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Hall effect in ferromagnetic metals:

E’gg — pmy Jy Pxy = ROBZ isotropic (cubic) case

Hall effect in ferromagnetic metals with B parallel

to a magnetization in the z-direction, and isotropy
in the x-y plane:

Py = R M* + RoB~

The anomalous extra term is constant when H, is
large enough to eliminate domain structures.

What non-Lorentz force is providing the sideways
deflection of the current!? lIs it intrinsic, or due to

scattering of electrons by impurities or local non-
uniformities in the magnetization!
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Karplus and Luttinger (1954): proposed an intrinsic
bandstructure explanation, involving Bloch states, spin-orbit
coupling and the imbalance between majority and minority spin
carriers.

® A key ingredient of KL is an extra “anomalous velocity” of the
electrons in addition to the usual group velocity.

More recently, the KL “anomalous velocity’” was reinterpreted

in modern language as a “‘Berry phase” effect.

In fact, while the KL formula looks like a band-structure effect, |
have now found it is a new fundamental Fermi liquid theory
feature (possibly combined with a quantum Hall effect.)




various explanations of the
anomalous Hall effect

® |ntrinsic dissipationless antisymmetric part of the conductivity
tensor of the ideal periodic material (Karplus-Luttinger term)

® Magnetic “skew’ and “sidejump” scattering from impurities (or
inhomogeneous textures of the ferromagetic order
parameter), so amplitudes for spin-orbit scattering to “left”

and “right” (determined relative to vrX .5) are inequivalent
(violate so-called “detailed balance™ )

In different regimes of temperature and purity, either of
these mechanisms may dominate. In many systems, the
controversial Karplus-Luttinger mechanism dominates.




Physical origin of Berry curvature in
Ferromagnetic bands

® |n a naive Stoner-type theory (neglecting spin-orbit
coupling) of ferromagnetic metals, the bands are
“exchange-split” into bands of “majority” and “minority”
spin carriers.

® |n this picture, the majority and minority spin Fermi
surfaces are independent, and can intersect:

tand + Fermi , even though weak, SOC
surfaces intersect  / dominates near “avoided
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intersections” of the Fermi
surface, where it causes rapid

variation of quasiparticle spin ( A\
with kr S

without spin-orbit coupling




Berry curvature due to spin rotations:

® The Berry phase accumulated as a spin-S rotates is
S times the solid angle enclosed by the path of its
direction {2 on the unit sphere.

® (Here g’ is position on the Fermi surface, S= 72)




Semiclassical dynamics of Bloch electrons

Motion of the center of a wavepacket of band-n electrons centered at k in

reciprocal space and r in real space: (Sundaram and Niu 1999)

7 write magnetic flux density
dr as an antisymmetric tensor

eBo +eFap—r EFup(r) = €ape B(7)
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Karplus and Luttinger 1954

Note the “anomalous velocity” term!
(in addition to the group velocity)

® The Berry curvature acts in k-space like 2 magnetic flux density acts in real space.

® Covariant notation k,, r is used here to emphasize the duality between k-space and

r-space, and expose metric dependence or independence (a €{x,y,z }).




® A useful way to write the semiclassical dynamics:
Eachc(T)
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commutators of variables

(symplectic form, Poisson brackets) H(r k) — £ (k) 4 V(’P)
’ N

determinant (Jacobian) of the symplectic form :

B¢ .
det ‘ e ‘ — 1 —+ Eabcfab(k) (6 (’I“)) mpodifies phase space volu

h integral
(will use later)




Current flow as a Bloch wavepacket is accelerated

Ik, t ﬂj
X

regular flow

k+8k, t+56t ~

B o Il

_>
“anomalous’”’ flow

® [f the Bloch vector k (and thus the periodic factor in the Bloch state) is changing
with time, the current is the sum of a group-velocity term (motion of the
envelope of the wave packet of Bloch states) and an “anomalous® term
(motion of the k-dependent charge distribution inside the unit cell)

® [f both inversion and time-reversal symmetry are present, the charge
distribution in the unit cell remains inversion symmetric as k changes, and the

anomalous velocity term vanishes.




The DC conductivity tensor can be divided into a symmetric Ohmic
(dissipative) part and an antisymmetric non-dissipative Hall part:

ab
o = o¢ Ohm + 0§ Hall

In the limit T —0, there are a number of exact statements that can be
made about the DC Hall conductivity of a translationally-invariant
system.

For non-interacting Bloch electrons, the Kubo formula gives
an intrinsic Hall conductivity (in both 2D and 3D)

This is given in terms of the total Berry curvature of
occupied states with band index n and Bloch vector k.




If the Fermi energy is in a gap, so every band is either empty
or full, this is a topological invariant:
(integer quantized Hall effect)
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e*“K, K = a reciprocal vector G (3D)

In 3D G = vGy, where G indexes a family of lattice planes with a 2D QHE.

Implication: If in 2D, v is NOT an integer, the non-integer
part MUST BE A FERMI SURFACE PROPERTY

In 3D, any part of K modulo a reciprocal vector also must
be a Fermi surface property!




3D zero-field Quantized Hall Effect

® Families of lattice planes in a 3D periodic structure are indexed by a primitive
reciprocal lattice vector G° . Each plane is a 2D periodic system that could
exhibit a 2D QHE with integer “filling factor” v. This adds up to a 3D Hall

conductivity with “Hall vector’ K = vG° = G, a reciprocal vector (in
general, non-primitive).

Such a system will have a gap at the Fermi level, with a number of completely-
filled Bloch state bands. The “Hall vector” in this case is a sum of topological
invariants of the non-degenerate filled bands (or groups of bands linked by
degeneracies).

/
Gy = Z G (sum over filled bands)
n

eabCGnc — i d°k fgb(k) (band n “Chern vector”)

27T BY7Z

a 3x3 antisymmetric matrix can always be brought to ( F JZ): )
0

“symplectic diagonal form” 0




2D case: “Bohm-Aharonov in k-space”

Ty __ 62 1 2
o = /d k (Vi x A(K)) n(k)
sy e’ 1

- h(27m)2 Jig

® The Berry phase for moving a quasiparticle around the Fermi
surface is only defined modulo 27:

® Only the non-quantized part of the Hall conductivity is defined
by the Fermi surface!




® even the quantized part of Hall conductance is
determined at the Fermi energy (in edge
states necessarily present when there are fully-
occupied bands with non-trivial topology)

® All transport occurs AT the Fermi level, not in
“states deep below the Fermi energy’.
(transport is NOT diamagnetism!)




2D zero-field Quantized
Hall Effect

FDMH, Phys. Rev. Lett. 61,2015 (1988).

FIG. 1. The honeycomb-net model (“2D graphite”) showing

® 2D quantized Hall effect: O'Xy = Ve2 / h. Inthe nearest-neighbor bonds (solid lines) and second-neighbor bonds
. . . (dashed lines). Open and solid points, respectively, mark the A4
absence of interactions between the P&I"thleS,V and B sublattice sites. The Wigner-Seitz unit cell is con-

must be an integel”. There are no Current-carr’ying veniently centered on the point of sixfold rotation symmetry

. . . . (marked “#*”’) and is then bounded by the hexagon of nearest-
states at the Fermi level in the interior of a QHE neighbor bonds. Arrows on second-neighbor bonds mark the

system (a” such states are localized on its edge!. directions of positive phase hopping in the state with broken
time-reversal invariance.

The 2D integer QHE does NOT require Landau

levels, and can occur if time-reversal symmetry is

broken even if there is no net magnetic flux through

the unit cell of a periodic system. (This was first

demonstrated in an explicit “graphene” model h
shown at the right.).

-3/3 v=0
Electronic states are “simple” Bloch states! (real m 0 T o

ﬂrst-neighbor hopp|ng t,, Complex second-neighbor FIG. 2. Phase diagram of the spinless electron model with
. |t2/t1] < 5. Zero-field quantum Hall effect phases (v=*1,

hopping t,el®, alternating onsite potential M.) where o =ve?/h) occur if | M/t2| <3v/3|sing|. This figure
assumes that ¢, is positive; if it is negative, v changes sign. At

the phase boundaries separating the anomalous and normal

(v=0) semiconductor phases, the low-energy excitations of the

model simulate undoubled massless chiral relativistic fermions.




2D “graphene” bandstructure
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two distinct “Dirac points”

(at corners of hexagonal :

Brillouin zone)
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‘mass gap” at Dirac
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massive case

(massless) (bulk insulator) (bulk metal)

k-space

Break onlyl: m4 = mp

same sign Berry curvature
near A and B points

Break only I: ma = -mgp

opposite signh Berry curvature
near A and B points




® Intrinsic (Karplus Luttinger) Hall conductivity
interpolates between quantized Hall
conductance from edge states

(quantlzed (0)
. non-quantized (AHE)
| "quantized (1)
. non-quantized (AHE)

- quantized (0)
¢

l
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Graphene model with second neighbor
hopping is very useful!

® Quantum Hall effect with simple Bloch states

® Used for anomalous Hall effect studies(Nagaosa),
add disorder etc.

® used for testing/developing fundamental band-

stucture formulas for orbital magnetization
(Vanderbilt)

® Quantum Spin Hall effect (Kane and Mele)

® Analog system for photonic edge states (Haldane
and Raghu)




® sraphene edge states (zigzag edge)

broken T’




non-quantized part of 3D case can also be

expressed as a Fermi surface integral
® There is a separate contribution to the Hall
conductivity from each distinct Fermi surface
manifold.

® Intersections with the Brillouin-zone boundary need to be
taken into account.

dG’

“Anomalous Hall vector”: 1 ,
K:ZKa(moduloG) Koz:% /dj:kF‘F;Giéi dA

integral of Fermi vector Berry phase around
weighted by Berry FS intersection with
curvature on FS BZ boundary

This is ambiguous up to a reciprocal vector,
which is a non-FLT quantized Hall edge-state
contribution




First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe

Yugui Yao'?3, L. Kleinman!, A. H. MacDonald!, Jairo Sinova*!,
T. Jungwirth®!, Ding-sheng Wang?®, Enge Wang??3, Qian Niu!
! Department of Physics, University of Texas, Austin, Texas 78712
2 International Center for Quantum Structure, Chinese Academy of Sciences, Beijing 100080, China
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
“ Department of Physics, Texas AE&M University, College Station, TX 778/3-4242 and
4 Institute of Physics ASCR, Cukrovarnickd 10, 162 53 Praha 6, Czech Republic

cond-mat/0307337 H(001)
Phys. Rev. Lett. 92, 037204 (2004)

tions to 2. Only when the Fermi surface lies in a spin-
orbit induced gap is there a large contribution. This can
be seen in Fig. 3 where the Berry curvature along lines in
k-space is compared with energy bands near Fr and in
Fig. 4 where it is compared with the intersection of the
Fermi surface with the central (010) plane in the Brillouin
zone.

T 1 1 r 11 1 i 1 11 1 r . 1

This calculation sampled ALL states below the
Fermi level (unnecessary work!) but shows how
avoided Fermi surface intersections provide the
dominant contributions to the KL formula.

1(000) H(100)

FIG. 4: (010) plane Fermi-surface (solid lines) and Berry cur-
vature —Q* (k) (color map). —§2, is in atomic units.







Bands with both time-reversal and
spatial-inversion symmetry:

Bands are doubly-degenerate at generic points in the Brillouin zone

Bands at special k-points where 2k; = G are classified by inversion
symmetry [;(kj) = +1 or -1 about inversion center i in the real-space unit

cell.

In 2D (3D) there are 4 (8) special k-points and 4 (8) distinct inversion centers;
the product over all bands below the Fermi energy is

No = HL;(kj) = =+1

In 2D and above this is independent of which inversion center ¢ is chosen

Fu and Kane, 2006

This is clearly a “topological invariant”, but Kane and Fu’s recent
(2006) result shows the not-so-obvious fact that it must have the

value +1 in the absence of spin-orbit coupling.




70 is a topological invariant because it
cannot change without the gap closing

At special k-points, it is possible to “fine-tune” bands with
opposite inversion quantum numbers to have an
“accidental degeneracy” by varying a single parameter.




Topological invariants of Bloch bands:

® cannot change unless the energy gap between
bands closes and reopens:

® The integer “Chern number” (First Chern
Class) classifies Bloch bands with broken
time-reversal symmetry:

® [f there is a gap at the Fermi energy, a non-
zero total Chern number of 2D bands
below the Fermi energy implies that:

There is an (integer) quantum Hall effect

There are gapless chiral edge states at the
edge of the system.




® example (with no spin-orbit coupling)

G,

2 6 ¢

6

H = o | V()Zeigi'r g

2m

N =B =+ Y.= (== -1  |owest band

lowest band V. has No = -1
o > 0
Yo <0 has No = +1 but no gap!




Berry curvature and the Z2 invariant
when inversion symmetry is broken.

® Kane and Mele gave a formulation in terms of
the zeroes of a “Pfaffian matrix”

® Kane and Fu gave a formulation in terms of
what they identify as a Berry curvature of a
determinant of occupied bands

® | will now give a formulation in terms of the
Berry curvature structure of individual Bloch
states, using the Berry curvature as defined by
their semiclassical dynamics.




® Key point: these expressions are not
definitions of the topological invariant, which
fundamentally measures whether an even or an
odd number of Dirac points have crossed the
Fermi level as the band structure has evolved
from one with no spin-orbit coupling.

® Instead, they are sum rules involving the Berry
curvature (or Pfaffian zeroes)

® Indeed, the invariant is a property of the
Hamiltonian alone, while the Berry curvature
depends on extra information about its
embedding in Euclidean space.




.i.

Cro «<—Local basis: orbital « in unit cell R

H'= % hoot(R— R)cp,cra
R,o; R o' \

\ Hamiltonian and Bloch Bloch states and
states depend on the Berry curvature also

el depend on the
matrix-elements 7, (R) positions T, in the

unit cell.

® varying the nominal orbital positions in the unit cell without changing
the matrix elements changes the Berry curvature, but does not
affect the topological invariants.

® The Berry curvature of Bloch states physically represents part of
their linear response to uniform electromagnetic fields (which
cannot be included in a periodic time-independent Hamiltonian)




0
Ok,

“Berry connection’: k-space analog of the
magnetic vector potential.

A% (k) = —i(W, (k)

v, (k))

o, a
Oky A

“Berry curvature’: k-space analog of
magnetic flux density (gauge invariant)

F (k) = n(K)

The “anomalous velocity” term in the semiclassical dynamics is




Topology of 2D bands with time-
reversal symmetry

upper band

lower band
A 2D band with no

SOC IS topologically A 2D band with SOC ( and no inversion symmetry)
a 2'TOI"US (genus-l 2_ is topologically two 2-tori, punctured and joined at

the four T-reversal-invariant k-points
manifold) to make a genus-5 two manifold, (on which every
point has a Kramers-conjugate antipode)




basic idea

If the genus-5 2-manifold is sliced into the upper band and
and the lower band, it falls apart into two 2-Tori, each with
four “punctures”.

The edges of the punctures are the 1-manifolds defined by
the limit of the Bloch states at the T-invariant k-points, as a
function of the direction they are approached
from in the upper or lower band.

There is no relation in general between these four punctures
(except possible point-group symmetry on square and
hexagonal Bravais lattices).

Instead, divide the genus-5 manifold into two Kramers-
conjugate 2-tori with four punctures. In this case the
punctures come in Kramers-conjugate pairs...




Matched pairs of punctures on a Kramers-divided
double-band.

OPQA
\ooqncﬁ mrt-a,.

no pairs of points on this manifold are Kramers conjugates
For each pair of “puncture boundaries”, one is open, one is closed.

The puncture boundaries are topologically non-trivial paths on the
uncut genus-5 manifold.




® On an unpunctured 2-manifold A/

/M &’F = 271 X integer 67; fM A2 F 1

® On a punctured 2-manifold with puncture
boundaries 2

ei f./\/l A2 F _ H €Z¢B(8Mz)
integral of product of Berry phases

Berry curvature around the puncture
over manifold edges

This is just Stokes theorem, exponentiated



® |n general, no topological Chern invariant survives on a
punctured manifold.

® Here, each member of a pair of Kramers-conjugate
puncture boundaries has the same Berry phase factor!

2
GifM d°F _ (H eigbB(@Mi))

1

Now take the
square root:

ei% Sy &F _ 0 Heiqu(BMi)
[

. —7
The Z; invariant, + 1
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