
1 Dirac fermions in graphene: chiral symmetry, winding number

1 Moore & Moessner: chapter 2.5

Consider a Hamiltonian H(k) that has a 2×2 matrix block structure,

H(k) =
(

0 Q†(k)
Q(k)

)
. (1)

The complex function Q(k) depends on the two-dimensional momentum k= (kx ,ky ).

(a) A Hamiltonian of this form is said to have a chiral symmetry, which means that it anti-
commutes with some unitary matrix C . Can you find such a C ?
Explain that the spectrum of H is symmetric around zero.

(b) The winding numer W of H is defined by 1/2π times net increment of the phase of Q as
k varies along a closed contour Γ. Why must W be an integer? If W ̸= 0, why must Q vanish
at some point k0 inside Γ?.

c) Assume that W = 1. Expand Q around k0 and show that to first order in δk = k−k0 the
Hamiltonian can be written in the form

H(δk) = ∑
i , j=x,y

vi jδkiσ j , (2)

with Pauli matrices σx and σy . This is called the Dirac Hamiltonian; the point k0 is called
the Dirac point.

(d) Calculate the eigenvalues of the Dirac Hamiltonian. Motivate why Dirac fermions are
referred to as “relativistic” particles.

(e) In graphene the function Q is given by

Q(k) = t0

(
1+e ik·n+ +e ik·n−

)
, (3)

with n± = a0(±p3/2,3/2) and real parameters t0 and a0 (hopping energy and lattice con-
stant). Find two Dirac points at ±k0, with opposite winding number W = ±1. These are
called the two “valleys” of the band structure.

(f) Show that the Hamiltonian in each valley has the form

H±(δk) = v
(
δkxσx ±δkyσy

)
. (4)

How is the velocity v related to the parameters t0 and a0? Compare v in graphene to the
speed of light. Are these really relativistic particles?

(g) If the graphene layer is placed on a substrate a chiral-symmetry-breaking term ±µσz is
added to H±. Show that a gap ∝µ opens at the Dirac point.
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2 Chiral symmetry in 1D: SSH chain, zero-modes

1 Asbóth: chapter 1; Moore & Moessner: box 4.1

A one-dimensional (1D) lattice model with chiral symmetry has a Hamiltonian of the form

H(k) =
(

0 h(k)
h∗(k) 0

)
, (5)

with h(k) = h(k +2π/a), for a lattice constant a. Because of this periodicity we can define a
closed loop even in 1D. The winding number W is then the increment of the phase of h(k)
as k increases by 2π/a.

The SSH (Su-Schrieffer-Heeger) model has Hamiltonian

HSSH(k) =
(

0 v +we−i ka

v +we i ka 0

)
, v, w > 0. (6)

(a) The operator e±i ka , with k = −i d/d x, acting on a function ψ(x) translates by ±a:
e±i kaψ(x) =ψ(x±a). Use this to explain why HSSH describes the staggered hopping strength
along a chain of atoms, as indicated in the figure.

(b) Compute the winding number W of the SSH Hamiltonian. Show that W = 1 for v < w ,
while W = 0 for v > w . The SSH chain is called topologically nontrivial when W ̸= 0.

(c) The transition from W = 0 to W = 1 is called a topological phase transition. Show that
this transition is associated with a closing and reopening at k = π/a of an energy gap of
HSSH.

In the extreme case w = 1, v = 0 the SSH chain in the figure has a pair of states at zero en-
ergy located at each end. This pair of “zero-modes” persists in the topologically nontrivial
regime, provided that the length L of the chain is long enough.

(d) Write HSSH in the form a matrix that couples sites on a 1D lattice. Compute the energy
spectrum of a 20-atom chain, for w = 1 as a function of v . Show the appearance of a pair of
states near E = 0 for v < w .

(e) An intuitive way to understand the robustness of the zero-mode, is to note that chiral
symmetry enforces a ±E symmetry of the spectrum. (Why is this?) Consider a semi-infinite
chain. Start from w = 1, v = 0, when there is a zero-mode. Now imagine increasing v . Why
does chiral symmetry keep the zero-mode pinned at E = 0? How does this argument break
down when v crosses w?

The winding number of the chirally symmetric Hamiltonian has an alternative interpre-
tation that will allow us to generalize this topological invariant to systems without chiral
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symmetry.

(f) Show that the winding number, defined as the increment of the phase of h(k), can equiv-
alently be written as an integral

W = 1

2πi

∫ 2π/a

0
dk h−1(k)

d

dk
h(k). (7)

(g) Denote by u(k) the eigenstate (normalized to unity) of the lowest band of H(k). The
integral

γ= i
∫ 2π/a

0
dk u∗(k)

d

dk
u(k) (8)

is a 1D Berry phase, also known as a Zak phase. The integrand is called the Berry connection.
Show (by explicit calculation) that

W = 1

π
γ. (9)

3 Chern insulator: Chern number, chiral edge states, quantum Hall
effect

1 Asbóth: chapters 2.2.4 and 6; Grushin: chapter 5 A,B,C; Fruchart & Carpentier: section
3

In a 2D system the Berry connection A= (Ax , Ay ) has two components,

Aα(k) = i

〈
u(kx ,ky )

∣∣∣∣ ∂

∂kα

∣∣∣∣u(kx ,ky )

〉
. (10)

The Chern number is defined by the integral over the Brillouin zone (BZ) of the curl of A
(also known as the Berry curvature),

C = 1

2π

∫ ∫
BZ

dkx dky

(
∂Ax

∂ky
− ∂Ay

∂kx

)
. (11)

Each energy band has its own Chern number. A Chern insulator has a band with a nonzero
Chern number.

(a) Explain why C = 0 if the system obeys time reversal symmetry.

(b) The eigenstate u(k) is determined up to multiplication by a phase factor e iφ(k). Show
that the transformation u(k) 7→ e iφ(k)u(k) does not change the Chern number.

A simple model Hamiltonian of a Chern insulator is

H(k) = t0σx sin akx + t0σy sin aky +M(k)σz ,

M(k) = M0 − t0 cos akx − t0 cos aky .
(12)
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(c) Why does the term ∝ M break time reversal symmetry?

(d) Calculate the Chern number of the lowest band, as a function of M0/t0.

A boundary of the Chern insulator can be modelled by a region in which M/t0 →∞. Con-
sider a boundary along the x-axis, and take M →∞ for y > 0 and M/t0 = 1 for y < 0. The
low-energy states are near k = 0, so it makes sense to expand H(k) to first order in kx and
ky ,

H0 = at0kxσx +at0kyσy + (M(y)−2t0)σz . (13)

(e) Solve the Schrödinger equation H0ψ= Eψ by searching for a solution of the form

ψ(x, y) = e i kx exp

(
−

∫ y

0
d y ′ [M(y ′)−2t0]

)(
α

β

)
. (14)

Check that this solution decays for |y | →∞, hence it describes a state localized at the edge
of the Chern insulator. Show that this edge state propagates in the −x direction. Because of
this uni-directional motion it is called a chiral edge state.

(f) Explain that the edge state carries an electrical current (e/h)δE along the boundary in
an energy range δE around E = 0. What would be the electrical conductance of a Chern
insulator confined to the strip |y | <W ?

More generally, a Chern insulator with Chern number C has an electrical conductance
quantized at G = |C |×e2/h. This is a manifestation of the quantum Hall effect. Because the
quantization of the conductance arises from a topological invariant, one speaks of “topo-
logical protection”.

4 Quantum spin Hall effect: Kramers degeneracy, helical edge
states, scattering matrix

1 Moore & Moessner: chapters 3.4 and 3.5; Asbóth: chapters 8 and 10; Grushin: chapter 5

D; Fruchart & Carpentier: section 4

So far we encountered two topological invariants, winding number and Chern number, that
can take on any integer value. A 2D system with time reversal symmetry can have a topo-
logical invariant that can take on just two values. One speaks of Z versus Z2 topological
invariants.

To construct a topologically nontrivial 2D system that is time-reversally invariant, the sim-
plest way is to couple a Chern insulator for spin-up electrons with C = +1 to a Chern in-
sulator for spin-down electrons with C = −1. At the boundary there will then be a pair of
counterpropagating edge states. The direction of motion is set by the spin direction, a prop-
erty known as spin-momentum locking, or helicity. One might wonder whether scattering
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could cause backscattering and gap out the edge states. This is prevented by Kramers de-
generacy.

A time-reversally invariant Hamiltonian of a spin-1/2 particle satisfies

σy H∗σy = H , (15)

where the complex conjugation is taken in the real-space basis (so k=−iħ∇ 7→−k).

(a) Show that this symmetry relation implies that, if ψ is an eigenstate of H at eigenvalue
E , then also σyψ

∗ is an eigenvalue at the same energy. Can you also show that these two
eigenstates are linearly independent?
(b) Suppose we add a spin-independent disorder potential V (x, y) to the Hamiltonian. Ex-
plain why Kramers degeneracy prevents disorder from opening a gap in the energy spectrum
of the helical edge states. What would happen if we would couple two Chern insulators with
C =±2?

To study electrical conduction it is helpful to work with the scattering matrix at a given
energy, instead of the Hamiltonian. The scattering matrix S(E) is a 2×2 matrix that relates
incoming and outgoing amplitudes of a pair of helical edge states at energy E ,(

ψout at the left

ψout at the right

)
= S

(
ψin at the left

ψin at the right

)
. (16)

Particle number conservation requires that S is a unitary matrix: S−1 = S†. Time reversal
symmetry requires that Snm =−Smn .

(c) Show that these two conditions imply that a wave incoming from the left is transmitted
to the right with unit probability.

More generally, consider N pairs of helical edge states. The Z2 topological invariant P is
the parity of N : P = 0 if N is even and P = 1 if N is odd. The scattering matrix now has
dimensions 2N × 2N ; the N × N upper-left block (the reflection matric r ) describes the
backscattering of a wave incoming from the left. The electrical conductance is obtained
from r via the Landauer formula,

G = e2

h

(
N − trr r †

)
. (17)

(d) Derive that detr = 0 if N is odd. What does this imply for the electrical conductance?

5 Topological insulators: fermion doubling, half-integer quantum
Hall effect

1 Moore & Moessner: chapter 3.6; Grushin: chapter 6
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In the quantum spin Hall effect we have a gapped 2D interior and gapless states at the 1D
boundary, described by the Hamiltonian H1D = vkxσx (for a boundary along the x-axis).
This carries over to one higher dimension: a gapped 3D interior with gapless states on
the 2D surface, with Hamiltonian H2D = vkxσx + vkyσy (for a surface in the x–y plane).
In each case the gapless nature of the excitations is protected by time reversal symmetry.
Generically, the 2D and 3D materials with an insulating interior and a gapless boundary are
referred to as topological insulators.

A model Hamiltonian for a thin-film topological insulator is

H = t0τz (σx sin akx +σy sin aky )+τx M(kx ,ky ),

M(kx ,ky ) = M0 −M1(2−cos akx −cos aky ).
(18)

This Hamiltonian acts on a four-component wave functionΨ= (ψ↑upper,ψ↓upper,ψ↑lower,ψ↓lower),
of states with spin ↑ or ↓, confined to the upper or lower surface of the thin film. The Pauli
matrix σα acts on the spin, the Pauli matrix τα acts on the layer degree of freedom. The
term ∝ M thus couples states on the upper and lower surface.

(a) Check that this Hamiltonian preserves time reversal symmetry.

(b) Show that the Hamiltonian is block diagonalized by the unitary transformation H 7→
U HU † with U = e i (π/4)τyσz .

The 2×2 blocks have Hamiltonian

H± =±t0(σx sin akx +σy sin aky )±M(kx ,ky )σz . (19)

(c) Each block separately looks like the Hamiltonian (12) of a Chern insulator. Why doesn’t
H± break time reversal symmetry?

(d) Check that for M0 = 0 there is a single gapless Dirac cone in the Brillouin zone. In
graphene we saw that Dirac cones come in pairs of opposite winding number, a conse-
quence of time reversal symmetry known as fermion doubling. How does the topological
insulator avoid the appearance of a second Dirac cone in the Brillouin zone?

Near k = 0 we may expand to first order in k. In a perpendicular magnetic field B =
d Ax /d y −d Ay /d x the Hamiltonian H± =±H0 is given by

H0 = v(kx −e Ax )σx + v(ky −e Ay )σy +M0σz , with v = at0. (20)

(e) Define the operator

b = (2eB)−1/2
(
(kx −e Ax )+ i (ky −e Ay )

)
. (21)

Show that this operator satisfies the canonical commutation rule

[b,b†] = 1. (22)

(f) Write H0 in terms of b and b†, and then obtain the eigenvalues λn of H 2
0 ,

λ2
n = M 2

0 +nω2
0, n = 0,1,2, . . . , with ω0 = at0

p
2eB . (23)
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Convince yourself that the eigenvalue λn is twofold degenerate for n Ê 1, but nondegenerate
for n = 0. For M0 = 0 the spectrum of H0 is then given by

En = sign(n)ω0

√
|n|, n ∈Z. (24)

How does this differ from the usual Landau level spectrum in a 2D semiconductor?

(g) Explain the half-integer quantum Hall effect from a single surface of the topological in-
sulator. This is also referred to as the anomalous quantum Hall effect — to be distinguished
from the quantum anomalous Hall effect, which is the quantum Hall effect at zero magnetic
field.

6 Topological superconductors: Kitaev chain, Majorana fermions

1 Moore & Moessner: chapter 9.4, box 9.2; Grushin: chapter 4.I

The Kitaev chain is the superconducting counterpart of the SSH chain: the role of chiral
symmetry to stabilize the zero-modes is taken over by particle-hole symmetry.

Consider spin-polarized fermions on a chain of N sites with Hamiltonian

H =
N−1∑
j=1

[
−t (a†

j a j+1 +a†
j+1a j )+∆(a j a j+1 +a†

j+1a†
j )

]
−µ

N∑
j=1

(
a†

j a j − 1
2

)
, (25)

where t is the hopping amplitude between neighbouring sites, µ is the chemical potential,
and ∆ is the superconducting pair potential. The operators ai , a†

i are the fermion annihila-
tion and creation operators on site i , with anticommutation relations

ai a†
j +a†

j ai = δi j ,

ai a j +a j ai = 0, a†
i a†

j +a†
j a†

i = 0.
(26)

Notice that H does not conserve the number of particles, but it does conserve the parity
of the particle number: The term ∝ ∆ changes the number of particles by ±2. The pair of
fermions is called a Cooper pair.

We make the transformation

γ2 j−1 = a j +a†
j and γ2 j =−i (a j −a†

j ).

indicated in the figure. The γ operators are called “Majorana operators” and the quasipar-
ticles they represent are called “Majorana fermions”.
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(a) Compute γ†
n and compare it to γn . Explain why it is said that a Majorana fermion “is its

own antiparticle”.

(b) What are the commutation relations of the operators γ j ? Evaluate γ2
j .

(c) Rewrite the Hamiltonian in terms of the Majorana operators.

(d) Consider the special case ∆= t , µ= 0. Show that γ1 and γ2N are absent from the Hamil-
tonian of the Kitaev chain. These play the role of the zero-modes of the SSH chain.

To consider the more general case of arbitrary t ,µ,∆, we need a formalism that can deal
with the absence of particle-number conservation. This has been developed by Bogoliubov
and De Gennes. Include all the fermion operators in a vector Ψ of length 2N , composed of
two vectors u, v of length N :

Ψ= (u, v), u = (a1, a2, . . . aN ), v = (a†
1, a†

2, . . . a†
N ). (27)

The Pauli matrices τx ,τy ,τy act on the u and v vectors,

τx

(
u
v

)
=

(
v
u

)
, τy

(
u
v

)
=

(−i v
i u

)
, τz

(
u
v

)
=

(
u
−v

)
. (28)

The operator | j 〉〈 j | projects onto site number j of the chain. With this notation we can
rewrite the Hamiltonian (25) as a combination of Pauli matrices,

H = 1
2Ψ

†HΨ, H =−
N−1∑
j=1

[
(tτz + i∆τy )| j 〉〈 j +1|+H.c.

]−µτz

N∑
j=1

| j 〉〈 j |. (29)

(The abbreviation H.c. means “Hermitian conjugate”.) The matrix operator H is called the
Bogoliubov-De Gennes Hamiltonian.

(e) Derive this expression for H . Verify the particle-hole symmetry relation

τxH ∗τx =−H (30)

and explain why the spectrum of H must be ±E symmetric.

(f) Show that H for ∆= t , µ= 0 has a pair of eigenvalues E = 0. Where are the corresponding
eigenfunctions of H located on the chain? These two eigenstates are called “Majorana zero-
modes”.

(g) Calculate numerically the spectrum of H for N = 20, t = 1 as a function of ∆ and µ.
Check the stability of the Majorana zero-modes and explain how this follows from particle-
hole symmetry.

7 Weyl semimetals: Berry flux, Fermi arcs, chiral magnetic effect

1 Moore & Moessner: chapter 7.2; Grushin: chapter 7
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A Weyl semimetal is the 3D generalization of 2D graphene. As in graphene the excitations are
massless particles, but instead of being confined to a plane they move in all three directions.
The move from 2D to 3D changes the physics in a qualitative way, as we will see.

(a) The 2D Dirac cone, with Hamiltonian H2D = v pxσx + v pyσy , can be gapped by a mass
term ∝σz . Explain that the 3D Hamiltonian

H3D = v pxσx + v pyσy + v pzσz (31)

cannot be gapped in any way. To emphasise this qualitative difference one uses a different
name in 3D: a Weyl cone for Weyl fermions.

(b) Calculate the eigenfunction u of the lowest energy band of H3D , then find the Berry
connection A= i 〈u|∂/∂p|u〉 and the Berry curvature B = (∂/∂p)×A. The result is

B = 1
2

p

|p|3 . (32)

This is the same vector field as the magnetic field of a monopole. One says that a Weyl point
is a “monopole for Berry curvature”. The flux through a sphere enclosing the Weyl point is
quantized at 2π.

(c) Explain that the Hamiltonian −H3D has a flux of Berry curvature equal to −2π in the
highest energy band. The ± sign of the Berry curvature is called the chirality of the Weyl
fermions. Can you explain why it is not possible to associate a chirality to H2D ?

On a lattice the Berry curvature should be a periodic function of momentum, so the net flux
through the Brillouin zone should vanish and Weyl cones should appear in pairs of opposite
chirality. A simple lattice model of a Weyl semimetal is

H(k) = tσx sin akx + tσy sin aky +m(k)σz ,

m(k) = t (cosβ−cos akz )+ t ′(2−cos akx −cos aky ).
(33)

The momentum k varies over the Brillouin zone |kα| <π/a of a simple cubic lattice.

(d) Show that H(k) has two Weyl points of opposite chirality, at the momenta k= (0,0,±K ).

In a finite system a surface state appears that connects the two Weyl points, a socalled
“Fermi arc”. To see this, we take a slab geometry, unbounded in the y–z plane and confined
in the x-direction between x = 0 and x = W . We impose the following boundary condition
on the wave function ψ,

σyψ=
{
−ψ at x = 0,

+ψ at x =W.
(34)

This boundary condition corresponds to a mass term m0(x)σz in H that vanishes inside the
slab and tends to +∞ outside.
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The Schrödinger equation Hψ = Eψ can be solved analytically in the low-energy regime
by linearizing in kx and substituting kx 7→ −i∂/∂x. Integration of the resulting first-order
differential equation in x gives

ψ(x) = e i xΞψ(0), Ξ= 1

t
σx [E −H(0,ky ,kz )]. (35)

To ensure that an eigenstate of H satisfies the boundary condition (34), we require that

〈−|e iWΞ|−〉 = 0, |±〉 =
(

1
±i

)
, σy |±〉 =±|±〉. (36)

(e) Show that this procedure gives the following dispersion relation for E(ky ,kz ):

E 2 − t 2 sin2 aky −m(0,ky ,kz )2 = q2, (37)

with transverse wave number q given by

m(0,ky ,kz )

q
tan(W q/t )+1 = 0. (38)

Can you plot the dispersion relation? For example, plot E as a function of kz for ky =
0.01, for parameters W = 40, β = 1.5, a = t = t ′ = 1. (On Mathematica I use the command
ContourPlot for that purpose.)

(f) The Fermi arcs have a purely imaginary q = i m. Show that this solves Eq. (38) in the
large-W limit if m < 0. The corresponding dispersion relation is

EFermi arc =±t sin aky , |kz | <β. (39)

The ± sign distinguishes the Fermi arcs on opposite surfaces (− at x = 0 and + at x = W ).
Draw the trajectory along the surface of the slab of an electron in a Fermi arc state.

(g) Consider a single Weyl cone in a magnetic field, say in the z-direction. The Hamiltonian
is

H3D = v pxσx + v(py +eB x)σy + v pzσz . (40)

Recall from exercise 5 that for pz = 0 this Hamiltonian has a nondegenerate Landau level at
E = 0. Why must this state be an eigenstate of σz ? Plot the dispersion relation E(pz ) of this
zeroth Landau level.

(g) Take a look at http://www.condmatjclub.org/uploads/2015/05/JCCM_MAY_2015_
03.pdf and explain what is meant by the chiral magnetic effect in a Weyl semimetal.
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8 Symmetry classification: ten-fold way, topological invariants

We can classify the Hamiltonian based on the presence or absence of time-reversal symme-
try (T ) and particle-hole symmetry (P ). This classification is known as the “ten-fold way”,
because it turns out there are 10 classes if we also distinguish T 2 =±1 and P 2 =±1.

(a) A first count only gives 9 classes: For T and P we have 3 possibilities each (no symmetry
or a symmetry squaring to +1 or −1), and 3×3 = 9. Do you have an idea where the 10th
class comes from? Hint: consider the product PT .

(b) How would you classify the SSH chain and how the Kitaev chain? What about the quan-
tum Hall effect and the quantum spin Hall effect?

In a wire geometry a topologically nontrivial phase is characterized by the presence of zero-
modes at the end points of the wire. The number Q of zero-modes at one end point is
a topological invariant. This number can be associated with an algebraic invariant of the
reflection matrix r for waves incident at zero energy on one end of the wire. Assuming that
the wire is gapped inside, and is sufficiently long, there will be no transmission to the other
end, so the reflection matrix is unitary.

(c) If the wire is a Kitaev chain, the particle-hole symmetry relation (30) requires that

r = τx r∗τx . (41)

In the Kitaev chain the matrix r is 2×2, but this relation holds more generally for higher-
dimensional matrices.
Prove that the determinant of r equals ±1. We thus obtain the Z2 topological invariant
Q = detr . Which of the two values ±1 do you think signals the presence of a Majorana
zero-mode?

(d) If the wire is an SSH chain, the combination of time-reversal symmetry and chiral sym-
metry requires that

r =σz r †σz . (42)

Again, this relation holds for any dimension of r .
Prove that this implies that the trace of σz r is equal to an integer. We thus obtain the Z
topological invariant Q = trσz r .

(e) There exists a third algebraic invariant, known as the Pfaffian, which is the signed square
root of the determinant of an antisymmetric matrix. Which combination of symmetries
might allow for the Pfaffian to be a topological invariant?

9 Topological quantum computation: Majorana qubits, braiding

1 Moore & Moessner: box 5.2, chapter 9.7
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Recall from section 6 that Majorana operators γn are Hermitian operators (γn = γ†
n) which

satisfy the anticommutation relation

{γn ,γm} ≡ γnγm +γmγn = 2δnm . (43)

From four Majorana operators γ1,γ2,γ3,γ4 we can construct a pair of Dirac operators

a1 = γ1 + iγ2

2
, a2 = γ3 + iγ4

2
. (44)

These satisfy the usual fermion anticommutation relations

{an , a†
m} = δnm . (45)

(a) Explain why the most general Hermitian operator that couples Majoranas n and m equals
a constant times iγnγm .
(b) Check that the operator

Pnm = iγnγm (46)

has eigenvalues ±1. Why is this quantum number called “fermion parity”?

We denote by |s, s〉, s, s′ ∈ {0,1}, an eigenstate of P12 and P34 with eigenvalues (−1)s and
(−1)s′ , respectively.

(c) Explain why transitions are forbidden between states with different s + s′ modulo 2.
Hint: Consider the global fermion parity operator P12P34.

(d) The two states |0〉 ≡ |0,0〉 and |1〉 ≡ |1,1〉 define a bit of quantum information stored in a
pair of Majorana zero-modes; one speaks of a Majorana qubit. Show that the not operation
σx (being the Pauli matrix that interchanges |0〉 and |1〉) is obtained by

σx =−iγ2γ3. (47)

The other Pauli matrices can be obtained similarly by coupling other pairs of Majoranas,

σy = iγ1γ3, σz =−iγ1γ2.

The exchange of Majoranas 1 and 2 transforms γ1 7→ e iαγ2, γ2 7→ e iβγ1. To maintain Hermi-
tian operators the phases α,β are restricted by α,β ∈ {0,π}.

(e) Conservation of fermion parity requires that the operator P12 remains unchanged. Ar-
gue that this requires either α= 0,β=π or α=π,β= 0.

(f) Assume α = 0, β = π. Show that the exchange is a unitary transformation γn 7→U †γnU
with

U = 1p
2

(1+γ1γ2). (48)

(g) Check that U can also be written as

U = e i (π/4)σz , (49)
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which has the form of a π/2 rotation of the qubit around the z-axis on the Bloch sphere.
Rotations by π/2 around other axes can be obtained by exchanging other pairs of Majo-
ranas. These operations are called topological because the angle of rotation is exactly π/2,
irrespective of the details of the exchange operation (which is called braiding ). If one re-
peats the entire braiding operation, the Majoranas 1 and 2 have returned to their original
positions but the final state differs from the initial state by a unitary operator and not just
by a phase factor. That is called non-Abelian statistics.

13


	Dirac fermions in graphene: chiral symmetry, winding number
	Chiral symmetry in 1D: SSH chain, zero-modes
	Chern insulator: Chern number, chiral edge states, quantum Hall effect
	Quantum spin Hall effect: Kramers degeneracy, helical edge states, scattering matrix
	Topological insulators: fermion doubling, half-integer quantum Hall effect
	Topological superconductors: Kitaev chain, Majorana fermions
	Weyl semimetals: Berry flux, Fermi arcs, chiral magnetic effect
	Symmetry classification: ten-fold way, topological invariants
	Topological quantum computation: Majorana qubits, braiding

