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Waves 1n disordered systems — the classical picture

Conventionally waves are treated like particles randomly diffusing through a
medium — their phase does not matter much.

Most incident waves are reflected, but a few get through the maze:

.o -1
transmission o< L.

This law holds 1f the disorder 1s weak:
¢.g. In a metal the resistance 1s o L.

f However in the presence of strong
disorder this 1s no longer true ...
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Anderson localisation

PHYSICAL REVIEW VOLUME 109, NUMBER 5§ MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

Long ago in 1958 PW Anderson pointed out that in the presence of strong
disorder diffusion 1s completely eliminated, electrons are localised on specific
sites, and transmission drops dramatically, only happening when the frequency
of the wave coincides with that of a localised state.
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Anderson localisation

Strong disorder ‘localises’ the states of the system and transport 1s by
tunnelling through these states which act as stepping stones. The tunnelling
events are rare and transmission drops dramatically with sample thickness:

transmission o< exp(—L// )

where /, 1s the localisation length.

Despite intense theoretical activity, the

O ® nature of the transition from diffusion to
O ® O localisation is not understood.
ﬂz‘ ® However recent advances enable the
4 _.‘ > transition to be studied using optical
)~ |7 experiments and this has brought new
o © ® urgency to unravelling the mystery.
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Anderson localisation
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Anderson localisation

What is known.
e all 1D and 2D disordered systems are localised (some exceptions 1n 2D)
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| in\—V
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¢ v 1s known as the ‘critical exponent’ and computer simulations give
v =1.571. This quantity 1s regarded a the critical test of any theory of
localisation.
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Anderson localisation
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Anderson localisation
What is known.:

e all 1D and 2D disordered systems are localised (some exceptions 1n 2D)

e 1n 3D there is a transition from diffusion to localisation at a critical value of
the disorder, 8,

e computer stmulations on 3D systems show that as the disorder reduces to

| in\—V
the critical value, 8,2, the localisation length diverges as /( = (5 o 502)

¢ v 1s known as the ‘critical exponent’ and computer simulations give
v =1.571. This quantity 1s regarded a the critical test of any theory of
localisation.

What is not known:

¢ no theory has correctly predicted the critical exponent

e still less, no theory has correctly predicted the critical disorder, 5;.2
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Disorder in 1D systems

Although 3D systems and their transition for diffusion to localisation are still a
mystery, 1D systems which are always localised are well understood.

We can make a good start on understanding localisation by studying the 1D
case.
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Transmission of waves through disordered systems

PHYSICAL REVIEW LETTERS week ending

PRL 94, 113903 (2005) 25 MARCH 2005

Optical Necklace States in Anderson Localized 1D Systems

Jacopo Bertolotti, Stefano Gottardo, and Diederik S. Wiersma
European Laboratory for Nonlinear Spectroscopy and INFM, 50019 Sesto Fiorentino (Florence), Italy

Mher Ghulinyan and Lorenzo Pavesi

INFM and Department of Physics, University of Trento, I-38050 Povo (Trento), Italy
(Received 8 November 2004; published 22 March 2005)

We report on the observation of nonlocalized modes or necklace states of light waves in disordered
systems in the Anderson localized regime. The samples consist of positional-disordered binary multilayer
systems. Anderson localized modes manifest themselves as narrow high-transmission peaks in the
transmission spectrum, whereas the average of the logarithm of the transmission coefficient decreases
linearly with thickness. Optical necklace states are observed as modes with a characteristic multi-

resonance time response and relatively fast decay time.

DOI: 10.1103/PhysRevLett.94.113903 PACS numbers: 42.25.Dd, 05.40.Fb, 42.25.Hz, 42.55.7z




Transmission of waves through disordered systems

1D disordered arrangement of layers
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Transmission of waves through disordered systems

Strongly disordered systems, and all 1D disordered systems, trap electrons on
localised sites.
When the energy of an electron hits one of these resonances we see

transmission. The intensity of the transmission depends on how far the
resonance 1s from the ends — in the middle works best.
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The problem

We wish to calculate 7, ,T; —, R}, R; " defined by,

aexp(+iKz) Tf Ta exp(+iK [z — L])
— —
R; "a exp(—-—iKz)
-4

|
z=Lc¢
;b exp(uiKz) b exp(-iK [z - L])
- -
R}t‘b exp(+iK[z — L))
—_—
>
| z=Lc
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Transfer Matrices

We divide the system into statistically independent slices,

N

|
a4
L LN
e

AN

» »
z=() z=Lc n=1 n=L

whose properties can easily be calculated. For example each slice might
contain a single scattering centre.
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Scattering by a single slice

+ ++ + — - —
an—1 tn a1 tn a, a,

— > —> <“—— | <«—
—+ + +— —
r, d r, d
n n—1 n n
<— —>
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Scattering by a single slice

+ P — - —
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—+ + +— —
P An—-1 Ay
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Scattering by a single slice

+ P g —
an—1 n 9n-1 n, 4n a,
> —> <“— | | <
—+ + +— —
P An—-1 Fn Ay
< —>

+ _ 4 +— —
an 616%51+Wh an
Ap—1=T, A4 + tn a,
+— + ++ +
. 1 —TIy ay tn 0 ap—1
rearranging, = N
O fn Cln I’n 1 Cln_l
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Scattering by a single slice

+ ++ + — - —

a1 tn a1 tn a, a,
— > —> <“—— | <«—
—+ + +— —
r, d r, d
n n—1 n n
<— —>
+ +
. . a, a1
and 1nverting, =X,
a, a1




Scattering by a single slice

+ P g —
an—1 n 9n-1 n, 4n a,
> —> <“— | | <
—+ + +— —
P An—-1 Tn Ay
< —>

Cl+ Cl+ 1

and inverting, x| T

a, an—1




The fundamental theorem

Evidently we can repeatedly apply transfer matrices to give,

+ + L
ay, ap
=7, — Hxn
n=1
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The fundamental theorem

Evidently we can repeatedly apply transfer matrices to give,

+ + L
ay, do
" =7 — H X,

EaanaaN

i) ()

L
where, HXn =7Z; =
n=1




The fundamental theorem

Evidently we can repeatedly apply transfer matrices to give,

it o B
Co=Zy =T1X. ]
ar 4o n=1 4
] | -
) i

L
where, HXn =7Z; =
n=1

) )

Z; has the same functional form as X, providing a means of calculating

transmission and reflection coefficients for a slab from the easy-to-obtain
transmission and reflection coefficients for a thin slice.
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The fundamental theorem

Evidently we can repeatedly apply transfer matrices to give,

+ + L
ay, do
" =7 — H X,

+
ap

2

i

) ()

Z; has the same functional form as X, providing a means of calculating

transmission and reflection coefficients for a slab from the easy-to-obtain
transmission and reflection coefficients for a thin slice.

L
where, HXn =7Z; =
n=1

Also since the slices are independent we can easily average Z; :
— L —
L= HXn
n=1
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More transfer matrices

—1
We know how to average Z; , but this average 1s of little interest as (TL_ _)

2
, the quantity we really want to know.

tells 1s nothing about ‘T I




More transfer matrices

—1
We know how to average Z; , but this average 1s of little interest as (TL_ _)

2
, the quantity we really want to know.
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However there are other transfer matrices obtained by taking direct products,

2,7 X,
® |=]]|®
Z; | n:1_Xn_
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More transfer matrices

—1
We know how to average Z; , but this average 1s of little interest as (TL_ _)

2
, the quantity we really want to know. However

tells 1s nothing about ‘T I

there are other transfer matrices obtained by taking direct products,

ZL L Xn
® |=]]|®
Z; | "X,
L
and more of the same, Z%N — HXn®N
n=1
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More transfer matrices

—1
We know how to average Z; , but this average 1s of little interest as (TL_ _)

2

tells 1s nothing about ‘T ;1 | ,the quantity we really want to know. However

there are other transfer matrices obtained by taking direct products,

ZL L Xn
® |=]]|®
Z; | "X,
and more of the same, Z%N — HXn®N
n=1

We can think of each component matrix of the direct product as a particle
evolving as the length of the system increases, much as real particles evolve 1n
time. Since each of the N components of X?N 1s 1dentical we can ask what 1s
the symmetry of these particles? It turns out that they are Bosons.

% Imperial College
“London




Even more transfer matrices

By various mathematical tricks we can extend the family of transfer matrices
to negative and to fractional values of N. For example the N =0 transfer
matrix can be found as follows.

Suppose that we already know the reflection coefficient of L —1 slices and use
multiple scattering theory to add another slice,

2
R F=r"+1t" [R;tl +R TR+ (R;if‘) R/ - } AN
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taking direct products with itself,

% Imperlal College

1+ 1, 0, 0,
Ry St A T e

. 2 b b 9
RL+ =

.3 T R S S A S S t+++(t“ A
R




taking direct products with itself,

1+ B 0, 0, 0, - 1+
R, R;~

L+2 Tt Tt ¢t g~ 2 SR :é

.3 A R S S A A S S A +(t“ t++) , 3
Ry Ry

It follows that
Z%N:O —
1, 0, 0, 0,--
R*, T T, RT T, R} T T/,

R;™?, ROTTT Y, RIYRITTOTS 4T T A,




taking direct products with itself,

LT 0, 0, 0. - | 1
RL+2 r T, AR t Tt R AR RL;
K - ot e ot e b [ )2 Ri-i
—+3 r r , r t t , r t r t +(t [ ) , 43
Ry Ry
It follows that
Z%N:O —
1, 0, 0, 0,--
—+ ——++ —p——m++ — 2 ——p++
R; ", Iy 17, Ry T, T, R; °T; 1y,

R;™?, ROTTT Y, RIYRITTOTS 4T T A,

Fractional and negative order transfer matrices are infinite.
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Maximal fluctuations

L
®N 0 HX®N -0 [X@)N—O}

1s an infinite matrix and contains all possible products of TLTz.
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Maximal fluctuations

L
®N 0 HX®N -0 [X@)N—O}

1s an infinite matrix and contains all possible products of TLTz.

M
In particular the averages of all powers of this quantity, (TLTik ) can be found

somewhere 1n the elements of Z®N =0 .

(rri)” =22

Iy sIm
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Maximal fluctuations

L
®N 0 HX®N -0 [X@)N—O}

1s an infinite matrix and contains all possible products of TLTz.

M
In particular the averages of all powers of this quantity, (TLTz ) can be found

somewhere 1n the elements of Z®N =0 .

(ruy)" =287

Iy sIm

If the system 1s large, L >> 1, then Z®N =Y is dominated by the largest
eigenvalue of X?N =,
M ——— ——L
* XN=0 N : ) L
(TLTL) |:Z } = |:|:Xn :| } = <ZM | ;Lmax></lmax‘ JM>;LmaX
MoJm

L sIm
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Maximal fluctuations
M [T — 1L
(i) =250 [XET | = ) 2
ing i

Since the only dependence on L 1s through the last factor,

iM ’jM
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Maximal fluctuations

AM e = 1F . .
(TLTL) = [Z%N_O :| = |:|:X§N O:l :| = <lM | lmax><;Lmax|JM>ﬂ’1€1ax
IMsIm i sJu
Since the only dependence on L 1s through the last factor,
o\ M
PTE) ™ (i o) o i Do i ) o i

~ —

TLTZ< <iM=1 | )“max > <}“max | jle > )“rﬁax <iM=1 | )Lmax > <;Lmax | jM=1>
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Maximal fluctuations

AM [ “eov=o 1L
(TLTL) = [ %N_O } T HX?\]_O} } =~ (ipg | Amax ) {Amax | jM>)“I€1aX
IMmsIm

v >Im

Since the only dependence on L 1s through the last factor,

M
(TeT2)" (i A i VA {ing] Aomae ) (Ao vt

~ —

TLTZ< <iM=1 | )“max > <}“max | jle > /’LIIIJIaX <iM=1 | )Lmax > <;Lmax | jM=1>

Hence the ratio of the moments in the limit L — oo 1s independent of L. This

has implications for the probability distribution of TLT[:k :

M
(TLTL )

*k
Iy 1y

~
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Maximal fluctuations

«\M = L . .
(i) =250 [XET | = ) 2
iM ’jM

Since the only dependence on L 1s through the last factor,

M
T272)" (i o) Vs ) e Cina | s ) Gl )

~

TLT[ik <iM=1 | /lmax > <)“max | jle > )“rlﬁax <iM=1 | )Lmax > <;Lmax | jM=1>

Hence the ratio of the moments in the limit L — oo 1s independent of L. This

v I m

has implications for the probability distribution of TLT; :

w\M
(TLTL )
*k
Ip17

The same result also applies in higher dimensions, whether or not the
system is localised.

~

NCM
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Maximal fluctuations

The distribution 1S

P(TLTE) ‘bimodal’ so that if you
happen to catch the right
most samples transmit almost nothing frequency, the system can

be almost  perfectly
transparent, but mostly it

rejects the incident wave.

a very few samples transmit

almost perfectly \

* b S
TLTL = O TLTL — 1

Physica A168 400 (1990), J.B. Pendry, A. Mackinnon & A.B. Prétre.
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Maximal fluctuations — 1D

In 1D we can obtain an analytic expression for the moments,

o\ M
(1,77 . r2(N-4r2(1)
M~ 2 2
11y I (%)F (N)
M | Cy,(theory)| C,;(computed)
1 [1.0 1.0
2 10.250 0.269
3 10.141 0.146
4 10.098 0.101
5 10.075 0.083
6 10.061 0.065

Comparison of values of C,;, as predicted by the theory of necklace states, and

as calculated 1in simulation.
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Maximal fluctuations — 1D computations

1.0
1072

107

0 500 1000
length length
(@) (b)

Moments of G; =T, T z computed by averaging over 9 X 10° 1D samples of
various lengths.
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Maximal fluctuations — 2D computations

128 32 16

4
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* M *
trace (TLTL ) trace 11Ty

plotted  against L' for
squares of size 4 < L <256
averaged over 128 samples.

As 1n 1D, the ratios tend to
a limit independent of L.




Maximal fluctuations — 3D computations

2016 12 3 4 16 12 8 4
0.6 ° M=2
« — M=2
0.4
R © [ ]
A
A
0.2
1/length - 1/length M=3
0 0.05 010 015 020 025 0.05 010 015 020 025

M
trace (T T z ) / traceT;T L* plotted against L' for cubes of size 4 < L <20

averaged over 128 samples. Left: disorder less than critical (diffusion); right:
disorder greater than critical (localisation). As in 1D and 2D the ratios tend to a
limit independent of L.
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Maximal fluctuations — 3D experiment

L

oy
9 D
: g
= |
=
o
Q

sl | J |
: 1.1 22.5
>4 gate voltage / V 08 2 frequency / GHz

Left: conductance of a silicon metal oxide field effect transistor measured at
50mK. Right: spectral intensity fluctuations for microwaves passing through a
140 cm length of tube filled with half-inch diameter polystyrene balls.
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Maximal fluctuations

Our theorem predicts that, however small the average transmission, the
average 1s dominated by a few highly transmitting eigenvalues of the transfer
matrix.

If the incident waves had exactly the right form to select this dominant
eigenvalue, then even a strongly disordered specimen would transmit most of
the incident waves.

&1 Imperial College
> London




Maximal fluctuations

Our theorem predicts that, however small the average transmission, the
average 1s dominated by a few highly transmitting eigenvalues of the transfer
matrix.

If the incident waves had exactly the right form to select this dominant
eigenvalue, then even a strongly disordered specimen would transmit most of

the 1incident waves.
August 15, 2007 / Vol. 32, No. 16 / OPTICS LETTERS 2309

Focusing coherent light through opaque strongly

scattering media

I. M. Vellekoop™ and A. P. Mosk

Complex Photonic Systems, Faculty of Science and Technology and MESA+ Research Institute,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
*Corresponding author: i.m.vellekoop@utwente.nl

Received March 6, 2007; revised June 14, 2007; accepted June 21, 2007;
posted June 28, 2007 (Doc. ID 80762); published August 2, 2007

We report focusing of coherent light through opaque scattering materials by control of the incident wave-
front. The multiply scattered light forms a focus with a brightness that is up to a factor of 1000 higher than
the brightness of the normal diffuse transmission. © 2007 Optical Society of America

OCIS codes: 290.1990, 290.4210, 030.6600.
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Vellekoop and Mosk
Optics Letters, 32, 2309 (2007)
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Vellekoop and Mosk
Optics Letters, 32, 2309 (2007)

random
plane speckle
wave
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Vellekoop and Mosk oprics Letters, 32, 2309 (2007)

: 3
v ' I1O
: ' - 2 |
y -

- 110

Transmission through a strongly scattering sample consisting of
TiO, pigment (white paint).

(a) Transmission with an unshaped incident beam.
(b) Transmission after optimization

The scattered light 1s focused to a spot that 1s 1000 times brighter than the
original speckle pattern.
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Vellekoop and Mosk oprics Letters, 32, 2309 (2007)

2N

Phase of the optimized incident wavefront
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Transfer Matrices — the model

The Anderson Model of disorder for electrons — 1D version

Vi1 Vau Vi

. %4 . | %4 .
Consider a chain of atoms:

coupled together by ‘hopping integrals’, V', but with disordered energies,
EWu+V (W1 +W,i1)=Ey,

We can rearrange the Schrodinger equation to give,
Y : (E-E,)/Vv -1

Vit _ Xn , X =
Vi Vi +1 0

~

X,, 1s referred to as a transfer matrix: 1t transfers the wavefield down the chain
of atoms and enables us to write,

Vi+i =1£[5( Vi
VL n=1 " Yo
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Transfer Matrices - continued
If there were no disorder in the system, the eigenstates would be Bloch waves,

( E— E_n) /V 1 ik e JriKe
+1 0 1 1

which we can use as a basis for X, ,

e+1Kc 0 o _|_e+ch _l_e—ch | En _F
Xn — K o 16 n K K > 5 n_— .
0 e—l C _e+l C _e—l C oV SlIl(KC)

E —E
here, &, =
WHELE " 2Vsin(Kc)
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Computations using transfer matrices

|
24}
I
=
.34
.44
-0.1 0.0 0.1

Transmission coefficient of a disordered 1D Anderson model (L =1000)
calculated using transfer matrices.
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Necklace States

How does the wave pass through a disordered system?
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Necklace States

Argument for tunnelling via a resonance:

Rate at which waves tunnel directly given by the decay rate,

Ty o exp(—L/lg)

For efficient tunnelling via a resonance, the resonance should lie half way
across the specimen: 1t nearer to the entrance side the wave I deposit back
where 1t came from, too far to the other side and the wave never reaches the
resonance. The tunnelling rate for a resonance 1n the centre 1s,

7! ecexp(=L/24¢)
Thus tunnelling via a resonance beats direct tunnelling hands down.

why stop at one?
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Necklace States

What is the optimum number of resonances in a necklace?

Exact theory for the 1D case can calculate the bandwidth of conducting
channels and shows that,

1

T (w2.\2
oW = — (5 L)
SR T 816\ 0n

which means that a typical hopping distance 1s = JL . As the sample gets
longer there are more resonances in the necklace, but the are spaced further
apart:

the necklaces have fractal dimension of 1/2.
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Necklace States in 3D

Necklaces are important 1n 3D localised systems. Waves cross the sample
through a series of hops. To maximise the overlap with the incident frequency,
hops must be as short as possible. As in 1D this requires that they be of

approximately equal length, but in addition the path across the sample must be
as short as possible and therefore as straight as possible.

O

o ¢ o®

O O In 3D localised systems conduction i1s
o through a few ‘holes’ 1n the sample

W“;.—'} that occur exponentially rarely across

® O ‘. O the surface.

® O
O O

<“«—— >
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Conclusions

Transfer matrices have shown great mathematical power in solving difficult
problems 1n 1D systems. They have given results which other methods have
only hinted at or not revealed at all and often given them 1n very general terms.
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Before us stands the challenge of disordered 3D systems, all the greater
because of the richness of experimental results now available in the new
optical experiments.
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Transfer matrices have shown great mathematical power 1n solving difficult
problems 1n 1D systems. They have given results which other methods have
only hinted at or not revealed at all and often given them 1n very general terms.

Before us stands the challenge of disordered 3D systems, all the greater
because of the richness of experimental results now available in the new
optical experiments.

More than half of a century's work on the transition between localised and
delocalised behaviour has not solved the problem, despite great ingenuity and
application of the most powerful mathematical techniques available to us; we
do not understand this transition in any real sense of the word.

&1 Imperial College

> London




Conclusions

Transfer matrices have shown great mathematical power in solving difficult
problems 1n 1D systems. They have given results which other methods have
only hinted at or not revealed at all and often given them 1n very general terms.

Before us stands the challenge of disordered 3D systems, all the greater
because of the richness of experimental results now available in the new
optical experiments.

More than half of a century's work on the transition between localised and
delocalised behaviour has not solved the problem, despite great ingenuity and
application of the most powerful mathematical techniques available to us; we
do not understand this transition in any real sense of the word.

Perhaps transfer matrices can make an impact. Their mathematical structure 1s
alien to that which has been tried before; they have a record of success 1n one
dimension; and they can already reproduce the major known results in three
dimensions.
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