 2 (eQ/H) J  (toj
b\ = (eQ /ti)2 [J (0) +  J  (<oJ\ bi = (eQ /tl)2 [J ( a j  + J  (2 <yj] (43)
Although a few reports have appeared describing a difference between
transversal and longitudinal relaxation15,16), or a field-dependent line
widthI7) of 23Na in liquid systems, no attempts seem to have been made
to verify whether in these cases the predictions regarding the field-
dependence of Eqs. (42) were obeyed; still, such information can support
the hypothesis that the main relaxation mechanism is indeed quadrupole
relaxation. In our studies of 23Na nuclear magnetic relaxation in poly-
electrolyte solutions, we found that in solutions of poly(methacrylic acid)
at low degrees of neutralization the decay of thé transversal magnetization
was much more rapid than that of the longitudinal magnetization.
Although we have not been able to find a molecular description to explain
the phenomenon, it still has a certain interest to show that the relaxation
indeed obeys Eqs. (42).
If the spectral densities do not change too rapidly from a = 0 to <o = 2 <o0
the simple Eqs. (33) are still approximately valid, with the expressions
(35) for the relaxation rates, except that the numerical factor 3/2 has to
be replaced by 2/5, to take into account the change of ƒ from 1 to 3/2.
Thus, if the relaxation is measured at two values <y0 and <J„ of the Larmor
frequency, that satisfy the condition <o'0 =$ <o0, the four relaxation rates
are determined by the spectral densities at u = 0, <o -  t (0o, (o = co0 and
(o = 2 (o0, and we may solve the equations to find these four spectral
densities. Next, by iteration, a fit of the experimental data to the full
Eqs. (42) can be made.
The reported results have been obtained on solutions of atactic poly-
(methacrylic acid) (PMA), that were prepared in the same way as the
PMA samples described in Chapter V, except that the concentration
was 0.52 mgeq/g.
Qualitatively the same nuclear magnetic relaxation behaviour was found
for syndiotactic samples, and for a single sample of isotactic PMA at a
degree of neutralization a = 0.15. The measurement procedure was the
same as that for 23Na relaxation in poly(acrylic acid) solutions described
in Chapter IV, except that at the time the free-induction decay lock was
not yet available. For transversal relaxation J n  — n  pulse sequences were
used. The Larmor frequencies were 8 and 16 MHz. In fig. 1 it is shown
how at degree of neutralization a = 0.05 the transversal relaxations clearly
are non-exponential, in fig. 2 the a-dependences of the quantities J ' (to) =
= (eQ i h)2 J  (to) are shown. All relaxation curves are very well described
by these spectral densities, showing that the main nuclear magnetic
relaxation mechanism is indeed the quadrupolar interaction. Un-
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Fig. 1.
A  semi-logarithmic plot o f the decay of longitudinal and transversal nuclear
magnetization o f 23Na in a poly(methacrylic acid) solution. Concentration:
0.52 mgeg./g. Degree of neutralization: 0.05. Molecular weight M„ = 2.2 x  103.
Solvent: DjO.

fortunately we have not yet been able to develop a molecular inter
pretation of this very remarkable relaxation behaviour, and in the
present work no further attention to these results will be given. We
acknowledge the cooperation of G. Schoep (Kamerlingh Onnes
Laboratory, Leiden), Dr. K. van Putte (Unilever Research, Vlaardingen)
and Dr. I. D. Robb (Unilever Research, Port Sunlight) who put their
equipment at our disposal during the early stages of the research reported
in this section, and of W. F. Passchier of this Laboratory who wrote the
computer program used in the iterative fitting procedure.
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V = 8 MHz

V =32 MHz

Fig. 2.
J' (v) = (eQ/H)1 J (v) as derived from 23Na nuclear magnetic relaxation in poly-
(methacrylic acid) solutions with the aid of Eq. (42), versus degree of neutraliza
tion a. v = (2 it)- ’ to.
Concentration: 0.52 mgeq./g. Molecular weight Mv = 2.2 x 105. Solvent: D 2O.

S e lfd if fu s io n  M e a s u re m e n ts

T h e  pu lsed -fie ld -g rad ien t m e th o d 18,19) o f  m easu rin g  se lfd iffu sio n  is
based  o n  th e  possib ility  o f  m o n ito rin g  th e  p o sitio n  o f  a n u c leu s  by its
L arm o r freq u en cy  in  a  m agnetic  f ie ld  th a t is spatia lly  d ep e n d en t. W e will
describ e  h e re  on ly  th e  p rincip le, re fe rrin g  to  th e  orig inal lite ra tu re  fo r  a
d escrip tio n  o f  th e  actual ex p erim en t.
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Let us consider a collection of nuclei in a perfectly homogeneous magnetic
field. With the aid of a RF-pulse at time zero we turn the nuclear
magnetization into the plane perpendicular to the Zeeman field Ho,
where it starts to precess with the Larmor frequency6). Next we apply for
a time ó a magnetic field whose spatial average over the sample vanishes,
that increases linearly in the direction of the Zeeman field, and that
has no components in other directions. (Such fields cannot really exist,
but they can be obtained in sufficient approzimation over a small volume).
Then the local Larmor frequency at0 (z') at position z' is given by
<y0 ( f )  = y (H0 + gz') -eo0 +ygz> (44)
where g is the field gradient, and the sample has been assumed to extend
from -z„  to +z0. The total phase shift accumulated by the nuclei in the
plane z' during the short time ó is
f  (z') = y(gó) z' (45)
If we apply the field gradient in very short, very intense pulses, so that
6 -*• 0 but g 6 remains finite, we can neglect the displacement of the spins
during the pulse. A time A after the first, we apply a second pulse, of
the same length and magnitude but of opposite sign, thus

Oo (z") = o 0 - y g z "  (46)
It is clear that, if all nuclei were immobile, the magnitude of the
processing magnetization after the second gradient pulse would be
exactly as large as before the first gradient pulse (except for relaxation
effects, that can be separately taken into account). If they move in the
z-direction during the time A however, the second phase-shift that they
suffer is not exactly the opposite of the first, and a net loss of magnetization
results. It is not difficult to see that the ‘uncompensated’ phase shift of
a group of nuclei that have moved over a distance z = z' -  z" during the
time A is
<p(z,A) = y(gó)z  (47)
so that the magnitude of the magnetization after the second gradient
pulse is
M  (gó, A) = M  (0) ƒ  P (z, A) cos [y (gó) z] dz (48)
where the integration boundaries may be taken as ± provided the
dimension 2 z0 of the sample is such that the probability P (2 z0, A) of a
displacement 2 z0 in time A is negligible. Assuming furthermore that P is
an even function of z, and defining k? = - y  (gó) we can write
M  (kz, A) =M (0) ƒ  P(z, A) exp (— i kz z) d z (49)
Now, according to a general theorem on Fourier transforms20), the
second moment with respect to z of P  (z, A), which is determined2 u by
the selfdiffusioji of the nuclei under consideration, is equal to -(2  it)"1
times the second derivate of M(kz, A) I(M  (0) with respect to k2 at kz = 0.
Therefore from a number of measurements of M  at different kz in the
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neighbourhood of kz = 0 the value of the selfdiffusion coefficient can be
obtained.
This can be more clearly shown if it is assumed that P (z, A) obeys a
diffusion equation

then, with the aid of the inverse transform of Eq. (49), we find for M:

f  - 2 — Mexp (ik2z)d kz= -  ƒ  D kl M  exp (i ^  z) d kz (51)
J dA
or
- r -rM  = -  D k%M (52)oA

which has as its solution
log [M/M  (0)] = -  A D k \  (53)
In practice the main Zeeman field is never perfectly homogeneous, and
techniques using two RF-pulses and two gradient pulses are used, where
the detected signal is a ‘spin echo’. It is also possible to derive the
effect of diffusion on the observed magnetization if the gradient pulses
are not narrow: in fact the first measurements of diffusion with spin
echoes were made in a continuous gradient22’.
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CHAPTER IV
Nuclear Magnetic Relaxation of 23Na in Polyelectrolyte Solutions

Introduction
Aqueous solutions of simple electrolytes have been extensively studied
by NMR methods1,25. Two rather different mechanisms have been
proposed to explain the nuclear magnetic relaxation of alkali ions (all of
which possess a quadrupole moment). Valiev and, independently, Hertz
take the charges external to the ion (i.e. all the other ions and the water
molecules) as the sources of the electric field gradients, that interact
with the nuclear quadrupole moment to produce spin relaxation3,4).
Their model has been improved by Versmold5) by the use of a Debye-
Hiickel, rather than an unscreened-Coulomb potential. Deverell
considers the distortions of the electron cloud of the ion itself by short-
range repulsive forces during a ‘collision’. These points of view are
referred to as the ‘electrostatic’ and the ‘overlap’ model respectively.
The overlap model has been applied with some succes to the halogen
resonances in aqueous alkali-halogenid solutions. Its applicability to the
relaxation of the lighter alkali ions is uncertain. The theory focuses its
attention on the magnitude of the field gradient, leaving the dynamics
of the gradient fluctuations rather unspecified. Since our object is an
investigation into the possibilities of nuclear magnetic relaxation to
obtain information on the electrostatic interaction of a polyion and its
counterions, we will apply the electrostatic model to this problem, and
discuss our results within this framework.
There exists a pronounced difference between the formal development
of a molecular theory of nuclear quadrupolar relaxation in molecules
on one hand, and in simple spherical ions on the other. In the former
case the electric field gradients originate within the molecule itself:
there exists a frame of reference, attached to the molecule, in which the
elements of the field-gradient tensor are time-independent. In solutions
of simple electrolytes such a frame cannot be found: in any coordinate
system the elements of the field-gradient tensor are time-dependent and
average to zero.
In the case of polyelectrolyte solutions (to be specific: solutions of a
weak polyacid, partially neutralized by sodium ions) we encounter a
third possibility, not described so far in the litterature. Here the low
molecular weight counterions are not surrounded by a time-averaged
spherically symmetric distribution of opposite charges: the fact that the
opposite charges are tied together by the polymer backbone prevents
such an arrangement. Consequently, the situation can be described by
a mixture of the above two models: the time-averaged distribution of
counterions around a polyion gives rise to a field gradient of non
vanishing magnitude, whose direction is time dependent with respect
to laboratory fixed axes. At the same time fluctuations in the average
distribution give rise to field gradients that are modulated both in
magnitude and in direction. In the present paper we stress the importance
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of the asymmetry of the average charge distribution; we checked our
theoretical result by measurements on rather dilute solutions using
concentrations where, in the case of simple non-associating electrolytes
(e.g. the sodium halogenides), no major contribution of the fluctuations
in the average charge distribution to thé relaxation rate exists. The
observed relaxation rates of sodium in polyelectrolyte solutions are
four6) to ten7) times larger than in solutions of sodium halogenides of
comparable concentration8).
In polyelectrolytes a pronounced asymmetry exists between the
behaviour of the polyions and the low molecular weight counterions.
The charged macromolecule is always at the centre of its own atmosphere
and cannot be assumed to participate in the atmosphere of other ions
on an equal footing. In the following we will assume the average charge
distribution to be cylindrical, at least locally over lenghts of some tens
of A. For polyions of not too low charge density this should not be a
severe approximation. Because of the lower symmetry of the charge
distribution around a sodium ion in solutions of polyelectrolytes, as
compared to simple electrolytes, it is possible to define a coordinate
system, attached to the polymer, in which the field-gradient tensor at
a fixed position has a non-zero time-average; fluctuations away from
this average value are assumed to be small and short-lived, so that they
do not give a significant contribution to the observed nuclear magnetic
relaxation. It has to be noted that these deviations from the average
charge distribution are the only ionic relaxation mechanism in simple
electrolytes.
To give a quantitative description of the proposed mechanism, we will
adopt the cylindrical cell model of polyelectrolyte solutions, which is
now most widely used by workers in the polyelectrolyte field. Recently
the subject has been reviewed by Katchalsky9). It is assumed that a
polyelectrolyte solution may be divided into ‘cells’, in the centres of
which are the polymeric ions. The electrostatic repulsion between the
polyions will lead to a homogeneous distribution of the macromolecular
centres, so that an average interpolymer distance 2R may be attributed
to thé cell structure. For macroions of not too low charge density it is
assumed that they are sufficiently stretched by electrostatic repulsion
as to be ascribed a cylindrical symmetry, at least on a segmental scale.
Then the polyion is represented as an uniformly charged rod of radius a,
and the local counterion density within the cylindrical volume of radius/?
is connected to the local potential through Poisson’s equation. As a
consequence there is a radially directed electric field. We will consider
only this ‘static’ field, and neglect the time-varying field that arises
from the fact that the charge carriers are discrete particles, that perform
a more or less random motion.
It has been argued on the basis of statistical-mechanical considerations10)
that for high charge densities on the macroion, part of the counterions
will ‘condense’ on the polyion: there is a sort of clustering about the
polyion of these counterions1 These condensed ions see the electric
field of the unscreened polyion at a fairly small distance. Since the
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fraction of condensed ions is predicted to be considerable at high charge
densities (approximately two-thirds for a fully charged vinylic poly
electrolyte) a marked increase in nuclear magnetic relaxation rate of the
counterion upon raising the degree of neutralization is expected.
We have shown this effect to exist previously65. Consistently, the 23Na
relaxation rate in polyphosphate solutions is found to be considerably
larger than in low molecular weight phosphate solutions75.
The experimentally observed nuclear magnetic relaxation rates of alkali
ions in aqueous solutions always contain a contribution from interaction
of the nuclear quadrupole moment with the field gradients caused by
the electric water dipoles. Although the molecular dynamics and
dielectric properties of this process have as yet not been uniquely
determined, -  a discussion of the difficulties encountered has been given
by Eisenstadt and Friedman125 -, the value of this contribution in
solutions of simple electrolytes at low concentrations can be estimated
from extrapolation of the observed relaxation rate to zero concentration
of electrolyte. At finite concentrations, an experimental estimate of
this solvent contribution is often made by assuming that it is proportional
to the deuteron relaxation rate of D2O in the same solution. Eisenstadt
and Friedman85 have pointed out, however, that a plot of sodium
relaxation rate at infinite dilution versus viscosity over temperature of
the solvent, does not pass through the origin, while the same plot of the
solvent relaxation rate does. That mobility of solvent and solute may
depend quite differently upon concentration can be shown in Rbl-
solutions: here, solvent relaxation rate and reciprocal diffusion constant
decrease upon increasing concentration13), while these quantities for the
ions themselves increase5,145. From the observed increase of D2O-
relaxation rate upon increasing concentration and/or length of fatty
acids and their salts in D2O solution, Hertz and Zeidler155 concluded that
the presence of non-polar groups on these molecules leads to an increased
water structure. Specific interactions of water and polyelectrolyte-
molecules have also been inferred from D20-relaxation rates165. In
view of these complications we will not attempt a calculation of the
contribution of the water dipoles to the sodium relaxation rate, but
rather consider it as an adjustable parameter, whose value can be deduced
from the sodium relaxation rate at low degrees of neutralization.
In view of the above considerations, we will adopt the following model
to explain the unexpectedly high nuclear magnetic relaxation rates of
counterions in polyelectrolyte solutions:
A) The polyion is represented by a rigid rod of a certain radius a, and
an uniform negative surface charge density. As seen from the laboratory
coordinate system, this cylinder may perform any rotational or trans
lational diffusion; but the conditions mentioned in B) -  D) are assumed
to be valid at any moment.
B) The position of the counterions with respect to the polyionic rod
is represented by their equilibrium probability distribution, as given by
the solution of the Poisson-Boltzmann equation with cylindrical
boundary conditions. Fluctuations away from the equilibrium
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distribution are neglected.
C) The solvent is described by a hypothetical dielectric, viscous fluid
with no molecular structure, but with dielectric and viscous properties
like the macroscopic properties of water.
D) In the system, formed by A) -  C), there moves a ‘test particle’ with
nuclear spin 3/2. The motion of this particle through the solvent on an
equipotential surface of the total charge distribution (A) plus (B) can
be described by a diffusion equation with diffusion coefficient D\ its
ability to move perpendicular to such a surface is seriously hindered. We
compute the nuclear spin relaxation rate of this ‘test particle’.
Apart from these assumptions we will follow procedures that are common
in the description of nuclear magnetic relaxation of diamagnetic ions in
simple electrolytes.
Some features of this model can be more or less justified:
In A) and B) the total charge distribution is assumed to have cylindrical
symmetry. The contribution to the relaxation rate of a certain nucleus
from an electric point charge at a distance r decreases as r“6; thus only a
limited part of the charge distribution representing the polyion and its
counterions will be important. Furthermore it will turn out that the
fieldgradient autocorrelation in lost in 10“10 seconds, a time in which the
nucleus diffuses over a distance of, say, ten A. Thus the cylindrical
symmetry only needs to exist on a timè scale of 10“10 seconds, and for a
part of the polymer of some tens of monomeric units. In connection
with this it is of considerable interest to note that in polyphosphate
solutions no dependence of the 23Na relaxation rate on the degree of
polymerization was found from roughly 60 monomeric units upwards71.
In B) is stated that fluctuations in the average counteriondistribution
are neglected; they can be assumed to cause relaxation rates of the same
order of magnitude as in e.g. sodiumhalogenide solutions of the same
concentration and can be neglected in the present case.
The assumptions C) on the solvent are made because we will try to
estimate the value of the solvent contribution to the relaxation from
experimental results, and not from theoretical considerations, so the
molecular structure of the solvent will be of minor interest. A thorough
theory of the influence of the dielectric properties of polar solvents on
nuclear magnetic relaxation of diamagnetic ions is lacking at present2).
The restriction on the motion of the ‘test particle’ in D) is taken to
represent the difficulty a counterion has to escape from the polyion’s
atmosphere. This escape-time has been estimated to be 102 -  103 times
larger than the time required to travel the same distance on an
equipotential surface. Furthermore, the radial displacement of the test-
particle within the polyion’s atmosphere does not change the direction
of the field-gradient it experiences, so that this motion does not cause
a decay of the field-gradient autocorrelation, but merely an oscillation,
that is rapid compared to the decay-time. Therefore radial displacements
within the polyion’s atmosphere will not give significant contributions
to the observed relaxation, while the time required to leave the atmosphere
is estimated to be much longer than the correlation time for tangential
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motion in assumption D).
In the Discussion further remarks about the features of this model will
be given.

Theoretical
The ‘electrostatic model’ of nuclear magnetic relaxation in electrolytes
is patterned after that in ionic solids3*. We will follow the convention
used by Hubbard4) and by R ose17) for the normalization of the irreducible
representations of the field gradient tensor and the spinoperators. The
molecular motion is taken to be invariant under rotations and fast with
respect to the reciprocal of the Larmor frequency. The nuclear magnetic
relaxation rates are then given by4):

T'~'~ Tf' T W = \ )  J(0) (1)
where

+ 00
Joo (to) = 1  ƒ  <Fo (t) F„ (t + z )>  elm dr (2)

and < > indicates an ensemble averaging. Fo is the irreducible component
of the field-gradient that is invariant under rotations around the Zeeman
field.
Let Fo, F± 1, F±2, be the irreducible components of the field-gradient
tensor in a coordinate system that has Euler angles (afiy) with respect to
the magnetic-field fixed system; then:

2

F0 = Y  DÏk (afiy) Fk (3)
k--2

where D’s are elements of a Wigner rotation matrix17).
The connection between irreducible and Cartesian components is:

Fo = \V ZZ

F± 1 = +  (6)“* (Tz* ± i Vv)  (4)

F± 2 = 4 (6)A (Vxx -  Vyy ± i 2 Vxy)
where the Vij are second partial derivatives of the electric potential.
If the field-gradient arises from point charges in a uniform continuous
medium of dielectric constant c, we will have to take into account
contributions from the polarization of the medium by the point charge3)
and from (anti-)shielding by the charge distribution of the ion under
consideration18,19). Then the field-gradient tensor at a nucleus in r, due
to a point charge e in the origin is given by

= (5)

We call (2e +  3)/5  c the polarization factor P, and y» the shielding factor.
It should be noted that in the case of polyelectrolyte solutions, the
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polarization effect is mainly due to orientation of water-dipoles in the
hydration shell of the counterion by the electric field of the polyion.
The correction accounts for the ‘average amount’ of orientation.
Fluctuations away from this average orientation cause what we call
the solvent contribution to the relaxation rate.
Contributions of different charges to the field-gradient are additive;
however, if their positions are only known in the form of a probability
function p (f), care should be taken to exclude a small volume around
the field point from the integration domain:

V(r) =(1 V ƒ  eP (r>) dr' (6)
r* r’ £ I f  — r\

The integration extends over all sources, positive as well as negative,
of the electric field.
We now specialize to the case that the distribution function p of the
charges, which gives rise to the field-gradient, has cylindrical symmetry
around certain axis z. The electric Field in the ‘hole’ at (r, p, z) will be
radially directed, and its magnitude Eh obeys Laplace’s equations:
dEh . Eh _  n
dr r (7)

At the boundary of the hole the magnitude of the electric field is
continuous (while its derivate is not); thus we have, for a sufficiently
small hole:

(in hole) = ~~~ (in hole) *»* (at boundary) = -  — (at boundary)

where Er is the radial component of the macroscopie electric field, that
is connected to the distribution function p by Poisson’s equation. In
this cylindrical case we get for Eqs. (4):
Fo = 0

F±\ = 0 (9)

F±i = (6)~* U ~  y°°) * P Er g± 21 f
r

If the ion, that bears the nucleus under consideration, is free to move
in this coordinate system, modulation of the quadrupolar Hamiltonian
occurs by changes in r as well as in q>. In general, however, changes in
radial position will also affect the Coulomb energy of the ion. In poly-
electrolyte solutions of non-vanishing concentration, the magnitude of
the electric field passes through a minimum at a distance halfway
between two macroions. A counterion in Brownian motion on a straight
line between these two polyions, suffers loss of correlation of the field
gradient in the average time it takes to escape from the potential well
around the polyion. Motions on that straight line inside the potential
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well give rise only to oscillations on the autocorrelation function, that
correspond to high frequencies in the power spectrum and will be
neglected. It has been estimated20) that this escape time may be 102 -  103
times larger than the time required to travel the same distance in a
constant potential.
The tangential displacement causes loss of correlation after travelling
about one radian; this time is thus always shorter than the correlation
time for radial displacement. Therefore we will assume that the decay
of the field-gradient correlation at a nucleus that is in (r0, f o )  at time
t = 0, occurs wholly by changes in <p at constant r:

F'±1 (0) F'n (x) = |  / O ~ y~) e P  £r f a jy  exp (± 2 / (p0 -  f  (z))) (10)

Next we assume that the probability of a change Ap  of p during time x
is given by the probability of diffusional displacement along the arc r0A p:
P (Ap, x) = Wo (xDx)  ̂exp (~(r0Apf/AD i)  (11)
which leads to
ƒ  ƒ  Po (g>o) exp (± 2 iAp) P (Ap, x) dp0 dAp = exp ( -  ADx/r02) (12)
if the a priori distribution P0 (p0)  of nuclei has cylindrical symmetry.
The interesting quantity, however, is the autocorrelation of the field
gradient in the laboratory axes system. This is connected to the auto
correlation in the system that has its z-axis along the symmetry-axis of
the field through Eq. (3). Obviously this symmetry-axis might rotate
between times t = 0 and t = r. If this rotation is sufficiently slow, we
may assume that the nucleus stays on an equipotential surface, whatever
the motion of the field’s symmetry axis is, and we may average over
U s  and F ’s separately; then Eqs. (2) and (3) can be written:

+ -  _  (13)
Joo (<o) =7 ƒ  Y < F>2ok (t) D20k (t + x)> < Fk(t) Fkf (t + z)>  exp (iox) d;

In our application the changes in the arguments of D are connected to
reorientations of the macroion; we take these not only to be sufficiently
slow for Eq (13) to hold, but even to be so much slower than the changes
in F that the U s  become effectively time-independent:

< D2ok (t) D20kf(t + l) > < D2ok (t) rKu (t) > = \  ökk! (14)

if all orientations of the symmetry-axis nave equal a priori probabilities.
The averaging of FkFw in Eq. (13) is over r- and ^-coordinates. By use
of Eqs. (10)k (12) and (14) we get

Joo (0) = ( c P ( \ -  y~))2 < Er2 >r (15)

where < >r indicates that the averaging only has to be taken over the
radial probability function of the nuclei. Insertion of Eq. (15) into Eq. (1)
gives, for spin 3/2
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This equation expresses the observed relaxation rate as a weighted
average over ‘microscopic relaxation rates’ that are propertional to E2.
This simple structure, of course, is due to the neglect of the radial
displacement in Eq. (10).
On the basis of the cylindrical cell model for polyelectrolyte solutions
we will compute < E2r > in two ways: first, using the analytical solution of
the Poisson-Boltzmann equation as obtained by Fuoss, Katchalsky and
Lifson21) and second by using Manning’s ion condensation concept10).
For salt-free solutions of polyacid, partially neutralized by monovalent
counterions, the macroscopic electric field at a distance r from the
polyionic rod can be written as21):

F  f r )  = F  f n )  0  (1 +  ^  C° th  ^  lfl ( R / a ^>Er (rj Er (a) f  + CQth ^  ln (R/f^
E r (R) = 0 (17)

E r (a) = -2  a e/bea
where
a degree of neutralization
b distance between ionizable groups
a radius of polyionic rod
R radius of counterion-atmosphere
fi a (real or imaginary) integration constant
The parameters R and f  are given by
R = (n b N,)~k (18)
where Np is the monomer number density of the polyion in the solution
and each monomer is supposed to carry one ionizable group, and
1 -  jS2 = X (1 + yfcoth (/Sin (R/a))) (19)
where
X ^ a J / c b k T  (20)
is the ‘charge density parameter’, central to all rod-like theories of
polyelectrolyte solutions. From Poisson’s equation it follows that the
probability P(r) to find a randomly chosen counterion at a distance
between r and r + dr from the polyionic rod is given by

P(r) = ~  —  (rEr) (21)2ea dr
so that Eq. (16) becomes

TT1- ^  (,/><!- ,„ )  J 2 _  ƒ  E) ^  (rEr) dr (22)

By partial integration, using Eqs. (17) we get finally

7 ? - £ ( P O - * . ) e Q / l , f  03)
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where

F(x) = (1 +y?coth/?x)~3 exp (2x) (24)
and the concentration parameter y = In (R/a).
This is the result for the relaxation rate of spin 3/2 nuclei in the
counterioncloud of a polyelectrolyte, using the Poisson-Boltzmann
equation.
Alternatively, we may use the ion-condensation concept: At charge
densities characterised by 2 < 1 the small ions are free to move around
in the solution, and their average distance to the polyion may be large:
consequently the electric field must be assumed negligeably small, and
there is no contribution to the relaxation rate. For higher charge densities
a fraction (2 -  1)2 of the counterions ‘condenses’ on the line charge,
-  i.e. resides at an average distance d that is small compared to the Debye
length n). These ions see the electric field of the unscreened line charge,
as given by the third of Eqs. (17), with a replaced by d. The remaining
ions are again free to move around and are assumed to contribute little
to the observed relaxation rate. In this case the mean squared electric
field may be estimated as:

i n > ,  o s

and insertion into Eq. (16) gives

7T1 = -jjj- (P (l ~ ju) eQ/H? {— j  -  — —  if 2 > 1 (26)

This equation clearly has the same structure as Eq. (23). Just as in simple
electrolytes the effectiveness of a polyionic charge in producing spin
relaxation is quadratic in the valence (degree of neutralization; the theory
assumes infinitely long macromolecules, so there can be no molweight-
dependence). An additional effect of increasing the polyion’s charge
shows up as a decrease of the mean distance of the nucleus to the polyion
in Eq. (23), or, what amounts to the same, as an increase of the number
of ions immediately surrounding the polyion in Eq. (26).
In order to facilitate the comparison of our result with that obtained
in other cases, we may define a correlation time ic as
Tc = Joo (0) /  < FÏ (0 > (27)
with Joo (0) given by Eq. (15). A similar result may be obtained for
< f 0 (t) >, via Eqs. (3), (9), (10), (12) and (14):

< f 0 (t) > = —  (e P (1 -  ?„)ƒ < (Er/rj2 >r (28)

Performing the radial averaging, with Eqs. (17) and (21), leads to

< n (,) > -  a  (P (1.  ,„) ^ „ ..4 ƒ  m .dJ() <»>
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ƒ  (x) = (1 +  y?coth/?x)~3 exp (4x)
so Eq. (27) becomes:

(30)

1 -  2 ƒ  F (x) /  F (y) d x
O (31)
y

l - 4 j f M / f ( y ) d x
o

This expression for rc offers a means to verify the validity o f  the
assumption that the motion is fast with respect to
1) the Larmor frequency (Eq. (1))
2) the escape-time from the counterion-cloud (Eq. (10))
3) the polymer’s rotational motion (Eq. (14))

W hen a simple electrolyte is added to the polyelectrolyte solution,
Eq. (17) for the electric field is no longer valid. In view  o f the similarity
o f  Eqs. (23) and (26) we attempt a description o f this situation by using
Manning’s assum ption10) that the number o f condensed counterions is
independent o f  added salt, if  the latter is mono-monovalent. For our
purposes we will also require that it has no significant influence on the
solvent structure ’’2> 8’ 12). In that case we might use a ‘two state m odel’22):
the nucleus is either inside the polyion-atmosphere, and relaxes as if  the
added salt were absent, or it is outside, and relaxes as if  the polyion were
absent. Using the same estimate as before for the lifetime o f an ion in
the polyion-atmosphere20) we find the equation for the ‘fast exchange’
-  case to be applicable:

where A ,2 are the probabilities that the nucleus is inside resp. outside
the polyion cloud, and (T\ l)P and (Ti~l)t are the relaxation rates in
absence o f the simple salt, resp. absence o f the polyion.
This would be another ‘additivity rule’, as have been found for the
osmotic and activity coefficients, and, recently, for the diffusion
coefficient33).

Experimental.
Poly(acrylic acid) (PAA) was synthezised and fractionated as described
before23). The viscosity averaged molecular weight o f  PAA was
1.39 x 106. NaOD solution was prepared by dissolving freshly cut sodium
in D 2O in a nitrogen atmosphere. D 2O was obtaind from Merck 2919
(99.75%). The D 2O solution o f PAA was obtained by dissolving PAA in
D 2O, freeze drying and redissolving in D 2O. This procedure was repeated
three times. Deuterium solutions o f  PAA at different degrees o f
neutralization were prepared by adding calculated quantities o f  NaOD
solutions to weighted amounts o f  D 2O solutions o f  PAA and adjustment
o f the concentration by adding calculated quantities o f  D 2O. Final sample
volumes were 1.5 cm3 approx.

(rr')oto =  Pi ( Ti~l)P + P2 ( r r y (32)
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All operations involving the D2O solutions were performed in a dry box.
Solutions containing different quantities of added salt were prepared by
opening the sample tube and adding progressively more NaCl. Added
quantities were determined by weight.
We used D2O as a solvent rather than H2O because it is expected that
the sodium relaxation rates are proportional to the viscosity of the pure
solvent12). The effect is thus predicted to be larger in D20-solutions than
in H20-solutions. We prepared some solutions in H2O and verified that
this was actually the case.
Measurements of spin-lattice relaxation rates of 23Na were made on a
Bruker pulsed -NMR spectrometer, using % —}n sequences. The magnet
was a Varian high-resolution type, operated at 14.21 kG, with a Varian
flux stabiliser and a Bruker proton free-induction decay lock. Signal/
noise improvement was achieved by using phase-sensitive detection and
by accumulating signals in a Varian C-1024 time-averager. Heights of
signals were measured on an external oscilloscope, connected to the
analog outputs of the C-1024. No sample-temperature control was
attempted; but the magnet cooling water was thermostatted at 31 °C
approximately, and the room at 20 °C. Sample temperature was measured
to be 23 °C approx. For some samples it was verified that longitudinal
and transversal relaxation times were equal, within experimental
accuracy.
The integrals in Eqs. (23) and (29) were evaluated numerically, by
converting them to sums, and summing over 100 intervals of equal length.
The range of the parameters was: X from 1 in 0.2 increments to 3 and y
from 1.4 in 0.2 increments to 3. For the special case2 = y/(I + y) Eq. (24)
simplifies to F(x) = x3 (1 + x)“3 exp (2x) and the integral can be expressed
in terms of the exponential integral Ei(x), which is well tabulated. We
verified that downward extrapolation of our computed values yielded
the correct result.

Results y
In fig. 1 the expression Y (X) = X2 (1 -  2 ƒ F(y) dx) is plotted as function

O

of X for two values of the concentration parameter y. It is to be noted
that, once a value for the radius a has been chosen, an increase of y by
one unit corresponds to a sevenfold dilution. The shape of the curve is
seen not to be very sensitive to the y value chosen.
The experimental relaxation rates of the 23Na nuclei in heavy water
solutions of partially neutralized poly(acrylic acid) are shown in fig. 2.
Three regions may be distinguished: from zero neutralization to a = 0.1
the relaxation rate increases, then it is approximately constant to a = 0.3,
and for higher degrees of neutralization it increases rapidly.
In our earlier report on sodium relaxation in H20-solutions of poly
(acrylic acid)6) these regions did not show up as distinctly as in the
present case. The number of experimental points was less, and no points
were taken below a = 0.1. Experimental accuracy too has slightly
improved since. As can be seen from fig. 2 a satisfactory agreement
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Fig. 1. \
The expression Y (X) = X2 (I -  2 J F(x) /  F(y) dx) with F(x) defined in Eq. (24),

O

that gives the dependence of the relaxation rate on the charge parameter X (cf.
Eq. (23)) as a function of X for two values of the concentration parameter y. Upper
curve: y = 1.4. Lower curve: y = 3.0.
The lower curve represents a 25-fold dilution with respect to the upper curve.

between the earlier and the present results is obtained if the correction
for changing viscosity is applied.
We believe the first region to be associated with conformational changes
in the macromolecule, from (nearly) uncharged to a more or less
extended charged rod. The most rapid change of diffusion constants
of the counterions24, 25) and, - in the case of poly(methacrylic acid)
also of the polyion26,27), with neutralization occurs in this «-region.
Both changes in correlation time (by a slowing down of the motion) or
in the magnitude of the field-gradient (by an increasing polarization
factor) may play a part in the observed increase of the relaxation rate.
Which one is the most important is not clear at the moment; we are
continuing our relaxation studies in this «-region.
The plateau-value of 35 sec”1, that is reached in the second region, is
thought to be characteristic of the solvent contribution to the relaxation
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100

Hg. 2. . . ,
Spin-lattice relaxation of sodium nuclei in 0.3 N poly(acrylic acid) solutions as a
function of the degree of neutralization a.
Circles: experimental results in D2O solutions.
Squares: experimental results in H20  solutions, multiplied by the D20 /H 20

viscosity ratio (1.25).
(The error bars are estimated from reproducibility.)

Dashed line: assumed constant value for the contribution of the water dipoles
to the observed relaxation rate.

Solid line: The assumed water contribution plus the ion-cloud contribution
computed according to Eq. (23) with the parameter-values of
Table I. (See also Eq. (33).)

rate of the counterions in the presence of the, more or less, extended
form of the polyion. The relaxation rate of 23Na in D20  at infinite
dilution is 21 sec-112). This seems to indicate that the presence of the
polyion has a definite effect upon the hydration shell of the counterion,
for example by lowering the effective dielectric constant, thus increasing
the polarization factor.
The third region comprises the degrees of neutralization where ‘ion
condensation’ is thought to occur. The experimental points are well
described by

y
77' = 35 + 93 a2 (1 -  2 ƒ F (x) /  F (y) dx) (33)
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with X = 2.85 a and y = 2.3. As can be seen from fig. 1, however, other
choices for y might equally well be made, with slight modifications in
the factor 93. Unfortunately, the parameters in Eq. (23) that determine
the value of this factor do not appear to be well known. We made a fixed
choice for all of them, according to the considerations that follow, except
for the ‘radius o f the polymeric rod’, whose value was adjusted to give
the desired result. The set of values so adopted is shown in Table 1.

Parameter Symbol Value Ref.
polarization factor n r 0.5 (2)
shielding correction ( i — m 5.8 (19)
quadrupole moment Q 0.15 x 10"24 cm2 (28)
diffusion constant D 0.9 x 10"s cm2/sec
intercharge distance at full
neutralization b 2.5 x 10“8 cm (9)
radius of polymeric rod a 2.7 x 10"8 cm
charge parameter X 2.85 a (9)
concentration parameter y 2.3

Table I. Parameters used to obtain the curve of fig. 2 according to
Eq. (23). It is to be noted that X and y cannot be chosen
independent o f a and b. (Cf. Eqs. (20), (24) and (18)).

For the quadrupole moment o f 23Na the older literature gives 0.11 ±  0.01
bam, while a recent tabulation28) gives 0.14 -  0.15 bam. A recent
computation of (1 -  y„) gives19) the value 5.78, instead of the previously
used value o f 5. Both these quantities have tended to increase with time,
so we use the most recent values.
The macroscopic diffusion constant of counterions in polyelectrolyte
solutions is strongly «-dependent24, 25). At full neutralization it is less
than half the value at a = 0. For dilute solutions this latter value agrees
well with the infinite-dilution value in NaCl-solutions29) which is
1.33 x 10"5 cm2/sec at 25 °C in H2O. Viscosity correction gives 1.08 x 10“5
cm2/sec in D 2O. This should be the upper limit for the diffusion constant
D appearing in Eq. (23). We performed some preliminary diffusion
measurements on the sodium ions in our samples with a > 0.3 by the
pulsed-field-gradient method30). These results extrapolated linearly to
0.9 x 10'5 cm2/sec at zero neutralization.
The model parameters a and b are of course only rough descriptions of
the structure of the polyelectrolyte under study. We take b equal to the
monomeric length of vinylic polymers (2.5 A) and consider a as an
adjustable parameter, whose value should turn out to be a few A.
Using these parameters in the computation of the correlation time
according to Eq. (31) gives
r = 2.5 x 10"11 sec at a = 0.35
r = 2.1 X 10”" sec at a = 1.
These values are somewhat larger than the correlation time for the
solvent contribution in simple electrolytes, which is 8 psec2) The slight
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decrease of i  upon increasing a reflects the fact that the average distance
of the counterion to the polyion decreases.
An impression of the magnitude of the interaction of the counterion’s
charge with the polyion’s electric field can be obtained via Eq. (16), which
states that the relaxation rate, corrected for the solvent contribution, is
proportional to the mean squared electric field at the position of the
counterions

< Er > = 30D (e (1 -  yoo) PeQ/Hy2 7T1 (34)
Assuming the solvent contribution to the relaxation rate for a > 0.3 to
be 35 sec”1; taking e = 80 and other parameters from table 1, the values
of < E2r >1 according to this expression have been plotted in fig. 3.

kV/cm

------------► C X

K g.3- , ..
The root-mean-squared macroscopic electric field < Er > at the position of the
counterions, according to Eq. (34). The dots and the solid curve have been
derived from the experimental points and the theoretical curve of Fig. 2.,
assuming the solvent contribution to the observed relaxation rate to be
independent of the degree of neutralization a, and equal to 35 sec”'.

The effect of adding NaCl to a polyelectrolyte solution on the 23Na
relaxation rates is shown in fig. 4. It is seen that within experimental
accuracy Eq. (32) is satisfied, with (Tï')s = 27 sec”1. The increase of
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30 percent with respect to the ‘infinite dilution value’ is also found in
NaCl-solutions of approximately 3.5 m ol/l5).

[Cl']+[C00‘]
Fig. 4.
The effect of adding NaCl on the observed relaxation rate. The amount of Na+
added in the form of NaCl is given as fraction of total amount Na+ present,
and should be equal to the probability Pi of Eq. (32) if the two-state model is
valid. PAA concentration is 0.26 N. Solvent is D2O.
Circles: experimental results at a = 0,78.
Squares: experimental results at a = 0,20.
The lines are drawn according to Eq. (32), with (T)'1)* = 27 sec.'1.
This value is also found in NaCl-solutions of approximately 3.5 mol/1.

Summary and Discussion.
The main feature of the observed relaxation rate is the fact that, for
degrees of neutralization above a = 0.3, it increases as a quadratic function
of a, from 35 sec-1 to 90 sec '1. The observed relaxation rates in solutions
of simple electrolytes of this concentration5,8112) do not exceed 30 sec'1,
so it is clear that the main relaxation mechanism in our case should be
due to a feature that is absent in simple electrolytes: it does not seem
reasonable to ascribe the relaxation to fluctuations in the ionic charge
distribution, or to changes in dynamical or dielectrical properties of the
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solvent, which are the main mechanisms in simple electrolytes2).
As a most fundamental difference between simple electrolytes and poly
electrolytes we have the symmetry of the time-averaged charge
distribution around a (small) ion. In solutions of polyelectrolytes of
sufficient charge density this symmetry is generally assumed to be lower
than spherical9), so that the time-averaged field-gradient at a fixed
position relative to the polyion, is not zero. We developed an expression
for the relaxation rate due to this ‘static’ field-gradient, under the
assumption that the distribution of charges has cylindrical symmetry,
and that the field-gradient correlation is lost by the tangential motion
of the ion in the cylindrical field. Without additional assumptions about
the radial distribution function of the charges, the relaxation rate is
found to be proportional to the squared magnitude of the electric field
experienced by the counterion, averaged over all counterions in the
distribution (Eq. (16)).
From fig. 3 it can be seen that our experimental results can be explained
by assum ing  that the r.m.s. electric field acting on the counterions
increases slightly faster then linear with degree of neutralization a,
attaining several kV/cm at high a. To obtain a theoretical estimate for
the mean-squared electric field we proposed two different approximations
for the radial distribution function of the counterions; the first based
on the solution of the Poisson-Boltzmann equation with cylindrical
boundary conditions20, the second on the ion-condensation concept T
Both lead to results that are in qualitative agreement with the observed
relaxation rate. For the solution with aid of the Poisson-Boltzmann
equation, a set of physically acceptable parameters (Table I) shows a
quantitative agreement of theory and experiments (Fig. 2).
To test the internal consistency of the model, in which it was assumed
that the relevant correlation-time is short with respect to the escape-time
for a counterion from the polyion-atmosphere20) or to the rotational
correlation time of the neighbouring part of the polymer, a theoretical
expression for the correlation time was obtained. With values of the
parameters that do best fit our data, the correlation time is found to be
25 psec, justifying the assumption of tangential diffusion as main source
of loss of gradient correlation.
The greatest uncertainty in the application of Eq (23) to our experimental
results comes from our lack of knowledge about the waterdipole
contribution. Theoretical difficulties connected with this problem have
been mentioned in the Introduction, and, briefly, in the discussion of
the polarizarion factor (Eq. (5) et seq.). Though we take it to be a plausible
assumption that fluctuations in the orientation of watermolecules in the
hydration shell should not be strongly «-dependent once the polyion
has taken its extended form, it is clearly unsatisfactory that this has not
been experimentally established.
This situation may possibly be remedied by using 7Li instead of Na
as the counterion nucleus. Woessner, Snowden and Ostroff30 have shown
that in H20-solutions of LiCl the 7Li nuclei relax partially by magnetic
dipole interactions with the solvent protons. In our case it may be
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expected that the correlation time for changes in the orientation of the
Li-proton vector in the hydration shell varies with a in the same way as
the correlation time for the field-gradient reorientation. (The translational
contributions might be different, but are of less importance.) For the
less concentrated solutions (up to 2 molar) the results of Woessner et al.
in H2O and D 2O might be related by

(TTVhjO = 2.1 (Ti '7d2o (35)
judging from their Fig. 1.; which suggests that correlation times for both
mechanism are proportional. We will shortly be performing measurements
of 7Li relaxation rates in polyelectrolyte solutions, both in H2O and D2O.
By putting the water-dipole contribution proportional to the difference
in relaxation rates in the two solvents, we hope to be able to make a
better-founded correction for the water contribution than was done in
Eq. (33). It has to be remarked, that even if the water contribution is a
(not too fast) changing function of a, a reasonable fit for the polyion
contribution according to Eq. (23) can still be obtained.
Compared to the uncertainty in the contribution of the solvent to the
observed relaxation rate, the neglect of relaxation due to fluctuations
in the charge distribution can be expected to be of minor importance.
Inclusion of this contribution in the theory would require the solution
of a complicated diffusion problem20), and does not seem feasible at the
moment.
In spite of these uncertainties, we believe to have shown that use of
the Poisson-Boltzmann equation, that has been succesfully applied to
thermodynamical problems, gives correct results for this nuclear
relaxation problem as well. This may appear strange at first sight, but
by inspection of Eq. (16) it becomes clear what is the source of this
success: the relaxation rate is determined by the magnitude of the electric
field, that is static in a reference frame attached to the polymer; the
time-dependence of the interaction arises from diffusion of the nucleus
under consideration through this field. Apparently the effect of this
static field is large enough to dominate the observed relaxation behaviour.
The success of the cylindrical cell model in the present case further
supports the idea that the remarkable properties of polyelectrolytes
have to be attributed to the asymmetry in the total ionic charge
distribution.
The most promising extension of the present research seems to be in the
direction of polyelectrolytes neutralized by mixtures of mono- and
divalent counterions. It is expected from numerical solutions of the
Poisson-Boltzmann equation32) that the monovalent ions will be driven
away from the polyion. Following the same type of reasoning that led to
Eq. (32) we expect the relaxation rate of the monovalent ions to decrease,
when their number fraction decreases. The relaxation rate for both types
of nuclei may be computed along the lines of the present paper, computing
the mean squared electric field by numerical means, instead of from the
analytical Eq. (17).
The nuclear magnetic relaxation of co- and counterions in poly-
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electrolytes will be most directly dependant upon details in the ion-
distribution. This feature will make NMR studies of these ions, -  though
admittedly unsensitive on a concentration scale the most sensitive
means, seen in A, hitherto used in studies of the polyion’s atmosphere.
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APPENDIX I: Time of escape from a potential well
In the theoretical part of the preceding chapter, between the Eqs. (9) and
(10) a result of Lifson and Jackson is quoted, concerning an estimate for
the average time it takes for a counterion to escape from the potential well
around a polyion. For sake of completeness, we will derive here an
estimate of this same quantity, based on a model that H. A. Kramers has
developed for calculating the rate of chemical reactions by considering
a particle that is caught in a potential hole, and which, by the shuttling
action of Brownian motion, can escape over the potential barrier.
He considers an ensemble of one-dimensional systems, consisting of a
single particle caught in a potential hole of the type sketched in Fig. 1.

Fig. 1.
The potential field considered
by Kramers.

The barrier is supposed to be large compared to kT, and all particles are
initially at A. Due to the large barrier between A and B, the equilibrium
distribution (with a non-zero number of particles in B) will be attained
slowly, by a quasi-stationary diffusion current of particles from A to B.
The starting point is the Smoluchowski diffusion equation, for the rate
of change of the probability w(r) to find the particle at r :

-Ï7-V ( ^ V» + ̂ V^ )
= D V • (V w + ivV ji/) = - V  •/'
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where p = e p /  kT, ~ V p) is the force acting on the particle, fe is the
friction constant and D the diffusion constant. A stationary diffusion
current j obeys the law
j  = constant (2)
and thus, in a notation appropriate to the one-dimensional system under
consideration

+ w

= - D  exp ( -  p)

dp
d
8

8 r

f)
(w exp <p) (3)

Using the fact that j  is independent of r, and integrating from A to B:
B

j  ƒ  exp (q>) d r = Dw  exp p
A

For the case in which we are interested, w(B) 0, so that, defining the
zero of the potential at A:

r  *  - , - 1

j -Dw (A) ƒ  exp (p) dr j
The largest contribution to the integral in the denominator comes from
the region near C; its actual value depends on the shape of the barrier,
especially at the top. The probability w(A) to find a particle in a small
volume near A depends on the shape of the hole near A. Kramers considers
various possibilities. We will simplify the model considerably by assuming
a rectangular-barrier type of potential, as shown in Fig. 2. Since pc is
assumed to be much larger than unity, the largest contribution to the
integral in Eq. (5) comes from the region between a and b\ furthermore
we take (b -  a) =» b, so that

B

ƒ  exp p dr «a b exp pc W
A
We take the probability w(A) to find the particle near position A in the
well as uniform over the interval (0, a), so that w (A) = 1 /a. Then the
rate of escape (the rate at which particles initially caught in the well (0, a)
arrive at b) is given by

- = j  = D (a b)~l exp ( -  p j (7)

The average time r„ required for particles starting at r = 0 to arrive at b
in absence of the barrier is of the order ft2 ID, and we have finally

— — exp (p j
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Fig. 2.
A simple square well
and square Barrier.

r

To apply this estimate to the entrapment of small ions in the electrostatic
field of polyions, we estimate, from numerical solutions of the Poisson
-Boltzmann equation2), the values of the parameters as: alb  10"1 - 10~2,

and pc ** 7 -  9, so t hat— 10 — 103.

References.
(1) H. A. Kramers, Physica 7 284 (1940)
(2) see e.g. M. Rinaudo and B. Loiseleur, J. Chim. Phys. Physicochim.

Biol. 68882(1971)

64



APPENDIX II: Nuclear Magnetic Relaxation of MNa in mono/
divalent counterion clouds

In the Discussion of the preceding Chapter it was stated that in counterion
clouds consisting of mono and divalent ions, the relaxation rate of the
monovalent ions should decrease as their number fraction decreases
because the electrostatic interaction of the polyion with the divalent ions
is much stronger than with the monovalent ions. We will work out this
statement somewhat further, starting from Eq. (16) of the preceding
Chapter:

y«) eQ/fi] 2D ' < E\ >r

and using the ion-condensation model for the monovalent ion. We con
sider a solution of a polyelectrolyte, where a fraction/of the acid groups
is neutralized by sodium hydroxide, and the remaining fraction (1 —f)  by
some divalent hydroxide.
If the divalent ions are merely condensed, and not bound to the polymer,
the mean-squared electric field at the position of the monovalent ions
can be expressed as (see Eq. (25) of this Chapter)
< E 2, >r = ƒ ' (2 e/e b d)1 ( I I 1)
where f  denotes the fraction of the monovalent ions that is condensed.
The monovalent ions will condense if 2.85 ƒ  > 1 (in the case of vinylic
polyions) and the fraction of condensed counterions in that case is given
by

f  = 1 -  0.35 (II2)
and the expression for the relaxation rate becomes

771 = -A- [/* (1 -  y„) eQ/hV D ' (1 -  0.35.T1) (e/bd)1' ifƒ >  0.35
15 L J (II3)

If, on the other hand, it is assumed that all divalent counterions are
really bound to the polyacid groups, thus lowering the charge of the
polyion, we have for the nuclear magnetic relaxation rates of the mono
valent ion by strict analogy with Eq. (26):

r ^  = —  f p ( l - y Oo )e ö // l l2D '1( l - 0 .3 5 / - 1) / f e / M ; 2 i f / > 0.35
15 L J (II4)

So, in principle the measurement of the nuclear magnetic relaxation of
the monovalent ion can give information about the status of the divalent
ion. This of course should show up also in the nuclear magnetic relaxation
of the divalent ion, but unfortunately most of them have a too low NMR
sensitivity to be of practical interest in the magnetic fields attainable
with iron-core magnets.
We performed some preliminary measurements on 23Na spin-lattice
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Fig. ( I I1): 23Na spin-lattice relaxation in H2O solutions of poly(styrenesulphonic
acid) neutralized by sodium and barium hydroxide, as a function of the charge
fraction of Na+ f  Dashed curve: binding model (Eq. (II 4)) with assumed water
contribution to the relaxation rate of 22.8 sec-1, and a fitted value for the average
distance d of 11.2 A. Full curve: condensation model (Eq. (II 3)) with water-
contribution 18.3 sec-1 and d = 9.2 A. Polyion concentration 2 x 10-2 N.
The value of the nuclear magnetic relaxation rate in dilute solutions of simple salt
is indicated by the cross at lower left.

relaxation in H2Ö solutions of the strong acid poly(styrenesulphonic acid),
fully neutralized by mixtures of sodium hydroxide and barium hydroxide.
The polyacid concentration was 2 x KT2 N, its mol weight Mv = 1.15 x 105,
and the sample volumes 3 cm3; the experimental method and equipment
were the same as described in the preceding Chapter, except that instead
of the C-1024 the digital boxcar system described in Chapter II was used,
and no measurements of transversal relaxation have been made up to
now. The results at four values of ƒ  (the fraction of acid groups that is
neutralized by sodium) are shown in the figure, with error bars estimated
from scatter in the single relaxation curves and/or the reproducibility
of the slope of the relaxation curves. It is perhaps illustrative to mention
that the four points shown are derived from 106 individual measurements
of nuclear magnetization, obtained in a net measuring time of 80 hours.
The lines shown are visual fits to Eqs. (II3) and (II4), treating the water-
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contribution to the relaxation rate and the average distance das adjustable
parameters. The water contribution in the case of the ‘bindingmodel’
seems fairly high: from measurements on sodium relaxation rates in
H2O solutions o f poly(acrylic acid) (see Ref. (6) of preceding Chapter)
one gets the impression that the water contribution increases roughly
linearly with concentration, at a rate of approximately 20 percent per 0.1N;
the fitted value in the case of the ‘condensation-model’ is in good
agreement with this estimate.
By increasing the number of experimental data, we hope to be able to
distinguish between the binding- and condensation-models for the
divalent ion; the data obtained so far seem to favor the condensation
model.
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CHAPTER V
Solvent Nuclear Magnetic Relaxation in Polyacid Solutions.

Introduction
Several papers have been published on nuclear magnetic relaxation in
aqueous solutions of macromolecules: mostly proteins1-7), and some
synthetic polymers8,9). In a few cases the difference in relaxation
behaviour between H20  and D20  solutions is discussed; for serum
albumin solutions this has been done by Kimmich and Noack5,6).
The general approach is to distinguish between water molecules in the
hydrated phase and those in the non-associated phase, and to describe
the observed relaxation rate as some average over the relaxation rates
in these two phases. Little attention has been paid to the facts that the
amount of protons or deuterons incorporated in the acid groups of the
polymer changes with the degree of neutralization and that, at constant
degree of neutralization, such incorporation may have quite different
effects on the observed relaxation for deuterons and protons. In the
former case the electron-distribution in the chemical bond interacts
with the nuclear quadrupole moment to produce relaxation, and the
magnitude of the interaction can be expected to be of the same order
as in e.g. D20 18). In the latter case there is no quadrupole moment and
relaxation can occur through magnetic interactions only. From structural
considerations these interactions can be expected to be much smaller
than e.g. in H2O. In both cases modulation of the interaction occurs
through reorientation of the acid-group, and/or chemical exchange. The
reorientational motion of an acid group attached to a polymer should in
general be anisotropic; thus the efficiency of the relaxation process will
depend on the geometry of the molecule, or molecular group11 14).
If chemical exchange is slow with respect to the reorientational correlation
times, but fast with respect to the relaxation times in the water molecules
and in the acid groups, the observed relaxation rate is a weighted average
of the relaxation rates in these two environments16). The effect of the
presence of the polyion on the motion of the solvent molecules can be
studied by solvent-diffusion measurements. Again the observed self
diffusion will be an average over the different environments; if the molar
fraction of acid groups is low (e.g. 0.01) the observed self-diffusion will
be essentially equal to the solvent diffusion, since the polymer diffusion
constant is smaller than the solvent diffusion constant,0). It is to be
expected that the proportionality between translational and rotational
diffusion, that exists for the pure solvent, will also hold for sufficiently
dilute solutions.
A study of solvent relaxation in aqueous poly-electrolyte solutions as a
function of the degree of neutralization should therefore comprise
measurements of H2O and D2O relaxation, as well as self-diffusion of at
least one solvent. In the case of slowed-down reorientation in a hydration
shell, the H20  and D20  relaxation should show approximately the same
behaviour, after correction for the solvent-intermolecular relaxation
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in H20  by means of the observed self-diffusion. If deuteron relaxation
in COOD-groups is important, the dependence of the H20  and D20
results on the degree of neutralization should be markedly different.
The observed D20  relaxation rates can be corrected for the contribution
of the water molecules through the observed diffusion coefficients, in
order to obtain the relaxation rates in a COOD-group.
In the present communication we will show that COOD-group formation
is an important relaxation mechanism for deuterons in D20  solutions
of poly(acrylic acid).
Although small effects due to hydrated watermolecules cannot be
excluded, it will be shown that the main features of the deuteron
relaxation are due to the presence of COOD-groups.
A simple theory for the solvent relaxation rate adequately explains the
experimental results with no reference to the hydrated water at all.
Conversely, no information on the reorientational freedom of hydrated
water may be obtained from the present experiments.

Theoretical.
For nuclear magnetic relaxation of deuterons, which have a spin I  -  1,
the interaction of the nuclear quadrupole moment with the electric field
gradient arising from the non-spherical symmetry of the electron
distribution in the chemical bond, is the most important relaxation
mechanism. We will assume that the electron distribution has cylindrical
symmetry and that relaxation occurs through, in general anisotropic,
diffusional reorientation of the bond axis with respect to the Zeeman
field; in that case the deuteron relaxation rates are given b y "“14).

2

Tx 1 = § ^  )  J  2 2 0 Ti [O + "o rf)~‘ + 4 ( 1 + 4  (ol z?)"1] (1)

Ti 1 = I ( )  i / S2 ° 1‘ [ f +f  ̂  + U °  1+ +4(y* tfr1 J
(2)

where eqeQ/h is the quadrupole coupling constant15) and co0 the Larmor
frequency. The coefficients a and the correlation times r, are given as
function of the principal values of the rotational diffusion tensor and
the orientation of the bond axis with respect to the diffusion tensor
principal axes in Table I.
In the general case of totally anisotropic rotation, the relaxation rates
are described by five Lorentzian functions, containing five independent
parameters: Dx, Dy, Dz, d and <p. For axially symmetric rotation the terms
with ƒ = ± 1 and the terms with i = ± 2 can be taken together; resulting
in three Lorentzian functions with three independent parameters: D±, Dy
and d. For spherically symmetric rotational diffusion only one Lorentzian
function is left, containing one parameter D; the coefficients c, in this
case sum up to unity.
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i a Tt
-2 3x2y (1 -  y) Dx +  Dy +  ADz
-1 3x (1 -  x) (1 -  y)

H ( l - W ( 2 - 3 x )  +
+ (3y px (1 -  2y)]2
3x(l -  x)y

Dx +  4Dy +  Dz
0

+1

2 (Dx +Dy +DZ — A)
4 Dx +Dy+Dz

+2 \ [ p (  2 - 3 x )  +
+ (3 -  3/>T * 0  -  2y)]2 2 ( Dx +Dy + Dz + A)

Table I: the coefficients and correlation times in Eqs. (1) and (2).
The symbols in the table are defined as:

x = sin2 d, y  = sin2p, p — (Dx — Dy) (3 A (Dz — Dt) + 2A2)

Ds =  3 (Dx + Dy + Dz), A — [(Dx ~ DyY +  (Dz — Dx) (Dz ~ Dy)\

Dx, Dy, Dz are the principal values of the diffusion tensor; d and p are
the polar, resp. azimuthal angle of the bond with respect to the diffusion-
tensor principal axes.

In the present case we wish to apply the theory to relaxation of deuterons
in a COOD-group attached to a polymer; surely we should not treat the
whole macromolecule as a rigid body, undergoing diffusional reorien
tation. As an approximation, a chain segment of appropriate length
might be chosen as the ‘rigid body’, while the presence of the rest of the
polymer reflects itself in the values that the rotational diffusion constants
of this ‘rigid body’ do assume. Because of the variety of possible
conformations in a given configuration for such a chain segment, there
is also variety of possible angles d and p. Therefore it is not to be
expected that a molecular interpretation for the experimentally deter
mined values of these angles can be given; still we feel their use as
rather formal than molecular parameters, justified. To a certain extent
the same precautions hold for the interpretation of the experimentally
determined correlation times; these, however, are always ‘ensemble-
properties’, not uniquely related to molecular geometry.
Experimentally, it is found that the ‘extreme narrowing’ condition is
not met: i.e. at least one of the five correlation times in Table I is of
the order of the inverse Larmor frequency. From the definitions it can
be shown that no correlation time is longer than r0:
To i=  -2 , -1 , 1, 2 (3)
To simplify the description of the frequency dependence of the relaxation
rates we will assume that only one correlation time, r0, is of the order of
the inverse Larmor frequency, while the four other correlation times are
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much shorter

<0oTo <* 1, UoTl ƒ = -2. -1 , 1, 2 (4)

From inspection, it can be seen that this is the case if one of the diffusion
constants, -  Dz, say -  is much larger than the other two:
Dz > Dx, Dz> Dy
If these conditions are met, we may use for a and r, of Eqs. (1) and (2)
the approximate expressions shown in Table II. It can be seen that if d

i a r f 1
- 2 t ë y  (1 -  y) 4 D z
-1 3 x (l -  x) (1 - y ) D z

0 k ( 2  - 3 x ) 2 3 CD x  +  D y)
+1 3 x (l -  x )y D z
+2 i  x2 (1 -  2y)2 4 D z

Table II: Approximate expressions for the coefficients and correlation
times in Eqs. (1) and (2), for the case that Dz > Dx and Dz > Dy.
The symbols in the table are defined in the same way as in Table I.

equals the ‘magic angle’, the coefficient o> vanishes, and there is no
contribution from the slow reorientations to the relaxation rate.
From the assumption (4) we can collect the four frequency-independent
terms in Eqs. (1) and (2):
2  or/ = [4 (ci + c-i) + o  + c- 2 ] / 4 D z
/To 3x [15 (1 -  x) + 1J/16A (5)

0 (d = 0) andThe frequency-independent part is seen to vanish for x
to be maximal if x  = 8/15 (d = 47°).
The full expressions for the relaxation rates become, under the
assumption Dz > Dx, Dz > Dy:

TV1 = —  ( ^ p ) 2 [45 x [15(1 -  x) + 1] rz + (2 -  3x)2 r^
x [(1 + tfo r )̂-> + 4 ( 1 + 4 a l rxj)"1] 1 (6)

r r 1 = -Q  ( — ^ ) 2 [45 X [15(1 -  x) + l]r2 + (2 -  3x)2 rxv

X [2 + 2 (1 + ^  ^  ' + (1 + ^  rjw)'‘l ]  (?)

where rz = (6DZ)~\ ixy = (3Dx + 3Dy)~\ x  = sin2 d
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If the deuteron can be in either of two environments, 1 and 2, and the
exchange between the two is fast, the observed relaxation rate is given
by16):
(Tl, 2"Ootovrf = p\ [Tl, r ')l + P2 [T\, 2~̂ 2
where pi, 2 are the probabilities to find the deuteron in each of these
environments.
In the present case, a deuteron is either in a COOD-group, where the
relaxation rates are given by Eqs. (6, 7) or in a D2O molecule, in which
case we assume its relaxation rate to be proportional to the reciprocal
of the diffusion coefficient D.
The expressions for the observed relaxation rates become:

(Tl,2~')o 2Xi D„ , X2

2Xi +X2 D ,0 2Xx +X 2
(1 — o ') [Tl, 2_1)cOOD

(8)

where the index 0  indicates the pure solvent, (7i, 2-1 ) cood  is given by
Eqs. (6, 7), o' is the degree of neutralization and X\ and X2 indicate the
molar fractions of D2O molecules and PAA-monomers respectively.

Experimental.
Atactic Poly(acrylic acid) (PAA) was synthezised and fractionated as
described before19). The viscosity averaged molecular weight of PAA
was 1.39 x 106 for the D20  solutions and 0.43 x 106 for the H20  solutions.
Atactic Poly (methacrylic acid) (PMA) was synthesized and fractionated
as described before20). The viscosity averaged molecular weight of PMA
was 0.22 x 106. NaOD solution was prepared by dissolving freshly cut
sodium in D2O in a nitrogen atmosphere; D2O solution was obtained by
dissolving PAA or PMA in D20 , freeze drying and redissolving in D20.
This procedure was repeated three times.
Deuterium solutions of PAA at different degrees of neutralization were
prepared by adding calculated quantities of NaOD solutions to weighted
amounts of D2O solutions of PAA and adjustment of the concentration
by adding calculated quantities of D2O. Deuterium solutions of PMA
at different degrees of neutralization were prepated by adding calculated
quantities of fully neutralized PMA solutions to weighted amounts of
unneutralized PMA solutions of the same concentration. PAA solutions
in H2O were prepared in the same way as the PMA solutions; the
conventional freeze-pump-thaw cyclus was repeated four times and the
sample tubes were sealed off in a helium atmosphere. The H2O reference
sample was treated similarly. Final sample volumes were 1.5 cm3 approx.
All operations involving the D2O solutions were performed in a dry box.
Relaxation rates were measured on a Bruker pulsed-NMR spectrometer,
using 31 — 2 31 sequences for the longitudinal and 131 — 31 or CP-GM (when
necessary) sequences for the transversal relaxation. The magnet was a
Varian high-resolution type, operated at 14.21 kG max.
Solvent proton relaxation was measured with such a time interval
between the 3t and ^ 3t  pulses that there was no contributions from the
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polymer protons (except the proton of the acid group) to the measured
signal.
Diffusion coefficients were measured with a Bruker pulsed gradient
apparatus in a home made liquid thermostated probe head at 25 °C; the
attenuation of the spin echo was measured as a function of the gradient
magnitude. All diffusion coefficients were measured relatively to a
standard D2O sample (Merck 2919).

Results.
In order to test the proposed mechanism for deuteron relaxation in
heavy water solutions of poly-electrolytes, we measured solvent proton
relaxation rates and deuteron relaxation rates and selfdiffusion-
coefficients in poly (acrylic acid) solutions. This polymer was chosen
because of its lack of a sharp conformational transition, to which the
remarkable behaviour of deuteron relaxation rates in some other poly
electrolyte solutions has been related8).
It is well known that spin-echo determinations of selfdiffusion
coefficients are considerably less accurate than tracer measurements;
on the other hand they are much easier to perform. For the concentration
range of interest we found that our results may be represented by
(Do -  D )/D  = ( p -  q ( \ -  eO) X2 (9)
where p = 23 and q = 15 with an estimated accuracy of ten percent. In
Fig. 1 we have plotted D0/D  as function of a! at Xi = 6.10 x 10“3; the
point-dash line has been drawn according to Eq. (9). It has to be remarked
that in the determination of the coefficients p  and q also measurements
at other values of Xi (up to 0.02) have been taken into consideration;
therefore the line shown does not represent a least-squares fit to the
experimental results of this figure only.
In the same figure we show the proton and deuteron relaxation rates in
poly(acrylic acid) solutions, relative to their values, as measured in
the pure solvent:
(7i, 2~')0 = 2.4 sec-1 for D2O
( T i .r 1)» = 0.30 sec"1 for H20
It is seen that, at low degrees of neutralization, the relative deuteron
relaxation is much faster than the relative proton relaxation, while at
high o' the protons relax slightly faster than the deuterons. Both nuclei
relax faster than would be expected from the change in diffusion
coefficients only, except the deuterons at full neutralization.
The long-dashed line is a least-squares fit through the five H2O relaxation
points, each point being the average of the measured 7T 1 and Ti"1,
which differed five percent at most. The ct = 0 point lies on a probably
significant distance from this line; still the difference is rather small and we
will not try to give a molecular interpretation. The faster increase with
a! of the IkO-line with respect to the diffusion line may be due to an
increasing dipole-dipole coupling between solvent and polymer-protons.
We have not tried to identify this mechanism (this could be done e.g.
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X 1 5 .  X . I

Relaxation rates 7T1 and 7i-1, and inverse self-diffusion coefficient D~ in poly-
(acrylic acid) solutions, relative to their values in the pure solvent, as function of
the degree of neutralization ol.
□ longitudinal, and A transversal relaxation; x self-diffusion for deuterons in
020-solutions of PAA. Mv = 1.39 x 106 Xi = 6.10 x 10 3 v0 = 9.21 MHz
O average of longitudinal and transversal relaxation for solvent protons in
degassed H20-solutions of PAA. Mv = 0.43 x 106 Xi — 5.30 x 10
Vo = 9.49 MHz.

by fully deuterating the polymer, as has been done by Willenberg and
Sillescu17) for the benzene-PMMA system); the main goal of the H2O
measurements was to test the assumption of a relaxation process acting
on the water molecule as a whole, as has been used in the case of poly-
(methacrylic acid) solutions8). The full lines for cl > 0.2 have been
derived from results shown in Fig. 2; their meaning will be clear from the
discussion in the next paragraph. The extrapolation to d  = 0 has been
derived from fig. 3; the short-dashed lines have been drawn as an aid
to the eye: we do not wish to suggest that the relaxation rates really
do decrease linearly in this region.
From the difference in relative proton and deuteron relaxation rates at
zero neutralization it is quite clear that the dominant relaxation process
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is not a hindered of slowed-down rotation of the water molecule as a
whole: in that case the relative proton spin-spin relaxation rate should
be 1.7 approximately, since in pure H20  about two-thirds of the relaxation
rate is due to rotational (‘intramolecular’) motions.
In the most general case, Eq (8) does not give a prediction about the
behaviour of the observed relaxation rates as a function of o' orX2, since
(Ti, 2 )cood as given by Eqs. (6) and (7) might change in a complicated
way. In order to get some insight in these possible changes, we measured
relaxation rates at two polyion concentrations and several degrees of
neutralization. Using Eq. (9) for the change in D0/D  we derived from
these results the values of (1 — o') (T\, 2- i)cood according to Eq. (8); the
values so obtained are shown in Fig. 2. It is seen that to a good

600 - A

400-

Fig. 2. -
Deuteron relaxation rates in a COOD-group times (1 -  o'), as derived from the
observed relaxation rates by Eqs. (8) and (9) for D20-solutions of poly(acrylic
acid) (PAA) and poly(methacrylic acid) (PMA) as a function of degree of neutrar
lization o', at v0 = 9.21 MHz.
G longitudinal, and A transversal relaxation for PAA;
Mv = 1.39 x 106, Xi = 6.10 x 10~3
❖  longitudinal, and V transversal relaxation for PAA;
Mv = 1.39 x 106, X2 = 11.2 x 10“3
□ longitudinal, and x transversal relaxation for PMA;
Mv = 0.22 x 106, X2 = 10.8 X 10 3
The bar shown at ct = 0.43 corresponds to ± 5% deviation in the raw data for
that point. The lines are described in the text.
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approximation (7i,2~')cooD is independent of concentration for the
solutions studied: at zero and eighty percent neutralization it was
verified that this independence extends to at least X7 = 0.02 Furthermore
for ct > 0.2 we have, from a least-squares fit represented by the full lines,
(7’,-')cooD = 290sec-> f o r < / > Q 2

(7*2 )cood — 400 sec
It will be clear that these two numbers cannot be decomposed in an
unique way into values for the three parameters d, Dx + Dy and Dz, that
occur in Eqs. (6) and (7); to accomplish that, a study of the frequency
dependence would be necessary. (The results of such experiments at
zero neutralization are shown in Fig. 3; the dashed line in Fig. 2 shows
an extrapolation to the fitted results in at = 0). It can be seen that, while
the relaxation rates in a COOD-group at higher at are essentially
constant, a rather sharp decrease occurs between at — 0 and ct — 0.2,
since we appear to have
(TT'kooo = 550 sec-j at ct = 0
(Ti ') cood — 780 sec
We suppose that the change in (7 i, 2~ ')cood in this «'-region reflects the
changes in the macromolecular structure, especially the extension of
the polyion by internal Coulomb repulsion. At approximately fifteen
percent neutralization the polyion seems to be sufficiently stretched, so
that possible further extension does not reflect itself in a change of the
rotational diffusion constants or in a change of the average orientation
of the OD-bond with respect to the diffusion tensor principal axes system.
As an illustration we have also plotted some results for poly(methacrylic
acid) solutions. Diffusion results in these samples could be represented
by Eq. (9) with p = 29 and q = 23 The value of (Ti ') cood at zero
neutralization was found to be 14 x 103 sec *, some twenty times faster
than in poly(acrylic acid). The discussion of the proton and deuteron
relaxation data in poly(methacrylic acid) solutions will be the subject of
a separate communication.
In Fig. 3 the frequency-dependence of the observed relaxation rates
at different Larmor frequencies for a PAA sample with ct = 0 are shown.
The difference between T\ and Ti is seen to be rather small, but
systematic. A unique fit to Eqs. (6) and (7) (with the aid of Eqs. (8) and
(9)) is not possible: the lines drawn correspond to both of the following
sets of parameters-values:
eqeQ/h = 200 kHz 3 (Dx+Dy) = 1.1 x 10® sec*16A = 4 x 1010 sec'1 d=37°
or
eqeQ/h = 2O0\aRz 3(DX+Dy) = 5.9x 107sec'16A = 7 7 x 109 sec-15=41°
The choice for eqeQ/h in the COOD-group has been based on its values
in the gas and solid phases of formic acid, which are 260 kHz and 160 kHz
respectively18). Since both sets of parameters give the same results, there
exist no doubt many others that fit the data; the sets given correspond
to ‘extreme values’ in the sense that, to obtain a reasonable fit one

77



10

T .'J (sec4) 9

© O

>• V (MHz)

Fig. 3.
Observed deuteron relaxation rates in a poly(acrylic acid) (PAA) solution at
zero neutralization as a function of Larmor frequency v.
A TT10  Ti"1; PAA, Mv = 1.39 x 106, Jfc = 11.2 x 10“3.
The lines represent a fit to Eqs. (6) and (7), as explained in the text. The bar
shown at the extreme right shows ± 5% variation on this scale.

always has:
5.9 x 107 sec-1 < 3 (Dx + Dy) ^  11 x 107 sec"!
7 7 x 109 sec"1 S 6Dz
The r.m.s. deviation of the experimental points from the solid lines is
0.4 sec"1, or approximately 5%. The maximum deviation is 9 percent.

Discussion.
The essential experimental result is in our opinion the fact that the
deuterium relaxation is a monotonously decreasing function of o', while
the reciprocal of the deuterium self-diffusion coefficient and the proton
relaxation rate both behave as (weakly) increasing functions of o'.
Knowing that the quadrupole interaction in COOD and in D20  will be of
the same magnitude, while there is no intramolecular dipole-dipole
relaxation for the proton in a COOH-group possible, we come to be
conclusion that the formation of COOD-groups is the main enhancement
process in this case and that the difference in relaxation rate between
water, associated with the polymer and non-associated water, is a small
one.
To describe the deuteron relaxation in a polyacid group, we used
Huntress’ treatment of relaxation by anisotropic diffusional reorientation,
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modified to allow for one correlation time that is long compared to the
reciprocal of the Larmor frequency. The geometrical parameters
occuring in this theory cannot be easily derived from molecular structure,
because of the variety of possible conformations; but the coefficients c/
that contain them (see tables I and II) can assume only limited values:
this offers a, -  be it modest test for the fitted value of the quadrupole
interaction. In poly(acrylic acid) solutions the frequency dependence
of the deuteron relaxation rates is only slight and a unique fit of theory
and experiment is not possible; however, if a reasonable estimate for the
magnitude of the quadrupole interaction is made, allowed values for the
coefficients a  are found, and our estimates for the correlation times
agree with the values of rotational correlation times of other polymers in
aqueous solution20.
We also believe that in PMA-D2O there is the same COOD-group effect;
because when one uses the experimental results of Glasel8) and his
‘associated water formulae’ one calculates an unrealistic low fraction
of associated watermolecules (only approx. 0.5 watermolecules per PMA-
monomer).
As result of the domination of the COOD-groups on the deuterium
relaxation rate it is not possible to examine the influence of the
conformation of a polyelectrolyte on the association of watermolecules
by measuring the deuterium relaxation rate in D2O solutions of poly
electrolytes as a function of pH.
For such an investigation it is necessary to use H2O as solvent, and if
possible deuterate the polymer, because of the insensitivity of the proton
relaxation rate for COOH-group formation.
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APPENDIX: ‘Bound’ and ‘free’ counterions
The presentation of the preceding Chapter has been directed mainly towards
clarifying some errors in a previous treatment of deuteron relaxation in
D 2O solutions of polyelectrolytes. It may be worthwile to comment briefly
on the connection of the results of this Chapter with those of Chapter IV.
We have just shown that in D 2O solutions of a weak polyacid, that is not
fully ionized, the nuclear magnetic relaxation of deuterons in COOD
groups is governed by the slow reorientation of the polymer in solution.
The deuteron in such a group is covalently bound, and may be considered
as a perfect example of a truly bound counterion with a nuclear quadrupole
moment. So we can say that the binding of such a counterion immediately
shows up as an increase in its nuclear magnetic relaxation rates, the main
reason for this interaction not being the forming of the bond itself, but the
fact that the reorientational motion of this bond is very slow.
Going back to the ion-condensation model for sodium-polyacrylate
solutions (see Chapter IV, discussion preceding Eq. (25)), we are now in a
position to conclude that such ion-condensation does not involve
association of sodium ions to specific carboxylic groups for a time that
is at least of the order of MT* second, since from the data collected in
Table I of Chapter III we can expect that the quadrupole coupling constant
in such cases will be at least a few hundred kHz, leading to relaxation rates
of several hundreds per second, contrary to what is observed.
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CHAPTER VI

Electrical and mass transport in polyelectrolyte solutions

Introduction
Since the famous experiments of Huizenga, Grieger and Wall *•2), some
twenty-five years ago, it has been known that the transport behaviour
of small ions in polyelectrolyte solutions is greatly influenced by the
presence of the polyion. Up to now, explanations of the observed
diffusion and electrophoresis have been based on the assumption of an
‘associated’, ‘bound’ or ‘condensed’ fraction of counterions. The
foundations for this type of theories were laid by the conclusion of
Huizenga et al. that ‘the exchange (i.e. of radiolabeled and unlabeled
ions) is rapid but not infinite’. In a series of important papers, Gottlieb 3'S)
has shown that the experimental results which led them to this conclusion
were a result of electroosmotically induced solution flows through the
glass frit in their transference cell. Thus we will in the following assume
that on the time scale of a diffusion or transference experiment there
exists only one type of counterion and one type of polyion, since no
‘binding’ of the two occurs on a comparable time scale.
After the successful! application of the ion-condensation concept6,7)
(which has been shown®’ to be an asymptotic result of the Poisson-
Boltzmann equation) to thermodynamic problems, it has also been
applied to transport phenomena, with the additional assumption that
the condensed ions give no contribution to the observed transport
quantities. It is important to realize that condensed ions in a thermo
dynamic sense are something else than bound ions in the transport sense.
In the latter case the time scale of the binding is of crucial importance
to its effect on the transport properties, while in the former case it is
only the time-averaged distribution that matters. If ‘bound’ is defined
as ‘moving together’ for some time of interest, than ‘condensed’ means
simply ‘being together’ at a certain moment.
Instead of in terms of association it is preferable to speak in terms
of time-correlation between the velocities of the different particles.
Some years ago Mazo10) has pointed out that the existence of such
correlations in colloidal micelles can be derived from experimental data
on micellar diffusion and electrophoresis; up to now his ideas appear
not to have been applied to macromolecular polyelectrolytes. In the
following we will extend his treatment to include the diffusion constant
and mobility of the counterion, and discuss the implications of our
results for the usual treatment of conductivity and electrophoresis in
polyelectrolyte solutions.

Static Fluctuations
In the sequel it will be necessary to have an expression for the mean
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squared fluctuation of the number of particles under consideration in
a given volume. Now it has to be realized that at all practical concen
trations the behaviour of polyelectrolyte solutions is strongly non-ideal,
in the sense that the osmotic coefficient is smaller than unity. This can
also be expressed by saying that, even at high dilution, there persists
a strong correlation between the positions of the counterions, imposed
by the Coulombic attraction of the polyion. On the other hand, the
positions of different polyions, as represented by the position of their
center of mass, are much less correlated, since their mutual Coulombic
interaction is weak, due to screening by the counterion cloud.

We will therefore consider the equation of state for the counterions
to contain an osmotic coefficient, while that for the polyions is given by
the ideal lawn);
nc V=q>NckT
u p  V = Np kT
and the total osmotic pressure jc of the solution is given by ji = nc + tcp.
Now, if we consider a sufficiently large volume, the mean-squared
fluctuation of the number of particles in that volume is given by12)

Thus we have

J W =  ^
<P

ANP2 = NP
(3)

The Diffusion Coefficients
For a system of particles that is in thermal equilibrium (no macroscopic
concentration- or temperature-gradients) it is usually found that, for
sufficiently long times A rand sufficiently large distances A R, the second
moment AR1 of the displacement of the particles in time A t is given
by
A R i = 6 D A t  (4)
where D is called the (self-)diffusion coefficient13).
The correlationfunction-expression for D is given by14)

N oo
D = lim 7 4 w  Z  /  e“"  < ft (0) • f t  (0 > dr (5)

e-*0 A P T  i , j = l  0

where we considered an ensemble of open systems of volume V,
containing on the average N  particles with velocity vectors Ri (t). The
brackets indicate an ensemble average, and the limit f -*■ 0 should
formally be taken after the integration over all times. Since we will not
try to actually compute the time-integrals, we will not bother about
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this rather theoretical question and delete this limiting procedure in
the following.
It should be stressed at this point that the more familiar form of the
above equation

oo

D = \  ƒ  < R ( 0 ) - R ( t ) > d t  (6)
3 o

is clearly valid only for systems of ideal (non-interacting) particles, and
cannot be expected to hold for counterion diffusion.
For large particles with internal degrees of freedom, the diffusion
equation will hold for the center-of-mass motion. Of course it depends
on the observational technique whether this is really the measured
quantity; this however should be the usual case.

The Electrical Conductivity
If a solution containing two kinds of ions is subjected to an electric
field E, we may, by suitable techniques, observe separately the current
densities j+, due to the positive ions, and j-, due to the negative ions.
Observations can be made of the time-integrals of these currents (i.e.
the net amount of charge transported by each charged species), or of
the average velocity that the respective particles acquire in the external
field (i.e. their average mobility). In both cases an average over the
contributions of all particles of the observed species is obtained; so if
we measure the amount of a radiotracer that is transported in a given
time, we see the number-averaged contributions of all forms of
hydratation, complexation or association to which the radiotracer
species lends itself; mutatis mutandis the same holds for the boundary
velocity in a ‘moving boundary’ experiment.
Now, if we have two kinds of charge carriers: the first bearing qc units
of positive unit charge e, and the second bearing qP units of negative
charge —e; their average number in a certain volume V, which is part
of an open system, being Nc, resp. Np, then:

v  / =  1
Np (7)

s -  _ dp e V  R
JP ~  v  Z j  Pi

V  f =  1

Usually there is a linear relation between the current density and the
applied field; for an isotropic system:
jc,P = oc.pE  (8)
where a is called the conductivity.
The Hamiltonian of this system of charges in the electric field is given
by

. Nc Np
H =  -  (  2  deeRCi -  2  dp e RPiJ • E  (9)
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Thus, according to the lineair-response theory the conductivities are
given by1S)

9 Nc Np 00

°c ~  3 kTV  ^  2  f  ^  Q» K  (0) • ( qc R cj (t) ~  Qp RPk (t) > dr
i j - l k = l  o (10)

9 N p  N q 00

0p ~  3 kT V  1 2  j u ^  Qp Rpt (0) ' (Qp Rpj (0  ~ Qc Rck (0) > dr
and the total specific conductivity of the solution is a = oc +  op.
(For these time integrals we also neglected a limiting procedure, slightly
different from that in the expression for the diffusion constant.)
Now transport numbers are simply given by

tc = — ~ ~
Oc +  Op

t = °ptp ---_ . _
Oc i  Op

and electrical mobilities by
_  Oc _  °P

fAc Ncqce ^  Np qp e
V V

( 11)

( 12)

(here defined as positive quantities).

Relations between Electrical and Mass Transport.
The sums over particles in the above equations in principle run over
a macroscopic volume of the solution under study. As stated under ‘Static
Fluctuations’ we consider the different polyion-domains as non
interacting, so there is no correlation of the motion of any particle (be
it c or p) in domain A with the motion of any particle in domain B; then
our sums reduce to impartial sums over individual polyion-domains.
This point of view finds experimental support in the fact that observed
transport coefficients *•2’16) vary only slightly with concentration for
concentrations of a few times 10“2 A  (this variation might be due only to
‘excluded volume’-effects).
Now, if we consider a polyion consisting of P  öionomeric units and
bearing a P  negative charges, contained in a volume V'; denote by the
index c an at random chosen ion from the aP  monovalent counterions
belonging to the polyion-domain, while the index i runs over all (including
c) a P  counterions; we get:
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Dc=£ I  <Y R,(0) -R c(t)> d t
3  ° o  7

Dp = i  ƒ  < 4 ( Q - 4 W > d *  O3)3 ow  OO

" c =  3 k T  V'a P {  < ^  ( 0 ) ' *  (t) ~ a P  kp (0) > dt

oP = ^ -— r.aP  ƒ  < * ,  (0) • (aP R p ( t ) - ^ R ,  (t)) > dt (14)
ó  K I  V q i

Here P  is the number of monomers in the volume V'; if we take the
polymer concentration as being given as C monomer equivalents/unity
volume, we may put
ê P I k T V '  =F2C / R T  (15)
Now we define the following three integrals:

oo

Icc = \  ƒ  < 2  R, (°) Rc (0  > dt
0 i

Iep =Jpc =  I  f  <  R< (0) • Rp (t) > d t =  ƒ  < X ^ ( 0 ) R p ( 0 > d t
j  o i a r  o /

oo

Ipp =  \ f  <Rp  (0) • Rp (t) >  dt (16)
o

then

Dc -<p Icc
Dp =  lpp (17)

p 2
Oc RP  C(l Pec oPIpc]

Op = ~ ~  Ca [aPIpp -  a Pipe] (18)

Comparison with experimental data
In principle, each of these four transport coefficients can be independently
determined, as well as the osmotic coefficient. If they were all known,
this system of four equations would contain three unknowns, and the
present decription could be rigorously tested. Unfortunately there exists,
as far as we are aware, no polyelectrolyte for which all coefficients have
been measured.
For sodium-poly(acrylate) solutions, at least Dc, <p, oc and op have been
determined, so we may solve for the three integrals.
K ern,7) has measured the osmotic pressure of poly(acrylic acid) solutions
over a fairly wide range of concentrations; he describes his data for <p by
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P * °.83 2 ^ (19)

where K  depends on concentration; its value at the concentrations of
interest in the present work was obtained by graphical interpolation of
Kern’s data.
Huizenga et al. determined the diffusion coefficient2’ of sodium coun
terions in poly(acrylic acid) solutions relative to that in a dilute solution
of NaCl; denoting the latter value by D„, we define

where, according to Mills18), D0 = 1.33 x 10“5 cm2sec-1.
They also determined the increase q2 in equivalents of sodium ion and
q2 in equivalents of polymeric anion in the anode compartment of a
transference cell upon the passage of Ne equivalents of electricity; and
the specific conductivity k of their solutions. In terms of these
experimental quantities, the ‘two charge-carrier’ assumption of the
present theory means that we should have

If this condition is fulfilled we can find the integrals from the
•experimental data: defining an additional quantity Dk by

The experimental data used have been collected in Table I; the values
of the' three integrals are shown in Fig. 1. A few data are seen to be
inconsistent with the ‘two charge-carrier’ model, but generally the
relation (21) is well obeyed.
A remarkable feature is the monotonie and rather drastic decrease of
the polyion self-diffusion coefficient with increasing a. If P is taken
equal to 1000, as did the original authors (footnote 10 of Ref.2)) we find
for the 1.5 x 10“2 A solutions:
Dp = 2 x 10"7 cm2sec-1 at a = 0.10
Dp = 0.5 x 10“7 cm2sec_1 at a = 0.98

f  = Dc_
Do

(20)

- ? i  + aq2 =Ne (21)

F1
K = WrCaDk
we may write

(22)

(23)

PIpc=~Icc+  -  A ca a Ne (24)

PIpp =  Pipe + (25)
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a d k 4i ! N e aq2/N e r 9 *cc P ip e P Ip p r n I  p c i  Ip p

0.096 2.16 -0 .489 0.387 0.92 0.567 2.16 11.5 20.2 0.80 0.6 0.57

0.240 1.74 -0 .354 0.624 0.79 0.383 2.74 8.85 13.4 0.60 1.1 0.66

c  = 0.413 1.48 -0 .171 0.862 0.62 0.276 2.99 6.63 9.72 0.55 1.2 0.68
1.51

X KT2 N 0.617 1.19 0.172 1.14 0.51 0.207 3.28 5.65 7.85 0.35 1.5 0.72

0.816 0.988 0.380 1.34 0.39 0.167 3.11 4.27 5.89 0.32 1.3 0.73

0.979 0.962 0.467 1.34 0.38 0.144 3.51 4.04 5.36 0.26 1.6 0.75

0.096 1.80 -  0.475 0.348 0.88 0.584 2.00 0.5

0.240 1.59 -0 .396 0.568 0.71 0.404 2.34 7.13 10.9 0.65 0.8 0.65

C = 0.413 1.37 -0 .145 0.777 0.59 0.294 2.67 5.98 8.56 0.45 1.0 0.70
3.78

x  10'2 N 0.617 1.12 0.111 1.06 0.49 0.223 2.92 4.93 6.85 0.35 1.2 0.72

0.816 0.950 0.229 1.23 0.41 0.180 3.03 3.98 5.41 0.35 1.3 0.74

0.979 0.820 0.323 1.12 0.38 0.156 3.24 1.4

x  10'5
cm2sec 1 x  10 5 cm2sec 1

See Eq. (22) (21) (20) (19) (23) (24) (25) (29) (27)

TABLE I: Experimental data on electrical and mass transport in poly(acrylic add) solutions, and the values of the correlationfunction integrals derived from them.



Fig. 1:
The values of Icc, Pipe and PLp, computed according to Eqs. (23) -  (25) from the
data in references '’ 2) and for electrical and mass transport coefficients in
poly(acrylic acid) solutions as a function of degree of neutralization a.
Squares: concentration is 1.51 x KT2 N
Circles : concentration is 3.78 x 1(T2 N
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This behavior seems in contradiction with that found by Kedem and
Katchalsky19) and by Kern and Anderson20' for poly(methacrylic acid);
their measurements however were made in a macroscopic gradient of
polyelectrolyte concentration. Wé hiave recently performed measurements
of the selfdiffusion coefficient of poly(acrylic acid) by the pulsed-field-
gradient spin-echo method21': these results22', although obtained at a
higher concentration, lower P  and higher temperature, seem to confirm
those presented here.
The time-integral of the counterion-polyion velocity crosscorrelation
shows a similar decrease: the ratio to the polyion velocity autocorrelation
integral increases slightly with a as shown in Fig. 2, and the value of this
ratio is high: 0.66 at a = 0.24 and 0.75 at a = 0.98. Approximately the
same values of this ratio were determined by M azo10) from data on
diffusion and electrophoresis of micelles of sodium dodecyl sulfate.
From figure 1 it can be seen that Icc increases with a. In principle Icc
contains an autocorrelation plus crosscorrelation terms:

Icc = I f  <Rc (0) • Rc (0 > dt+  -  ^  I  <*c  (0 ) '  (0 > d t (26)
^  *  ƒ J4 C

and experimental data might be described by changes in the auto
correlation and/or the crosscorrelation.
From the fact that la  is larger than D0 it seems reasonable to conclude
that the crosscorrelation does really contribute to Icc, since it is difficult
to imagine that the velocity autocorrelation time of a small ion in a
polyelectrolyte could be longer than in a dilute solution of a simple
electrolyte. Additional support for this idea can be found in the fact that,
at higher degrees of neutralization, the root-mean-squared electric field
that acts on the counterions increases fairly rapidly23'. This will no doubt
impose increasing difficulty on independent motions of the counterions.
(This suggestion that the diffusion constant increases if the counterions
are ‘more tightly bound’ may sound somewhat strange to those accus
tomed to the usual association theories). On the other hand it is known16'
that the observed diffusion is independent of P, so that only a limited
number of terms can contribute to the crosscorrelation. A lower limit n
for this number may be estimated from a comparison of crosscorrelation
and autocorrelation, if it is assumed that the latter is approximately equal
to A,:

Icc _  1
Do 1 —  -  1

9
(27)

It is seen in Figure 2 that n is always a small number, in accord with
the assumption that only a few ions contribute to the crosscorrelation.
The most astonishing of the transport properties of polyelectrolyte
solutions is no doubt the fact that for a > 0.4 we appear to have aPIpc > Icc
so that the conductivity oc becomes negative; it is stressed in the present
treatment that the conductivity op contains this same quantity aPIpc as
a diminishing term.
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Lower curve and right-hand scale: The correlation parameter n according to Eq.
(27).
Upper curve and left-hand scale: The correlation parameter IpJIpp, computed
from the data in Table I.
Squares: concentration is 1.51.x 10“2 N
Circles : concentration is 3.78 x  10“2 N

Comparison with existing theories
It has been usual24) to consider oc as the sum of two contributions, one
proportional to D0, and the other proportional to op:

°c =  Ca [Ice ~ a P Ip c ]

= F̂ j C a [ f D 0 -  {aPIpc - ( ! - ? > )  Ice)] (28)

If we define a proportionality factor/" by:

( ! - / " )
P ip e  -  ^ - I c c_________a

PIpp -  P ip e

Q\ I ft Hq
Ne J Dk

Ne

(29)
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we get:

ac = C a / A , - Ü -ƒ")*/, (30)

or, using equivalent ionic conductances:
i c - f X - a - n i p (31)
(These are defined as
k  = C+ q+ b + C- q- b (32)
where C is concentration in moles/unity volume and q the number of
charges on the respective ions.)
It may be seen from Figure 3 that there is a rather large (> ten percent)
and systematic difference between th e / ' so computed and th e / .

Fig. 3:
The relation between the association parameters /  according to Eq. (20) a n d / '
according to Eq. (29). The cross-hatched area shows ± ten percent deviation from
/  = / ' ,  as required by the usual association theories.
Squares: concentration is 1.51 x 10“2 N
Circles : concentration is 3.78 x 10”2 N
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The poor agreement between the ‘association factors’/ '  and ƒ  leads us
to the conclusion that the charge transport in polyelectrolyte solutions
does not in general obey an equation of the type
A =f(X°c + Xp)  (33)
w here / = DJD0\ this seems to be answer to the question of Manning25)
as to the validity of the physical picture underlying the derivation of
this equation. It is usually arrived at as follows:
Instead of a system consisting of aP counterions of charge e and one
polyion of charge -  aPe, one considers a system of/a.P counterions, and
one polyion of charge -a fP e .  If we write the expression for the total
conductivity of such a system

o',= j ^ C a { / t aPI'pp- 2 f a P r pc+ f r Cc) (34)
where

oo

I'pp = \  ƒ  <Rp(0)-Rp ( t ) > d t
J  0

oo f a P

Ipc= — p f  < 2 Xi(0) * p ( 0 > d t  (35)
0 / - I

1 °°r f a P

7'cc= -  ƒ  < 2  R‘ (0) - Rc ( t ) >d t
0  0 / - I

Here c is the index of an ion, chosen at random from the ‘free’ ions,
and i runs over all ‘free’ ions.
Going to equivalent ionic conductances by
o't = Ca (fk+ +fX-) (36)
we find

K  + -L = IfaPI'pp -  2faPI'pc + ƒ'«] (37)

It has to be stressed that, for the system described, this equation is
still exact. The crucial approximation made however, is that one of the
terms in the right-hand side may be taken equal to the equivalent ionic
conductance of the counterions in dilute solutions of a simple salt, while
the remaining terms describe the equivalent ionic conductivity of the
polyion. This implies that cross-correlation terms between the motions
of the ‘free’ counterions are neglected, and that the crosscorrelation
of the velocity of the randomly sampled ion and the polyion is counted
twice in the conductivity of the polyion (or, which is not an improvement,
is neglected). Next we consider the expression for the counterion self
diffusion in this system. A fraction (1 — f) of them is tightly bound to
the polyion for a time that is long compared to the polyion-velocity
autocorrelation time, and the fraction ƒ  moves freely, without mutual
correlation. Furthermore no crosscorrelations are assumed between the
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motions of the ’free’ and the ‘bound’ counterions.
The expression for the diffusion coefficients becomes

f a P  ~

D = 7 j W \  I  ƒ <RCi(0)-RCj( t ) > d t
J  L i, j  -  l o

+ 2  ƒ <£, (ó) £,(*;> a tl
U  ~/a/> 0 j

= [ / a m  + {(1 -  f )  a P f  A>] (38)

Then the usual assumption is that the term containing Dp may be
neglected with respect to the term containing Da\ this assumption may
not be justified, since PDp might well be of the order of magnitude
of D0.
This computation of the diffusion constant is, of course, a ‘worst case’
since we take the motion of all ‘bound’ ions as fully correlated; this
however seems the only description consistent with the neglect of the
contribution from these ions to the conductivity.

Conclusion
In this paper we indicated that existing general theories of diffusion14)
and conductivity15* do contain relations101 between these transport
quantities. These relations are particularly simple for a system in which
only two charge carriers are present. Without the need of a model-based
calculation of these transport coefficients in polyelectrolyte solutions,
it can be shown that the usual parameters describing ‘association’ have
no direct meaning in this context. The fundamental consideration is
that the usual ’condensation’ theories for polyelectrolyte solutions do
imply some form or another of position correlation at each single time
between counterions and polyion. Position correlation at each single
time, however, does not imply much about time-integrals over velocity-
correlations.
Attempts to calculate the relative (i.e. to a dilute solutions of a simple
salt) diffusion constant of the counterions by considering the motion
of a ‘test particle’
a) As a first-passage time problem out of a potential well261
b) as the stationary solution of the particle current in a macroscopic

concentration gradient271
c. as the stationary solution of a charge current in an external field281
give always incomplete results, since they all consider the motion of
the ‘test particle’ in a static environment, thus neglecting all velocity-
crosscorrelations.
The best way to describe the transport coefficients is thus simply to
reduce them to the correlation-function integrals, and compare their
relative magnitude. We did so for the experimental results of Huizenga
et al. *•2), using osmotic data of Kern1 . Since polyion self-diffusion

93



data are lacking we cannot rigorously test the validity of our description;
but we have been able to show that the usual assumption of a ‘bound’
fraction in the treatment of conductivity and electrophoresis data is not
generally justified.
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CHAPTER VII

Selfdiffusion of poly(acrylate) anions in aqueous solutions
Introduction.
Of the four (solute) electrical and mass transport coefficients, viz. two,
self-diffusion coefficients and two mobilities, in polyelectrolyte solutions
Without added salt, the polyion selfdiffusion-coefficient has seldom been
investigated. For poly(glumatic acid) it has been shown that the helix-coil
transition shows up by a sharp decrease in the selfdiffusion coefficient
upon going from low to high pH So it might be suspected that the gradual
changes in conformation of a weak polyacid upon titration reflect them
selves in the diffusion coefficient as well. Furthermore, a measurement
of the polyion diffusion is of interest since it may be shown that the four
transport coefficients are not independent2).
The radiotracer method, that has been successfully applied to studies
of counterion selfdiffusion in polyelectrolytes 3-4>5' 6) is less suitable for
measurements of polyion diffusion, because of preparative requirements.
The spin-echo method, and in particular the pulsed-fieldgradient
variant7-8) can be more easily applied. Diffusion measurements by the
spin-echo method are based on the possibility to record the instantaneous
positions of the nuclei by their Larmor frequencies in a magnetic field
that is spatially dependent. If a nucleus changes its Larmor frequency by
diffusional motion through the magnetic field, the net effect is a
‘randomization’ of the final Larmor frequencies with respect to their
starting values, resulting in a net loss of transversal magnetization of the
sample, as detected by a decreasing amplitude of the spin-echo.
If the molecules have internal degrees of freedom, and contain more
nuclei of the same species, for such observation times as are experimen
tally accessible, the observed motion is the center-of-mass motion of the
nuclei in the molecule. In principle the diffusion of charged particles in a
fluid in a magnetic field is impeded by the presence of the field ; in
practice the effect can be neglected.

Experimental,
a. method
For a full description of the method, and of the relations between the
experimental quantities and the desired diffusion coefficient we refer to
the original papers7' 8). In our experiments a commercially available
RF-pulse spectrometer and pulsed-fieldgradient unit (Braker Physik)
were used. We employed the conventional i n  — re RF-pulse sequence,
with gradient pulses after the first and second RF-pulses. Since it was
generally not easy to obtain exact equality of the gradient pulses for more
than two or three consecutive pulse-bursts, use was made of the finding
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by Tanner101 that, if the second pulse is nearly but not exactly equal to
the first, the observed echo is displaced and attenuated in such a way that
the locus of its maximum is the shape of the echo in the correctly-
compensated case. So, by slowly varying the amplitude of the second
gradient pulse this locus can be written on the screen of a variable-
persistence oscilloscope, and subsequently its maximum measured.
The fieldgradient was produced by two coils in an approximate anti-
Helmholtz configuration; their inner and outer radii are 17 and 24 mm
respectively; in mounted position they extended from 13 mm to 20 mm
from the midplane. These coils are cemented to a plexiglas housing, in
which the RF-coil is mounted. Shielding of the RF-coil is by a piece of
flexible printed-circuit foil, into which a meander-like pattern has been
etched, so as to minimize eddy currents. The printed-circuit foil is bent
into a cylinder, and cemented into the plexiglas housing.
A provision is made to pump a thermostatting fluid around and through
the RF-coil; this provision was not used in the present investigation,
since turbulences in the coolant caused vibrations of the RF-leads, that
gave rise to instabilities of the echo. In blank runs temperature fluctuations
were found to be ± 0.5 °C; the average temperature was 30 °C approxi
mately.
The current to the coil is delivered by a heavy current-pulsed, voltage-
stabilised power supply. The stabilised output voltage is 25 V, and the
total load resistance (coils plus emitter resistors in the current passgate)
is 0.81 Ohm. As measured in situ, the inductance of the load is quite high:
approximately 250 pH . So, when the passgate is driven into conduction,
the current through the coils rises exponentially with a time-constant of
360 ps towards a final current of 31 A. At the moment that the preset
value of the current is attained, the regulating action of the passgate
starts, and the current is kept at the preset value until the end of the
gradient pulse. The preset value of the current in the second pulse can be
fine-regulated in order to balance the two gradient-pulses. The current
through the coils is monitored by a fast sampling voltmeter that, during
the gradient pulse, senses the voltage drop across the emitter, resistor of
one of the passgate transistors. Its reading in quiescent condition is there
fore proportional to the value of the gradient current just before turn-off.
We performed our measurements at 55 MHz in a Varian 3601-1 magnet
with fluxstabilisation. Apparently the pulsed-fieldgradient was
symmetrical enough so as not to be sensed by the fluxstabiliser. This
magnet has an airgap of only slightly more than 4 cm, thus the gradient-
coils were very near to the pole-faces. In such an arrangement the magnetic
fieldgradient’s rise- and falltimes can be substantially larger than the
corresponding times for the current, and the deviation of the field-
gradient’s time-dependence from the ideal rectangular shape may be
worse than it was for the current. Then, strictly speaking, the formulae
derived for attenuation of the echo by diffusion in the case of rectangular
pulses, are no longer valid.
We therefore adapted the following procedure to measure the diffusion
constants of the poly(acrylate) ion: Using constant values for all timing
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parameters, the amplitude of the echo was measured at seven values of
the final current. The time-integral over the magnetic-fieldgradient was
taken to be directly proportional to the average value of the current during
the current-pulse. The logarithm of the amplitude of the echo was plotted
versus average current squared, and the slope (that we call the ‘diffusion
attenuation’) of this plot determined. Then this procedure was repeated
with a slightly different value of the current pulse width. It was verified
that both plots extrapolated to the same amplitude at zero current; this
was not the observed echo-amplitude in the absence of a gradient, because
of the residual signal from the little H20  that is contained in the D20
used as a solvent.
It was found that for current pulses longer than 1 ms, as used for all
polyion diffusion measurements, the difference between gradient pulse
length and current pulse length could be neglected: therefore the relative
values, found at different degrees of neutralization, are free from errors
due to this cause. To obtain an absolute scale, a measurement of the
diffusion coefficient of H20  is most appropriate, since its value is well
known U); it is however two orders of magnitude smaller than the polyion
diffusion coefficient, and its measurement has to be performed with
narrow pulses. If the diffusion time (the time between the leading edges
of the gradient pulses) is large compared to the gradient pulse width, we
can safely assume that the dependence of the diffusion attenuation on
the diffusion time will not be seriously altered by the imperfect shape
of the narrow gradient pulses. The ratio of the diffusion coefficients of
two different samples, measured with different diffusion times, but other
wise identical settings, will then be determined by the ratio of the diffusion
attenuations and the ratio of the diffusion times.
Because of fast transversal relaxation it was not possible to measure
the diffusion of the polyions with the aid of narrow pulses; therefore it
was decided to make an intermediate calibration on a sample with a small
diffusion constant, but with a sufficiently slow transversal relaxation so
that its diffusion constant might be determined with the same settings
as used for the polyions on one hand, and with narrow pulses but a long
diffusion time on the other hand. A sample of glycerol was found to be
useful for this purpose. Next a H20  sample was measured with the same
narrow pulses, but a much shorter diffusion time (that was, however, still
long compared to the gradient pulse width). Then we can find the diffusion
coefficient of the glycerol used with respect to that of H20  from the
measurements with the narrow pulses, and with respect to the polyions
from the experiments with the long pulses.

b. materials
The solutions of poly(acrylic acid) in D20  at different degrees of
neutralization, without added salt, were prepared as described
previously12), except that a fraction with a viscosity averaged molecular
weight of 4.6 x  10* was used, and that the concentration in the present
investigation was 0.5 N.
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The relative selfdiffusion coefficient o f poly(acrylic acid) ions of different degrees
o f  neutralization a. Afv = 4.6 x 104, solvent is D2O, and temperature 30 °C
approximately.
The square shown at right is the selfdiffusion of glycerol in a reference sample,
shown on the same relative scale, from which, by comparison with H2O, the
absolute scale at right has been derived.

The glycerol used was Merck 4094 from a fresh bottle; it was used without
drying.
The H2O used was tap water, to which some C11SO4 had been added to
increase the relaxation rates.

Results
The relative values of the selfdiffusion coefficient of the poly(acrylate)
ion at different degrees of neutralization, for a 0.5 Absolution of a sample
with M i = 4.6 x  104 in D 2O are shown in the figure. Plotted on the same
scale is the glycerol reference sample, from which, by comparison with a
H2O sample, the absolute scale shown at right has been derived. The error
in the relative values, as estimated from reproducibility, are thought to
be ten percent, while the error in the calibration may be somewhat larger.
The value taken for the H2O diffusion coefficient was 2.66 x  KT5 cm2sec~1.
This was arrived at by multiplying Simpson and Carr’s data13) by 1.08,
in order to obtain agreement between their value at 25 °C and the value
of 2.31 x  10"5 cm2sec~\ considered by M illsU) to be the best at this
temperature. According to Simpson and Carr’s data, a ten percent
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variation in the H2O diffusion coefficient results if the temperature is
varied by 4°C.
The instrument settings used in the various rtins are shown in the table:
we estimate the coil factor in our set-up to be 14 G cm"1 A"1.

Experiment repeat time 400 800 400 ms

Time between RF-pulses 12 100-140 12 ms

Time between gradient current pulses 12.2 190-260 12.2 ms

Length of gradient current pulses 2-3.5 0.5 0.5 ms

Average gradient current 9-18 9-18 2-12 A
Table: Experimental settings used in determinations of the selfdiffusion

coefficients. The first column pertains to the polyion-runs and
a glycerol reference run. The second column gives parameters
for the intermediate calibration of glycerol, and the third the
calibration run on H2O.

Attempts to determine the selfdiffusion coefficient of the fully neutralized
polyion in a sample with Mv = 2.6 x 105 were unsuccessful^; apparently
its value was more then three times lower than that shown in the figure.
To measure this would have necessitated a much longer distance between
RF-pulses: this could not be achieved because of poor signal-to-noise
ratios due to transversal relaxation. The selfdiffusion coefficient of
sodium counterions in 0.5 N  solutions of fully neutralized poly(acrylic
acid) of Mv = 4.6 x 104, 2.6 x 105 and 1.4 x W  in D 20  were by the same
method as above, but with use of the thermostatting facility at 25 °C,
found to be equal within experimental accuracy. Using as a calibration
data of M ills14) for tracer diffusion of 22NaCl in H20 ,  the common value
was found to be 5.7 x 10“6 cm2sec"1. Independence of counterion diffusion
of the polyion’s molecular weight has also been found by Pefferkom and
Varoqui6).

Discussion.
The steep slope of the curve between zero and twenty percent
neutralization is clearly due to the uncoiling of the polyion upon increase
of its charge. It is interesting to note that an accompanying change in the
rotational diffusion of the acid group has been derived from deuteron
nuclear magnetic relaxation in D 2O solutions of poly(acrylic acid)15). At
higher charge the hydrodynamic resistance of the polyion still seems to
increase monotonically, but not nearly as fast. At substantially lower
polyion concentrations a similar behavior of the polyion selfdiffusion
constant upon increasing neutralization has been derived2’ from
Huizenga, Grieger and Wall’s data on electrical transport and counterion
diffusion.
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There is a large qualitative and quantitative difference between the
present results and the diffusion coefficient of poly(methacrylic acid)
solutions in a concentration gradient16,17). In the latter case, the diffusion
is mainly determined by the concentration gradient of the small ions, who
tend to drag along the polyions with them. This also explains the indepen
dence of molecular weight that has been found in these experiments.
The molecular weight dependence of the electrical conductivity18) is
probably connected to 2) our finding that the polyion’s selfdiffusion
coefficient depends on its molecular weight.
Of course the high concentrations used in the present investigation
make a comparison with other results difficult; it is to be expected, that
the sensitivity of this type of measurement may be increased by something
like an order of magnitude, bringing it more or less on the concentration
scales used in transport measurements that involve some form of
refractive-index monitoring.
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Samenvatting
In dit proefschrift wordt aangetoond dat metingen met behulp van spin
echo technieken (ter bepaling van longitudinale en transversale kem-
spinrelaxatie snelheden, en van de kem-zelfdiffusie coëfficiënt) duide
lijke informatie kunnen geven over de aard van de interactie tussen
polyionen en hun tegenionen. De kemspinrelaxatie snelheden van Na
in oplossingen van gedeeltelijk geneutraliseerd poly(acrylzuur) met
en zonder toegevoegd zout, en van poly(styreensulfonzuur) geneutra
liseerd met mengsels van natrium en barium hydroxide, kunnen be
schreven worden met het ioncondensatie model. Hier wordt een „ge
condenseerd” ion gedefinieerd als een ion dat het electrisch veld onder
vindt van de onafgeschermde lijnlading. In het geval van één soort
tegenionen en geen toegevoegd zout kunnen de resultaten ook kwan
titatief bevredigend beschreven worden op basis van de Poisson-Boltz-
mann vergelijking met cylindrische randvoorwaarden. Het kemspin-
relaxatiegedrag van een werkelijk „gebonden ion” waarvan de kern een
quadrupoolmoment heeft, vertoont duidelijke kenmerken, zoals blijkt
uit metingen aan het „tegenion” deuterium in oplossingen van gedeel
telijk geneutraliseerd poly(acrylzuur) in zwaar water.
De theoretische samenhang van vier transportgrootheden, te weten
de zelfdiffusie coëfficiënten en mobiliteiten van polyion en tegenion,
wordt aangetoond. Uit literatuurgegevens voor drie van deze grootheden
kan de vierde, te weten de polyion zelfdiffusie coëfficiënt, worden
afgeleid. De zo gevonden afhankelijkheid van deze grootheid van de
neutralisatiegraad wordt kwalitatief bevestigd door metingen van deze
zelfdiffusie coëfficiënt met de spin echo methode.
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