
 

 

 

The perfect lens
& manipulating light on the nanoscale
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Focussing light 
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lens, n.  L. lens lentil, from the similarity in form. A piece 
of glass with two curved surfaces 
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 Fermat’s Principle:  

 
“Light takes the shortest optical path  

between two points” 

 
e.g. for a lens the shortest optical 
distance between object and image is: 

1 1 2 2 1 3 1 1 2 2 1 3' ' 'n d n d n d n d n d n d+ + = + +  

both paths converge at the same point 
because both correspond to a 
minimum. 
 



Focussing light: wavelength limits the resolution 
 

Contributions of the far field to the image …. 
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….. are limited by the free space wavelength: 

90θ = ° gives maximum value of 0 0 02xk k c= = ω = π λ  − the shortest 
wavelength component of the 2D image. Hence resolution is no better than, 
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Negative Refractive Index and Snell’s Law 
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Hence in a negative refractive index material, light makes a negative angle 
with the normal. Note that the parallel component of wave vector is always 
preserved in transmission, but that energy flow is opposite to the wave vector. 
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 The consequences of negative refraction 
1. negative group velocity 
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In a negative refractive index material, light 
makes a negative angle with the normal. Note that 
the parallel component of wave vector is always 
preserved in transmission, but that energy flow is 
opposite to the wave vector.  

group velocity
energy flow and 

wave velocity
 

 
Materials with negative refraction are sometimes 
called left handed materials because the Poynting 
vector has the opposite sign to the wave vector.



Negative Refractive Index and Focussing 

 
A negative refractive index medium bends light to a negative angle relative to 
the surface normal. Light formerly diverging from a point source is set in 
reverse and converges back to a point. Released from the medium the light 
reaches a focus for a second time. 

 



 

 

Recipe for Negative Refractive Index 
James Clark Maxwell showed that light is an electromagnetic wave and its 
refraction is determined by both:  
 
the electrical permittivity,  ε,  
and the magnetic permeability,  μ.  
 
The wave vector, k, is related to the frequency by the refractive index, 

1 1
0 0k c n c− −= εμω = ω  

Normally n, ε, and μ  are positive numbers. 
 
In 1968 Victor Veselago showed that if ε and μ are negative, we are forced by 
Maxwell’s equations to choose a negative square root for the refractive index, 
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Negative Refraction - 0n <   
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The wave vector defines how light 
propagates: 

( )0 expE E ikz i t= − ω  

where, 

k c c n= ω × εµ = ω ×  

Either 0ε < , or 0µ < , ensures that k 
is imaginary, and the material 
opaque. 

If 0ε <  and 0µ < , then k is real, but 
we are forced to choose the negative 
square root to be consistent with 
Maxwell’s equations. 
     

 

0, 0ε < µ <  means that n is negative 



Negative refraction: 0, 0ε < µ <  
 

 
 

Structure made at UCSD by David Smith 



Refraction of a Gaussian beam into a negative index medium.  
The angle of incidence is 30° (computer simulation by David Smith UCSD) 
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Negative Refraction at the Phantom Works 
 



Boeing PhantomWorks 32° wedges 

 
Left:  negatively refracting sample 
Right: teflon





 

 

Limitations to the Performance of a Lens 
Contributions of the far field to the image ….. 
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….. are limited by the free space wavelength: 90θ = °gives maximum value of 

0 0 02xk k c= = ω = π λ  − the shortest wavelength component of the 2D image. 
Hence resolution is no better than, 
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Limitations to a Conventional Lens (2) 
Contributions of the near field to the image ….. 
come from large values of xk  responsible for the finest details in the source. 
Forget about ray diagrams because, 

2 2 2 2 2 2
0,z x xk i k c c k− −= + −ω ω <  

and ‘near field’ light decays exponentially with distance from the source. i.e. 
the near field is confined to the immediate vicinity of the source. Unless we 
can make an amplifier it is inevitable that the finest detail is lost from the 
image. 

 

Attempting the impossible: 
a lens for the near field, 

a negative story 

near-field 
of source

amplifier



The consequences of negative refraction 
3. Perfect Focussing 

 

A conventional lens has resolution limited by the wavelength. The missing 
information resides in the near fields which are strongly localised near the 
object and cannot be focussed in the normal way. 
 
The new lens based on negative refraction has unlimited resolution provided 
that the condition 1n = −  is met exactly. This can happen only at one 
frequency.  (Pendry 2000). 
 
The secret of the new lens is that it can focus the near field and to do this it 
must amplify the highly localised near field to reproduce the correct amplitude 
at the image. 
 



 

  

 Fermat’s Principle:  

 
“Light takes the shortest optical path  

between two points” 

 
e.g. for a lens the shortest optical 
distance between object and image is: 

1 1 2 2 1 3 1 1 2 2 1 3' ' 'n d n d n d n d n d n d+ + = + +  

both paths converge at the same point 
because both correspond to a 
minimum. 
 



 

   

Fermat’s Principle for Negative Refraction 
If 2n  is negative the ray traverses negative optical space. 

 
for a perfect lens ( 2 1n n= − ) the shortest optical distance between object and 
image is zero: 
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For a perfect lens the image is the object 

 



 

Transformation optics & negative refraction 
The Veselago lens can be understood in terms of transformation optics if we 
allow ‘space’ to take on a negative quality i.e. space can double back on itself 
so that a given event exists on several manifolds: 

        



 

 

Bending light the wrong way 
 
 
 
 
 

Negative refraction bends light 
‘the wrong way’ at an interface 
(see inset top left) and as a result 
can refocus light as it emerges 
from a negatively refracting 
medium into air.  
 
This implies that objects such as 
fish swimming in a negatively 
refracting fluid appear to an 
external observer to be floating in 
the air above 



Negative Space 
A slab of 1n = −  material thickness d , cancels the effect of an equivalent 
thickness of free space. i.e. objects are focussed a distance 2d  away. An 
alternative pair of complementary media, each cancelling the effect of the 
other. The light does not necessarily follow a straight line path in each 
medium: 

 
 
The overall effect is as if a section of space thickness 2d  were removed from 
the experiment. 

General rule:  
two regions of space
optically cancel if in each
region ,ε µ are reversed 
mirror images. 



A Negative Paradox 

1
1

ε → −
µ → −

1
1

ε = +
µ = +

1

1
1µ → −

1
1µ = +

2  

The left and right media in this 2D
system are negative mirror images
and therefore optically annihilate
one another. However a ray
construction appears to contradict
this result. Nevertheless the
theorem is correct and the ray
construction erroneous. Note the 
closed loop of rays indicating the
presence of resonances. 





Team Kickoff Meeting Duke University 
 

   ARO Transformation Optics MURI 
Duke ¦ Purdue ¦ UC Berkeley ¦ NC State ¦ Imperial College London

Cylindrical/Spherical lenses 

2003 Astron contract “Application of –ve materials to narrow beam antennae” 
US Army funded – David Smith & John Pendry 
Transformation optics was used to design the first spherical version of the 
Veselago lens i.e. ‘perfect’ magnification became possible using the 
transformation (cylindrical case), 

( ) ( )2 21
2' ln , ' arctan , 'r x y y x z z= + θ = =  



A Perfect Magnifying Glass 
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It is possible to design a spherical annulus of negative material lying between 
2r  and 3r  that acts like a magnifying glass. To the outside world the contents of 

the sphere radius 3r  appear to fill the larger sphere radius 1r  with proportionate 
magnification. 
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      1a)          1b) 
An optical turbine. A plane wave entering the red sphere from the left is 
captured and compressed inside the green sphere. a) A ray picture which 
shows only part of the rays being captured  b) An exact solution of Maxwell’s 
equations. The green sphere is filled with the compressed contents of the red 
sphere as predicted. The region outside the blue sphere is free space.  



 

 

Transformation Optics Shrinks Optical Devices: 
a shadow created by a sub wavelength device 

 
yellow inner cylinder: perfectly absorbing material 
blue annulus:   magnifying superlens – radius about one wavelength 

The device creates a deep shadow in light incident from the left. The shadow 
is far bigger that the physical device creating it. How can this happen? 



The ‘Poor Man’s Superlens’ 
 
The original prescription for a superlens: a slab of material with  

 
1, 1ε = − µ = −  

 
However if all relevant dimensions (the thickness of the lens, the size of the 
object etcetera) are much less than the wavelength of light, electric and 
magnetic fields are decoupled. An objec t that comprises a pure electric field 
can be imaged using a material with,  
 

1, 1ε = − µ = +  
 
because, in the absence of a magnetic field, µ is irrelevant. 
 
We can achieve this with a slab of silver which has 0ε <  at optical frequencies. 
 



Anatomy of a Superlens 
The superlens works by resonant 
excitation of surface plasmons in 
the silver, 
 

surface plasmon
wavefield

silver slab

 
 

At the same frequency as the surface 
plasmon there exists an unphysical 
“anti” surface plasmon - wrong 
boundary conditions at infinity, 

“anti” surface 
plasmon wavefield silver slab

 

However, 
 
wavefield 
of object

silver slab

surface plasmon
wavefield

“anti” surface 
plasmon wavefield

 
 

Matching the fields at the boundaries 
selectively excites a surface plasmon 
on the far surface. 
 



Near field superlensing experiment: 
Nicholas Fang, Hyesog Lee, Cheng Sun and Xiang Zhan, UCB 

 

 

Left: the objects to be imaged are 
inscribed onto the chrome. Left is an 
array of 60nm wide slots of 120nm 
pitch. The image is recorded in the 
photoresist placed on another side of 
silver superlens.  
 

Below: Atomic force microscopy of a 
developed image. This clearly shows a 
superlens imaging of a 60 nm object 
(λ/6). 

 



Imaging by a Silver Superlens. 
Nicholas Fang, Hyesog Lee, Cheng Sun, Xiang Zhang, Science 534 308 (2005) 

   

(A) FIB image of the object. The linewidth of the ‘‘NANO’’ object was 40 nm.  

(B) AFM of the developed image on photoresist with a 35-nm-thick silver superlens.  

(C) AFM of the developed image on photoresist when the layer of silver was replaced by PMMA spacer 
as a control experiment.  

(D) blue line: averaged cross section of letter ‘‘A’’ line width 89nm 
 red line: control experiment line width 321nm. 
 



Near-Field Microscopy Through a SiC Superlens 
Science, 313 1595 (2006) 

Thomas Taubner, Dmitriy Korobkin, Yaroslav Urzhumov, Gennady Shvets, Rainer Hillenbrand 

 
Near-field microscopy through a 880nm thick superlens st ructure: the superlens is a 440-nm-thick single-
crystalline SiC membrane coated on both sides with 220-nm-thick SiO 2 layers. The two surfaces of the 
sandwich correspond to the object and the image planes of the lens, respectively. The object plane is 
covered by a Au film patterned with holes of different diameters 

 



 SiC Superlens: the Image 

 
(B) Scanning electron microscope image of the object plane showing holes in a 
60nm thick Au film.  
(C) amplitude in the image plane at λ = 10.85μ where imaging is expected. NB 
the permittivity changes with frequency and hence imaging conditions are 
precisely met only at one frequency. 
(E) Control image at λ = 9.25μ (no superlensing) 



SiC Superlens: 
Fourier transforms of line scans taken from images of a grating, 3λ ≈ μ  period 

 
High spatial frequencies, up to the grating’s fourth harmonic, are imaged by 
the superlens around  10.84λ ≈ μ where the SiC permittivity meets the 
superlensing condition. 



 

 

Formal theory: A. J. Ward and J.B. Pendry, J Mod Op, 43 773 (1996)

 
Top: a ray in free space with 
the background Cartesian 
coordinate grid shown. 
Bottom: the distorted ray 
trajectory with distorted 
coordinates. 

also D.M. Shyroki (2003) 
http://arxiv.org/abs/physics/0307029v1  
New coordinates in terms of the old: x ' j ' x j( ) 
In the new coordinate system we must use 
renormalized values of the permittivity and 
permeability, ε,μ: 

ε 'i ' j ' = det Λ( )⎡⎣ ⎤⎦
−1
Λi

i 'Λ j
j 'εij

μ 'i ' j ' = det Λ( )⎡⎣ ⎤⎦
−1
Λi

i 'Λ j
j 'μij

 

where, 

Λ j
j ' =

∂x ' j '

∂x j
 

 

For the special case of conformal transformations 
in 2D systems, ε ,μ  are unchanged.



Singular plasmonic structures 
Metal surfaces support surface plasmons whose properties depend critically an 
the shape of the surface. In particular singularities such as sharp points, or 
touching points of two surfaces attract a high density of modes. These can be 
exploited to capture and concentrate photons into nanometric areas. 
Transformation optics provides unique insight into these processes:  
• relates the spectra of many different singular 

structures to a single ‘mother’ structure. 
• reveals ‘hidden symmetries not apparent in the 

original structure 
• hence enables analytic solutions for the fields 
• gives a detailed understanding of field 

enhancements, Van der Waals forces, and near-
field heat transfer 

In this talk we shall work in the extreme near field limit, assuming length 
scales much less than the wavelength, where the quasistatic approximation is 
valid. 



Constructing a broadband absorber 
Resonant systems, such as silver spheres, enhance the absorption of radiation 
hence greatly improving the sensitivity to adsorbed molecules; but absorption 
by a single resonance is narrow band and therefore of limited use. 
• start with a dipole exciting an infinite system – most infinite systems have 

a broadband continuum 
• invert about the origin to convert to a finite system excited by a plane 

wave.  The spectrum is unchanged and remains broadband. 
 

 

a metallic slab of finite thickness has 
a broadband spectrum 



Inversion about the origin, ' 1z z= , converts a slab  
to a cylindrical crescent 

The dipole source is transformed into a uniform electric field 

 
Left: a thin slab of metal supports surface plasmons that couple to a dipole source, 
transporting its energy to infinity. Th e spectrum is continuous and broadband 
therefore the process is effective over a wide range of frequencies.  
Right: the transformed material now comprises a cylinder with cross section in the 
form of a crescent. The dipole source is transformed into a uniform electric field.



Inversion about the origin, ' 1z z= , converts a cavity  
to a pair of kissing cylinders  

The dipole source is transformed into a uniform electric field 

 
Left: a cavity supports surface plasmons that couple to a dipole source, 
transporting its energy to infinity. The spectrum is continuous.  
Right: the transformed material now comprises two kissing cylinders. The dipole 
source is transformed into a uniform electric field. 



Broadband field enhancement in singular structures 
(Alexandre Aubry, Dang Yuan Lei, Antonio I. Fernandez-Dominguez, et al.) 

 
Calculated xE  normalized to the incoming field (E -field along x). The left and 
right panels display the field in the crescent and in the two kissing cylinders 
respectively. The metal is silver and 0.9 spω ω= . The scale is restricted to 

5 510  to +10+ +−  but note that the field magnitude is far larger around the 
structural singularities.  



Field enhancement versus angle – crescent 

 
Blue curve: xE  at the surface of the crescent, plotted as a function of θ , for 

0.75 spω ω=  and 7.058 0.213iε = − +  taken from Johnson and Christy.  
Red curve: 7.058 2 0.213iε = − + ×  i.e. more loss. Both curves are normalised 
to the incoming field amplitude E0. The crescent is defined by the ratio of 
diameters r = 0.5 



 

Absorption cross section: non-touching cylinders 

 
Absorption cross section normalised to the physical cross section, D0, as a 
function of separation between the cylinders, ! .  



Plasmonic Zoo 

 
Most of the well known singular structures can be related by a transformation 
to a common ‘mother structure’ whose solution is to be had analytically. 
see: Y. Luo  et al., “Surface Plasmons and Singularities”,  
Nano Letters, 10  4186-4191  (2010). 



Extension of Harvesting Theory  
from Cylinders to Spheres 

 
Analytic theory in the electrostatic limit is exact for touching cylinders. 
For spheres theory approximates to the cylindrical solution near the touching 
point. 



Extension to 3D – two spheres 
Applying an inversion to the spherical annulus structure on the left leads to two 
separated spheres shown on the right. Solutions in the left hand geometry are 
much simpler and accurate analytic approximations can be made. 
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Spheres as Light Harvesting Devices 
Theory by Antonio Fernandez-Dominguez 

 
Electric field enhancement at various photon frequencies for touching spheres. 
Enhancement is an order of magnitude greater than for touching cylinders 
because energy is compressed in 2 directions. 



 

What can go wrong? 
The theory predicts spectacular enhancements in the harvested fields, even 
when realistic values of the silver permittivity are included. Harvesting is 
much less sensitive to resistive losses than is perfect imaging. 

Enhancements in field strength of 410  are predicted, implying an enhancement 
of the  SERS signal of 1610 . Several factors will prevent this ideal from being 
attained: 

• radiative losses 

• problems in nm scale precision manufacture 

• non locality of ε 

Nevertheless substantial effects can be expected 



Radiative Losses 
In the electrostatic approximation there are no radiative losses. This is a valid 
assumption provided that the cylinders are small compared to the wavelength. 
In practice this means: 

( )diameter 200nmD <  

Their effect is to damp the resonant harvesting states and steal energy from the 
light harvesting mechanism.  

In the electrostatic limit the harvesting cross section 2
a Dσ ∝  reflecting the 

scale invariance of an electrostatic system.  

However computer simulations using COMSOL show this scaling breaking 
down as radiative corrections kick in and aσ  falling dramatically.  

 

 



 

Calculating radiative corrections analytically 
 

 

(a) Two semi-infinite metal slabs support 
surface plasmons that couple to a dipole 
source, transporting its energy to infinity. 
 
A fictional absorbing particle superimposed 
on the emitting dipole chosen to account for 
the radiative damping in the transformed 
geometry. 
 
(b) The transformed material consists of two 
kissing cylinders. The dipole source is 
transformed into a uniform electric field, and 
the radiative losses are approximated by lossy 
material outside the large sphere. 
 



 

The effect of radiative loss on enhancement 
 
 
Electric field along the x- direction 
normalized by the incident electric field 
E0, for D = 100 nm and D =�200 nm  
for % = 0.9 %sp.  
 
The analytical prediction for the effect 
of radiative loss (red) is compared to 
the numerical result (green) and to the 
electrostatic case where there is no 
radiative loss (blue). 



Nonlocality – what is it? 
 

Formal definition: the longitudinal permittivity, εL, depends on wave vector as 
well as frequency.  

The physical interpretation for metals at optical frequencies is that the bulk 
plasmon frequency also depends on wave vector and is defined by, 

εL k,ω p( ) = ε∞ 1− ω0
2

ω p ω p + iγ( ) − β 2k2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0 

Since the bulk plasmon controls the screening charge in a metal, the surface 
charges induced by external fields no longer appear as delta functions at the 
surface but decay smoothly into the bulk with a decay defined by, 

exp − δ −1z( ), δ −1 = β−1 ω 0
2 −ω p ω p + iγ( ) 

 
Typically δ ≈ 0.2nm, a very small length, but one that is sometimes important. 



 

Nonlocality and light harvesting 
 

Non locality smears out polarisation charge responsible for driving field 
enhancements at the touching point. Although the cylinders appear to touch, 
the charge distributions do not. Hence the field enhancement is degraded. 
 

smeared 
charge

lost 
singularity

 

 
 



 

Nonlocality and field enhancement 

Because the polarisation charge distributions are smeared, and no longer touch 
at the singularity, the characteristics of two touching but nonlocal cylinders 
resemble two almost touching cylinders: 

• waves travelling towards the touching points no longer slow to zero 
velocity, but head on past the touching point and as a result: 

• the spectra are no longer continuous 

• enhancement is reduced in the vicinity of the touching point 

The effects grow larger as the overall size of the system shrinks 



 

Nonlocality quantises spectra of touching cylinders 

 
Absorption spectra for 10nm radii non-local cylinders for several degrees of 
nonlocality. The green line shows a typical result. The local approximation  is 
shown in grey. Black line: results for a single cylinder. 
 



 

Nonlocality versus radiation loss 

 
Electric field enhancement for two touching cylinders at the touching point as 
a function of cylinder radius, R, and frequency ω . Radiation loss kills 
enhancement for large cylinders, non local effects  for small. Optimum 
enhancement is found for 35nm < R < 80nm. 



Measuring non-locality 
 

reported in: 

Probing the Ultimate Limits of Plasmonic Enhancement  
C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez,  
S. A. Maier, J. B. Pendry, A. Chilkoti and D. R. Smith, 
Science, 337, 1071-4, 2012 



Measuring non-locality – experimental setup 
 

 
Geometry of the film-coupled nanoparticle.  
Left: Schematic of the sample.  
Right: Cross-section of a single film-coupled nanosphere. 



Measuring non-locality – simulations I 

 
Simulation of a single film-coupled nanoparticle. Left: Relative electron 
surface density showing the excited surface plasmon polariton propagating 
over the metal film. Right (top): A plane wave is incident at 75° from normal. 
Right (bottom): The near-fields surrounding the nanosphere. Looking closer 
yet, it can be seen that the fields penetrate into the nanosphere a distance on the 
order of the Thomas-Fermi screening length. 



Measuring non-locality – simulations II 

 
Resonant frequency (left), and local enhancement (right) at various 
sphere/surface separations of a gold nanosphere of radius  on a 300 nm thick 
film for various degrees of non locality.  



Measuring non-locality: comparison with expt. 

 
Comparison of experimental measurements from both SAM and LBL type 
spacers with numerical results with a best fit  β = 1.27 ×106 m/s. i.e. the 
polarisation charge penetrates δ ≈ 0.6nm into the metal. 



Non locality can be accurately modelled by a  
local dielectric layer 

left top: in a nonlocal description 
surface charge is smeared out into the 
metal.  
left bottom: the effect of the smearing 
has the same effect as a thin layer of 
dielectric coated onto the metal surface 
  
 



Non locality can be accurately modelled by a  
local dielectric layer 

 
 
 

Electric field enhancement 
versus incident frequency for 
a pair of 10 nm radius gold 
nanowires separated by a 
 δ = 0.2nm gap evaluated at 
the gap, comparing a full non-
local calculation with the local 
dielectric layer model.  
  
 
 



The modes of two nearly touching spheres 
Modes of two 5 nm radius spheres 
for various separations   a) for 
m = 0 and b) m = 5. The even 
modes are represented by open 
circles, the odd by closed circles. 
As the gap narrows the odd modes 
tend to zero frequency, 
ε 'M ω = 0( ) = −∞, and some of the 
even modes tend to the bulk 
plasma frequency, 
ε 'M ω =ω p( ) = 0, where 
=ω p = 3.76 eV  for silver. The 
surface plasmon frequency is 
=ω sp = 3.63 eV. However there is 
another set of even modes that tend 
to other intermediate limits. 



Extension to 3D – two spheres 

 
The potential distribution shown in real space and in the transformed space for 
two spheres each 10nm in diameter, separated by 0.4nm. For all figures m = 0. 
Top: the odd modes at 3.536, 3.582, and 3.597eV; middle: the normal even 
modes at 3.703, 3.673, and 3.652eV; bottom: the anomalous even modes at 
3.028, 3.418 and 3.523eV. Blue denotes the minimum potential, red the 
maximum, and green zero potential. 



Exploiting T.O. to calculate Van der Waals forces 
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The Van der Waals force acting between a small metallic sphere and a metallic surface. The 
permittivity describes a plasmonic system.  
Left: the fully converged exact force in units of=ω p R.   
Right:  deviation from the exact force of the proximity force approximation (PFA), and our 
analytic formula, which is accurate to 10% out to large distances, and extremely accurate at 
small distances. 
   



 

van der Waals forces 
work by Rongkuo Zhao & Yu Luo, PNAS 111 18422 (2014) 

 
van der Waals energy between two 10-nm-diameter gold nanoparticles as a 
function of the separation. For the blue dashed line, nonlocal effects are 
considered. The black dotted line shows the van der Waals energy calculated 
neglecting nonlocal effects. The energy considering nonlocal effects but 
neglecting the Lorentzian terms in the permittivity is shown by the short 
dashed line. 



 

Early work on electron energy loss spectra 
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Applications of transformation optics - I 
simplifying complex problems – two touching cylinders - z ' = 1 z  
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Electron energy loss – work by Yu Luo 
two silver nanowires radius 5nm, 0.1nm gap 
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Note: for electrons, unlike photons, there is no dipole selection rule, and all the 
modes are visible above and below the surface plasmon frequency 



 

Applications of transformation optics - II 
simplifying complex problems – a knife edge - z ' = ln z  
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