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Laughlin FQHE state

lowest
Landau level

U =>>(21,29,...,2N) ei(”)

N-variable (anti)symmetric polynomial 2 o(r) = 2rB(1) /P

® v =1/m Laughlin state

D(z1,29,...,2N) = H(Z”L —z;)"

1<
® “occupation number’ like representation in

orbitals z*, m = 0,1,..., N¢ = m(N-1)
orbitals
1001001001001001001...1001 (m=3)

m=0 orbital -7

This is the “dominant” configuration of the Laughlin state




“Dominance”

® convert occupation pattern to a partition
A, ‘padded” with zeroes to length V:

® 1001001 = X = {X\ 1,\2,\3} = {6.3,0}

® ) dominates \ if
@ \N=0_iN)=|N|=M
® O j<i Nj)< (2j<i Nj)foralli=1,2,..N-1




“dominance” and “squeezing”

® (paiI’Wise) SqueeZing: move a particle from orbital mi-1 to m;

and another from ms+1 to mo where m; < mo.

! !
1001001001001001001...1001 A

1000101001001010001...1001 B

! !
A dominates B (A > B)

® dominance is a partial ordering: if A > B and
B>C,thenA>C.




® When expanded in occupation number
states, the (polynomial) 1/m Laughlin state
only contains configurations dominated by
the most compressed (minimum M) “(1,m)-
admissible configuration” where no group
of m consecutive orbitals contains more
than 1 particle.

“admissibility” can be thought of as a
generalized Pauli principle.




Compactification of the Lowest Landau level
on the Riemann sphere.

L= g

|dentify orbitals m = 0,1,...,No¢
with orbitals Lz = §,S-1,...,-S on a

sphere enclosing magnetic
monopole charge No= 2S

Uniform QHE states are
rotationally-invariant,

Ltot — O




Beyond “standard” occupation
number formalism

® k-particle 1/m Laughlin droplet creation
operator (circular droplet centered at R):

Niern (R) \vac X H

1>
® For k= 1,(m has no meaning in this case), this is

just the standard lowest Landau-level single-particle
creation operator

¢(R)'|vac) < Yr(r1)




® Read-Rezayi (includes Laughlin, Moore-Read)

FQHE stat]?s are defined by

km + 2

U/ —
(k+1)-particle

destruction \)ﬁk+1’m(R)|\P> =0 \

for all R

’r]27m/ (R)‘\Ij> p— O, m/ < m / .
k-particle ﬂ: locations Rz
destruction \’nk,m(Rz)‘\P> = ( -«

aned elementary
“Admissible” configurations: quasiholes

Not more than k particles in km+2 consecutive orbitals
For m >0, not more than one particle in m consecutive orbitals




® On the sphere, the number of charge -e/(km+2)
elementary quasiholes for a given N, No is

Nyp = k(No — smk(k — 1)) — (km + 2)(N — k)

® The size of the basis set of quantum states (with
unpinned quasi holes) is equal to the number of
admissible configurations.

® [he states can be completely constructed out
of configurations dominated by the dominant
admissible configuration (“top” configuration).

® These are a very small subset of lowest Landau
level states!




Jack Polynomials.

® For m = 0 (bosonic case) the v = k/2 Read-
Rezayi multi-quasihole states are
spanned by the set of Jack symmetric
polynomials J (k1) (z;,...zN) with an
admissible partition \, which form a

complete but non-orthogonal basis. (see

Feigin,Miwa, Jimbo and Mukhin 2002, and Bernevig and
Haldane, cond-mat/0707.3637)

e J(z)with parameter o real positive and unrestricted are orthogonal
polynomials; here o is in general negative rational, and . are restricted to

“admissible” partitions.




Fermionic 2/4=1/2 Moore-Read state

uniform vacuum state on sphere:

1100110011001100110011001100110011

even fermion number -e/2 double quasihole (h/e vortex) at North Pole:

°®01100110011001100110011001100110011

odd fermion number -e/2 double quasihole (h/e vortex) at North Pole:

"100110011001100110011001100110011
fractionalization: one -e/4 quasihole (h/2e vortex) at North Pole, one near equator.

®101010101010101001100110011001100110011

These translate into explicit wavefunctions that can
be calculated in finite-size systems




3/5 (fibonacci) Read-Rezayi state primary configurations

111001110011100111001110011100. ..

° — elementary -e/5 vortex at North pole

<
11010110101101011010110101101 . ..
1100111001110011100111001 . ..
101011010110101101011010. . .

%(0101101011010110101101011010.. ..
@)

01110011100111001110011100111 ...

001110011100111001110011100111 . . .
1101011010110101101011010110. . .

vortex moves
by hopping

5 orbitals at a
time

For charge -ne/5,n > | there are always 2 orthogonal primary states.




explicit numerical calculations

® Strategy: obtain full set of highest-weight
states by solving

Lfot\@ =0

The number of admissible configs at each Lz tells us how many we
need. We exclude from the basis set configs not dominated by the
dominant admissible config. This gives a highly overdetermined system
of equations!

Within the full basis set thus obtained, impose the condition that pins
the quasiholes at the desired locations.




Partial ordering of occupation humber configurations with fixed L,

® squeezing decreases the variance > mnn— () mnn)’
O m=0 m=0

%< “admissible”

“squeezed from

O .
admissible”

O “excluded”

/T e

) / Py|“excluded config.”) =0

\/

decreasing

“B 9
: ottom
variance




key point:

Null space is invariant under the Euclidean group
® Disk: FPy,al =0
e Sphere: [Py, L] =0

® Use Wigner-Eckert: need to (simultaneously) solve

L—I_‘\If> — 0 and PQ‘\IJ> — ()  highest weight

null modes
® |n the full basis this is an undetermined problem

(more columns than rows)

® After “excluded’ states are removed, it is
overdetermined (more rows than columns)!

® (can efficiently solve with a variant Lanczos-type technique to
full floating-point accuracy.)




example:

electrons on sphere, maximum V=1/2 Moore-Read density, plus
2h/e extra flux (single qubit when vortices are fixed)

16 spinless fermions on the sphere with 32 orbitals:
full basis: 601080390 projected basis: 825 (summmed over LZ)

. . . . 9.0 10.0
30017 41207 97177 106789 117059 125864

Ltot= 14.0 15.0 21.0 22.0
all: 135218 151432 158231 165486 186683 190016 193686 195853

L, = 2:find 6 zero modes of a sparse 5,800,384 x 6,170,810

overdetermined matrix (52x10° non-zero matrix elements)

PURGE: nstate = 8884686 Lz= 2.0 root 11001100110011001001001100110011

nstate before purge= 8884686 after purge 5800384

BINARY: registered binary code total size 2:

1 components with sizes: 2
PURGE: nstate = 8854669 Lz= 3.0 root 11001100110011001010001100110011
L+ has 52060614 + 21167057 non-zero elements
6170810 constraints, 52060614 nonzero matrix elements, and 370432 linear dependencies
second representation of L+: 16 distinct values 48727308 elements

601,080,390 lowest LL states
825 MR null-mode states, of which

zero mode # : maximum error .2D-18
zero mode # : maximum error .8D-18
zero mode # : maximum error .2D-18 ° °
zero mode # : maximum error .8D-18 5 7 are h I h est Wel ht
zero mode # 6: maximum error .5D-18 g g
final overlap matrix eigenvalues:
1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
1.00000000
two-body interaction energies:
-7.4892956319233095 -7.4689790893071946 -7.4496977681804388
-7.4039194994824538 -7.3871308896580405 -7.3668521272231633
6 highest weight zero modes found




® |aughlin |/3 state is represented by
“occupation number” pattern
any 3 consecutive “orbitals”

1001001001001001001001 . .. contain exactly | particle

® Moore-Read “Pfaffian” 2/4 (= 1/2) state has
the occupation pattern

any 4 consecutive “orbitals”

110011001100110011001100. .. contain exactly 2 particles

(These are not simple Slater determinant states, but (related to)
Jack polynomials with specific negative integer Jack parameters)




® The 3 Laughlin /3 configurations

...100100100100100. ..

...010010010010010. ..
...001001001001001 . ..

® The 6 Moore-Read 2/4 configurations

..110011001100110011... ...010101010101010101 ...

...011001100110011001 ... ...101010101010101010. ..
7001100110011001100 . . .

..100110011001100110. . .

These counts give the “topological degeneracies” of
these states when constructed on a 2-torus




® operator that creates a circularfilled
Landau level droplet” of I¥ particles,
centered at position R: 7 (R)

(rs- ol (R)vac) o [ (2 = 2)) [ vm(r)

1<J f

Gaussian coherent state centered at R

-

Yr(T)|* o< exp —|r — R|?/2/7

<€—— “magnetic length”




® (Abelian) Laughlin 1/3 state with elementary
charge -e/3 quasi holes at positions R”

Ur({ris {ry}) o [ [z = ) [ (5 = ) [ [ oo (o)

1<

T)2 (R) ‘ \IJL ({rjh })> — O, all R can’t destroy a m=1 pair anywhere

(il (R?) ‘ \IJL ({’r;Z })> — () can’t destroy a single electron at positions of holes

® This state is completely defined (up to a phase
factor) by the positions of the quasi holes




® (Non-Abelian) Moore-Read 2/4 = |/2 state with

elementary charge -e/4 quasi holes at positions R

1

713 (R) ‘\IIMR ({’I";L })> = O7 all R can’t destroy a 3-particle droplet anywhere

112 (R?) ‘\IJMR({’I“;L })> — () can’t destroy a 2-particle droplet at positions of

non-abelian quasiholes

® This state is NOT fully defined by the positions
of the quasi holes

® residual degeneracy 2%.»/2-1 N . even




® The only local operations possible are

® (i) add/remove an electron orbital (h/e flux)

® (ii) add/remove an electron

® isolated non-Abelian Moore-Read -e/4 (h/2e)
quasiholes cannot be created by local
operations, only PAIRS of quasiholes can be
locally created, then split apart.




® Jopological quantum computing dream:
encode and process quantum information
in the residual degeneracy that is left after
the positions of the non-Abelian quasiholes
have been specified

® When the quasiholes are widely separated,
local measurements dont distinguish the
states, so they are immune to decoherence
by local enviromental perturbations

What distinguishes the “internal states”
physically?




single-particle m=1 two- Tetrahedral arrangement of
4 MR h/2e vortices,

denSit)’ PartiCle denSit)’ (14 electrons, 28 orbitals)

e S =

e _— .
i e

One qubit is left after
positions of vortices are fixed.

Sphere is mapped to unit
disk.

the qubit doublet is

split by the Coulomb
interaction, both states are
shown. THE SPLITTING
AND LOCAL DIFFERENCE
BETWEEN THE TWO
STATES IS EXPECTED TO
DISAPPEAR AS THE
SYSTEM SIZE INCREASES.




states are distinguished by small oscillations of charge
density (like interference fringes) around a common

background density pattern

the amplitude of these oscillations becomes
exponentially small as the separation becomes large on

the magnetic length scale.

® 2 pair of quasiholes has TWO states, distinguished by
local fermion number parity (even/odd):

uniform state: 11001100110011001100110. ..

two quasiholes at **01100110011001100110011 Ce
north pole: “10011001100110011001100. . .

f unpaired
electron:




(R -
P

:
01100110011001100110011 ...
r~

® The oscillations around close pairs or
quasiholes clearly distinguish even and odd
fermion number states of the pair




two Moore-Read vortices (fused)

Electron Density

Distance Distance

FIG. 4: The particle density for fused probes as function
of distance from the fusing point. Left/right panel refers
to odd/even number of electrons. On the left, the different
curves correspond to N/Ny=9/16, 11/20, 13/24, 15/28 and,
on the right, the different curves correspond to N/N4s=10/18,
12/22, 14/26, 16/30.

700110011001100110011 . . °®011001100110011001100. ..

N

unpaired electron at North pole




Monodromy

Hold one vortex at the north pole, and
move the other in infinitesimal loops to
map out the Berry curvature, in the two
cases of even and odd fermion number.

Integrate the berry curvature inside a

closed path to get the monodromy.

——
A

0.35} Odd
0.3+

Curvature

Difference

Curvature

Distance Distance

FIG. 10: (Color online.) The Berry curvature obtained
by moving one anyon while keeping the other fixed. Left-
upper panel shows the results for odd number of electrons:
N/Ny=9/16, 11/20, 13/24, 15/28 and the right-upper panel
shows the results for even number of electrons: N/N,=10/18,
12/22; 14/26, 16/30. The lower-left and lower-right panels
show the sum and the difference between the odd and even
results, respectively. For example, we added and subtracted
the result for N/Ny=10/18 and N/N4=9/16, and then the
results for N/N,=12/22 and N/N4=11/20, etc..




for a path with

a large radius, the
relative Berry phase
factor between

the even and odd

fermion number 1 /=
cases approaches -1 / | e

electron density
for fused probes

Berry Phase (units of )

(as predicted!) 1

Area

FIG. 11: (Color online.) The Berry phase accumulated by
an anyon when moved along a path f#=const, with the other
anyon fixed at the North pole. The Berry phase is plotted
against the area enclosed by the paths. Each curve is marked
with the corresponding N/N4 numbers. The insets show the
electron density for the fused anyons, computed in Fig. 4,
which one can use, experimentally, to distinguish between
even/odd cases.




4 well-separated vortices (a qubit)

Note that the two state have slightly different
“interference ripple” patterns in the electron density
that will be exponentially small as the distance between
the vortices increases, but which is a residual local physical
difference between the states.




single-particle m=1 two- Tetrahedral arrangement of
4 MR h/2e vortices,

denSit)’ PartiCle denSit)’ (14 electrons, 28 orbitals)

e S =

e _— .
i e

One qubit is left after
positions of vortices are fixed.

Sphere is mapped to unit
disk.

the qubit doublet is

split by the Coulomb
interaction, both states are
shown. THE SPLITTING
AND LOCAL DIFFERENCE
BETWEEN THE TWO
STATES IS EXPECTED TO
DISAPPEAR AS THE
SYSTEM SIZE INCREASES.




four probes,
tetrahedral

.;:T' i
-0.5 0.5

Patte rn : " ) pair density (V=0.25)
candidate qubit '

pair, 14/28

zero-point
motion of
vortex positions

0 l 1
electron density

These are made with “STM + coulomb repulsion:
very close to the “exact” states!

Pair density




non-Abelian Berry curvature , for
increasing size (10-15 electrons)

as size increases, the (magnititude) of the non-abelian curvature field is
seen to be concentrated near the quasiparticle cores, consistent with
braiding. (For widely separated vortices, there should be vanishing non-
abelian curvature in the regions in between the vortices, so the
monodromy becomes purely topological)

10/20 12/24




Entanglement spectra
and “dominance”

® Schmidt decomposition of
Fock space into N and S
hemispheres.

® Classify states by Lz and N
in northern hemisphere,
relative to dominant
configuration. Lz always
decreases relative to this

(squeezing)




Represent bipartite Schmidt |
decomposition like an excitation |
spectrum (with Hui Li) '

) =) e P2 WUpng) @ [Psa)

84

® like CFT of edge states.

® A lot more information than
single number (entropy)

(b) N =12, Ny = 33

FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
states, for N =10,m =3, Ny =27 and N =12, m = 3, Ny =
33. Only sectors of Ny = Ng = N/2 are shown.

® many zero eigenvalues

e_ﬁa —




Look at difference between Laughlin state,entanglement spectrum
and state that interpolates to Coulomb ground state.

FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing Ny = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of x.

x=0 is pure
Laughlin

Can we identify topological order in “physical as opposed to model
wavefunctions from low-energy entanglement spectra?

H=xH_-+ (1 —SE)Vl




Latest results showing change in entangle spectrum of
half-filled second-landau-level coulomb interaction with
additional V(1) pseudopotential (with Hui Li)

The interaction potential is Coulomb in LL=1 (spherical geometry) plus §V;. System size is N, = 14, N, = 26.

I. VARYING iV

The overlap with model Moore-Read state.

T V(1) modifies the m=1
pair energy,and drives a

transition between a
Moore-Read-like state
| and a gapless state

02




FIG. 1: 6V1 = —0.05 FIG. 2: Vi = —0.02
FIG. 3: 6V1 = —0.015

FIG. 6: 6V1 =0
FIG. 4: 6V = —0.01

low-lying entanglement spectrum
matches that of pure MR state

LI N L B R L B B LB B L B L B B A B

FIG. 7: 0V1 = 0.04




